
Vol.15 (2025) No. 2

ISSN: 2088-5334

Application of Reinforcement Learning Techniques in Software

Testing of Android Applications: A Systematic Literature Review

Nadiah Mohd Hanim a, Johanna Ahmad a,2, Mohd Arfian Ismail b, Nor Amalina Mohd Sabri c,1,

Shahdatunnaim Azmi c
a Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

b Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia
c Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia

Corresponding author: 1noramalina@uthm.edu.my; 2johanna@utm.my

Abstract—Software testing is a critical process in ensuring the quality and reliability of applications before they are deployed to

production. However, it is resource-intensive and often tedious, particularly in the context of Android applications, which pose unique

challenges due to their vast state space, diverse user interactions, and variable behaviors. Reinforcement learning (RL), a machine

learning framework where agents interact with environments to improve decision-making policies, has gained attention for its potential

in software testing. This systematic literature review examines the application of reinforcement learning in software testing of Android

applications, focusing on widely researched areas, prevalent techniques, and emerging trends. The review analyzes 22 selected studies

from an initial pool of over 30,000 articles published between 2020 and 2024. The findings highlight that automated testing is the

primary focus in this domain, with Q-learning emerging as the dominant RL technique. Actor-critic methods, deep Q-networks (DQN),

and policy gradient approaches are also explored in several studies, aiming to improve the adaptability and efficiency of testing

processes. Most research emphasizes fault detection and coverage maximization, often targeting event-driven interactions and GUI-

based behaviors. Despite significant advancements, the study identifies underexplored areas, such as test case prioritization and the

integration of user behavior or user interaction data, as promising directions for future research. This review contributes to

understanding the current landscape and offers guidance for future RL-based Android application testing investigations.

Keywords—Android application; machine learning; reinforcement learning; software testing; systematic literature review.

Manuscript received 5 Feb. 2024; revised 14 Oct. 2024; accepted 27 Dec. 2024. Date of publication 30 Apr. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software applications usually contain a lot of bugs and

errors, as they are developed by software developers who

naturally cannot escape making mistakes [1]. This is why
software testing is crucial before the application is developed

and pushed to production, so the application is free from

major and minor bugs. Although software testing does not add

direct functionality to an application, it can consume over

50% of resources, including time and money [1], [2]. Other

than that, performing regression testing after developers

resolve a bug can be tedious for the software testers as they

have to write test scripts and perform the testing all over again

[3], [4]. This is where artificial intelligence (AI) comes to the

rescue by making life easier for the software tester [5], [6].

At present, some applications provide AI functionality,

sparing the human testers the challenge to comprehensively

evaluate the entire product with a human-level precision [2],

[7], [8]. Android applications, especially, are challenging to test

due to their variability in user interactions [9]. Android

applications have a vast state space, making thorough

exploration during testing a significant challenge [10]. Testing

must consider different gestures, orientations, and user

behaviors, making it challenging to create comprehensive test

cases [11]. While regression is a statistical approach used to
model relationships between variables and predict continuous

outcomes, reinforcement learning is a learning framework in

which an agent interacts with an environment to improve a

policy based on a specified objective, adapting as it perceives

the state of the environment [1], [12].

Reinforcement learning is a learning framework in which

an agent interacts with an environment to improve a policy

based on a specified objective, adapting as it perceives the

state of the environment [1], [12]. Reinforcement learning is

widely used in software testing of Android applications

647

because of its ability to learn and adapt [13]. Due to the nature

of this technique, many studies have proposed the usage of

various reinforcement learning techniques in software testing

of Android applications [14]. The growing number of studies

on reinforcement learning in software testing for Android

applications underscores the need to systematically review

current knowledge and identify areas for future research [1].

II. MATERIALS AND METHOD

This SLR review method was designed to align with

established best practices by adhering to both general and

specific SLR guidelines in software engineering. Specifically,

this SLR follows the general SLR guidelines specified by [15]

and specific SLR guidelines established by [16]. By following

both sets of guidelines, this SLR methodology is structured

into three primary phases: planning the review, conducting

the review, and reporting the review as shown in Fig. 1. This

phased approach ensures a systematic process, beginning with
the careful planning and formulation of research questions,

progressing through a comprehensive review and concluding

with a thorough reporting of findings [15], [16], [17].

Fig. 1 Systematic Literature Review (SLR) Phases

A. Research Questions

Formulating strong and precise research questions is

crucial for an effective SLR. By clearly specifying the

research questions, the process of SLR can become more
efficient as it helps determine the relevant studies that are

aligned with the research objectives. This SLR aims to

explore and synthesize the application of reinforcement

learning techniques in software testing for Android

applications. Aside from that, the researchers aim to

investigate how the software testing of Android applications

is optimized to address the multimodal user interactions

inherent in these applications. The research questions for this

SLR comprise five components. These components are

known as PICOC and were proposed by [16]. Table 1 shows

the criteria and scope of research questions.

TABLE I

CRITERIA AND SCOPE OF RESEARCH QUESTIONS

Criteria Scope

Population Reinforcement learning
Intervention Software testing
Comparison NA
Outcomes Reinforcement learning technique applied in

the software testing of an Android application

Context Review(s) of any empirical studies of software
testing for Android applications with
reinforcement learning

To achieve the aim of this SLR, five research questions

have been formulated as follows:

 RQ1: Which part of software testing does the paper

discuss?

 RQ2: What reinforcement learning algorithms are used

in the paper to improve the area of software testing for

Android applications?

 RQ3: What kind of datasets are used in the software

testing Android applications using reinforcement

learning?

 RQ4: What evaluation metrics are used to assess

reinforcement learning algorithms' performance in
Android software testing?

 RQ5: Is there any integration of user behavior data or

user interaction into the proposed model?

B. Data Sources

Seven online databases have been selected and thoroughly

searched for this SLR. The online databases chosen were

Google Scholar, Scopus, IEEE Xplore, ScienceDirect,

SpringerLink, WOS, and ACM Digital Library. These
databases were selected from a list of available online

databases subscribed to by UTM’s Library.

C. Search Strategy

Establishing a clear search strategy is essential for

conducting a systematic literature review. A well-defined

search strategy ensures that the search for relevant studies

remains aligned with the research objectives. Multiple test

runs were done using combinations of keywords and Boolean

operators to develop the strategy to determine the optimal
search query for finding the relevant studies. The steps taken

to create an optimal search query are as follows:

 Derivation of essential keywords based on the research

questions formulated.

 Identification of keywords from the relevant studies

 Usage of Boolean operators such as AND to link

keywords and OR for alternative keywords

After several test runs, the researcher determined that

linking all necessary keywords was optimal to find relevant

studies. However, even using AND operators to connect all

keywords, the search results still returned over 10,000 results
in Google Scholar. The finalized search query is as follows:

(“Reinforcement Learning” AND (“Software Testing” OR

“Test”) AND (“Android Application” OR “Android”))

D. Inclusion and Exclusion Criteria

After several test runs, the researcher determined that

linking all necessary keywords was optimal to find relevant

studies. As this SLR aims to study all relevant and up-to-date

studies on software testing of Android applications using

reinforcement learning, it is crucial to define explicit
inclusion and exclusion criteria. The inclusion criteria are:

 All papers must be published between 2020 and 2024.

 All papers must be in English.

 All papers must focus on using reinforcement learning

techniques for software testing of Android applications.

Each of the studies is reviewed against the exclusion

criteria before being accepted for the next phase of data

extraction and analysis:

 Theses and dissertations

 Papers that are under three pages in length

 Duplicate studies

648

 Incomplete papers (e.g., research in progress, lacking

empirical results)

E. Quality Assessment

A quality assessment checklist is applied to ensure that the

data extracted from the studies meets quality standards. This

checklist, designed by [16], is a guideline for evaluating study

relevance. Table 2 presents a set of general questions designed
to assess the quality of the selected studies. A three-point

scale is used for the quality assessment, with scores assigned

as follows: Yes = 1, Partially = 0.5, and No = 0. Each paper is

assessed against the checklist items, resulting in a quality

score ranging from 0 (very poor) to 5 (excellent).

TABLE II

QUALITY ASSESSMENT CHECKLIST

No Item Answer
SQ1 Are the aims and objectives of the

research clearly stated?

Yes/No

SQ2 Is the research design specified? Yes/No/Partially

SQ3 Have the researcher(s) adequately carried

out the data collection process?

Yes/No/Partially

SQ4 Have the researcher(s) given enough data

to support their results and conclusions?

Yes/No/Partially

SQ5 Is there a comparison of other techniques

involved in the experiment?

Yes/No

F. Paper Selection

The initial search returned over 30,000 articles. Applying the

inclusion criterion of publication years from 2020 to 2024

reduced this number to 16,700. Next, additional inclusion and

exclusion criteria—such as language, study area, type of

publication (articles and conference papers), and removal of

duplicates—were applied, narrowing the results to 160

articles as shown in Fig. 2.

Fig. 2 Papers Selection Process

Following a detailed review of each paper's title, abstract,

introduction, and primary content, the selection was further

reduced to 31 articles. Finally, after thoroughly reviewing the

full content of these 31 papers, 22 were deemed eligible for

inclusion in the final study set. Fig. 2 illustrates the flowchart

of the paper selection process using the PRISMA approach.

G. Quality Assessment Scores

Table 3 presents the quality assessment scores for each of

the 22 studies included in the review. Based on this

assessment, 13 papers achieved a good quality score, while 9

received a very good quality score. Many papers rated as good

quality did not reach very good quality due to limited use of

evaluation metrics. Notably, no papers fell into the fair, poor,

or very poor-quality categories, which reflects positively on

the quality of studies included in this SLR.

TABLE III

QUALITY ASSESSMENT SCORES

Quality

Scale

Very

poor

(= 1)

Poor

(=2)

Fair

(=3)

Good

(=4)

Very

Good

(=5)

Total

Number of

studies

0 0 0 13 9 22

Percentage 0 0 0 59 41 100

III. RESULTS AND DISCUSSION

This section presents the results of the relevant data

extracted from all 22 studies to address the respected research

questions. The findings are displayed graphically to enhance

visualization and understanding.

A. RQ1: Which part of software testing does the paper

discuss?

This question examines the application of reinforcement

learning in the software testing of Android applications. It
aims to identify which areas of software testing are well-

researched, which areas remain underexplored, and which

represent emerging fields of study. This analysis helps to

highlight both established research trends and potential gaps

where further investigation could contribute to the

advancement of reinforcement learning in Android software

testing. Fig. 3 and Table 4 display the frequency of areas of

software testing for Android applications using reinforcement

learning.

TABLE IV

FREQUENCY OF RESEARCH AREAS

Research Area Authors

Automated
Testing

[18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31],
[32], [33]

Test Case
Generation

[34], [35], [36], [37]

Test Case
Prioritization

[38], [39]

Fig. 3 Frequency of Research Areas

Automated

Testing; 16;

73%
Test Case

Generation;

4; 18%

Test Case

Prioritizatio

n; 2; 9%

Frequency of Research Areas

Automated Testing Test Case Generation

Test Case Prioritization

649

Based on the data summarized, “Automated Testing” is a

very popular research area of software testing that utilizes

reinforcement learning in software testing of Android

applications, with a majority of 16 papers (73%). This data

suggests that automated testing is a dominant focus for

researchers applying reinforcement learning to Android

application testing. In contrast, “Test Case Generation”, while

recognized, has less coverage, with a frequency of 4 papers

(18%) exploring this area. This indicates a moderate level of

research interest, focusing on how RL can create diverse test
cases based on learned behaviors.

Meanwhile, “Test Case Prioritization” appears to be an

emerging area, with only 2 papers (9%) dedicated to it,

signaling an opportunity for future research to delve deeper

into how reinforcement learning can improve the efficiency

of test execution by identifying and prioritizing critical test

cases first. Together, these findings highlight a clear

preference for automated testing in the field, while also

suggesting the potential for expanded RL research in

underexplored areas like test case generation and

prioritization.

B. RQ2: What reinforcement learning algorithms are used

in the paper to improve the area of software testing for

Android applications?

This research aims to explore the different types of

reinforcement learning techniques used in the selected

studies. Analyzing this data will provide insights into the gaps

and prevalent techniques within the field, highlighting well-

researched areas and those requiring further investigation.

Fig. 4 displays the frequency of reinforcement learning
techniques used in each paper.

Fig. 4 Frequency of RL Techniques

Based on the chart, Q-learning has the highest frequency of

technique utilization, appearing in 11 out of 22 studies. It is

widely applied across all areas of software testing, including
automated testing, test case generation, and test case

prioritization. Q-learning is a model-free, control-temporal

difference learning method inspired by behaviorist

psychology [23]. It enables an agent to learn optimal actions

through trial and error, aiming to maximize cumulative

rewards in an unknown environment [34]. The agent

gradually identifies the best action to take in similar situations

by repeatedly trying actions in various states and receiving

delayed rewards. Its popularity in software testing of Android

applications suggests that many studies favor simple RL

algorithms that can effectively adapt to dynamic

environments.

Deep Q-Network (DQN) is the second most common

technique, with a frequency of 4, and it is exclusively utilized

in the automated testing area of studies. DQN is an extension

of the Q-learning algorithm that employs a deep neural

network to approximate the action-value function [19].

Because a neural network can input and output high-

dimensional state and action spaces, DQN can effectively

scale to more complex environments [22]. This capability is

advantageous for Android applications, which often involve

intricate interfaces and diverse user interactions.
State-Action-Reward-State-Action (SARSA) comes in the

third place with a frequency of 3. SARSA is an on-policy

algorithm that uses and learns with the same policy to select

an action and update the action value [35]. This approach

allows SARSA to adjust its policy based on its current actions,

making it more cautious and stable in uncertain environments.

By learning with the policy, it actively uses, SARSA offers a

conservative alternative to off-policy methods like Q-

learning, which can benefit scenarios requiring gradual and

reliable improvements.

Other techniques like Double Q-learning, ATAC, and
ATPPO are least common, with an equal frequency of 2. Both

studies that implement the Double Q-learning technique focus

on the automated testing area. Double Q-learning in general

is an advanced version of the Q-learning algorithm that uses

randomization and ensemble learning techniques to reduce

overestimation bias that is commonly found in the traditional

Q-learning algorithm [32]. In a study by [20], the researcher

applied the Double Q-learning algorithm and integrated it

with deep reinforcement learning to improve application

automation, resulting in ResiDRLTesting (Residual network

and Deep Reinforcement Learning Testing).
ATAC is Automatic Testing with Adaptive Coverage that

is based on the Advantage Actor-Critic (A2C) algorithm.

ATAC is a type of reinforcement learning method that

combines both policy (actor) and value (critic) functions to

optimize the testing process [31]. A study done by [31]

utilizes only ATAC in the paper. The researcher utilizes

ATAC to automatically generate test cases to enhance the

efficiency and effectiveness of Android GUI testing. A study

by [18] proposed ATAC and ATPPO for Android GUI testing

to mitigate the state explosion problem. ATPPO stands for

“Automated Testing with Proximal Policy Optimization”.

ATPPO employs the Proximal Policy Optimization (PPO)
algorithm, an advanced reinforcement learning technique.

PPO is known for its stability and efficiency in training,

making it suitable for complex environments like mobile

application testing [18]. Similar to ATAC, ATPPO aims to

achieve higher levels of code coverage compared to

traditional testing tools. This distribution of techniques

highlights the dominance of value-based RL methods, while

also indicating opportunities for further research into policy-

based approaches in Android application testing.

C. RQ3: What kind of datasets are used in the software

testing of Android applications using reinforcement

learning?

This research question aims to investigate the types of

datasets used in Android application testing across the 22

studies reviewed. Each of these studies employs Android

application datasets for experimental purposes, with two

11

2

4

2
3

0

2

4

6

8

10

12

Q-learning Double Q-

learning

Deep Q-

Network

ATAC /

ATPPO

SARSA

F
re

q
u

e
n

cy

RL Algorithm

Frequency of RL Techniques

650

studies additionally incorporating other dataset types. In a

study by [38], the experiment utilizes test-suite execution

sequences and user interaction sequences datasets, which are

generated from test case execution sequences written in

natural language and derived from recorded user interactions

with the application. In a study by [25], on the other hand,

uses a diverse set of datasets from Kaggle, including

categories like banking-related vocabulary, news headlines,

movie information, Twitter data, and book excerpts. Fig. 5

illustrates the frequency of each dataset type used across the
studies, categorizing them into three types: industry,

benchmark, and case study datasets. This analysis provides

insight into the variety of data sources used to enhance testing

realism and relevance across different studies.

Fig. 5 Frequency of Dataset Type

Benchmark datasets are the most frequently used,

appearing in 11 out of the 22 studies reviewed. Case study

datasets rank second, utilized in 7 studies. Two studies

incorporate a combination of industry and benchmark

datasets, leveraging both real-world applications and

benchmark applications. Only two studies exclusively use

industry datasets, drawing from real-world applications to test

their proposed methods in practical scenarios. This
distribution highlights a preference for benchmark datasets to

ensure comparability.

D. RQ4: What evaluation metrics are used to assess the

performance of reinforcement learning algorithms in

Android software testing?

The purpose of this research question is to determine the

number of evaluation metrics used and what type of

evaluation metric is most popular. Fig. 6 shows the number of

evaluation metrics used by the papers reviewed.

Fig. 6 Frequency of Number of Metrics Used

The chart shows that majority of studies (14 papers) utilize

two or fewer evaluation metrics, making this the most

common approach. In contrast, only a small subset of studies

(3 papers) employ four or more evaluation metrics. This

suggests a general tendency among researchers to focus on a

limited set of key metrics. In the 22 studies reviewed, over 20

distinct evaluation metrics are used, reflecting the focus on

automated testing, test case generation, and prioritization. To

facilitate analysis, these metrics have been grouped into

broader categories for more precise differentiation. The four
main metric types are: code coverage metric, fault detection

metric, efficiency metric, and test generation metric. Fig. 7

displays the frequency of evaluation metrics used.

Fig. 7 Frequency of Evaluation Metric Type

The most commonly used metric type is code coverage,

with 19 studies incorporating it. This category includes

metrics such as instruction coverage, line coverage, branch

coverage, method coverage, class coverage, and others that
assess the extent of code exercised during testing. Fault

detection metrics are the second most frequent, used by 15

studies. These metrics, including the number of failures, fault

detection rate, and crashes, measure test cases' effectiveness

in identifying defects. Efficiency metrics rank third,

appearing in 4 studies, focusing on aspects like execution time

and testing speed to evaluate testing performance. Finally, test

generation metrics are used in only 2 studies, as only 4 studies

focus specifically on test case generation.

E. RQ5: Is there any integration of user behavior data or

user interaction into the proposed model?

Android applications often feature complex GUI layouts,

presenting unique testing and interaction modeling

challenges. This question aims to analyze how many of the 22

selected studies tackle this problem, examining the methods

and approaches they employ to handle intricate GUI

structures effectively. Fig. 8 shows how many studies

integrate user behavior data or user interaction in the proposed

model. Based on the result, only 2 papers out of 22 integrate

user behavior data or user interaction in the studies. The
model proposed by [38] integrates user behavior data through

a user interaction recording system. This system captures the

interactions of users and testers with the application for

effectively prioritizing test cases. The interactions are

recorded in a structured manner, allowing the model to

analyze the actions users take during their engagement with

the application. The recorded data includes details such as

activity names and IDs of buttons clicked, providing a

2

11

2

7

0 2 4 6 8 10 12

Industry

Benchmark

Industry & Benchmark

Case Study

Frequency

D
a

ta
se

t

Frequency of Types of Datasets

14, 63%

5, 23%

3, 14%

Number of Metrics Used

less than or equal 2 3 more than or equal 4

0

5

10

15

20

Code

Coverage

Fault

Detection

Efficiency Test

Generation
F

re
q

u
e

n
cy

Metric Type

Frequency of Evaluation Metric Type

651

comprehensive log of user interactions from the login state to

the logout state. However, this approach does not address the

multimodal nature of Android applications. Multimodal

interaction would involve capturing various input forms

beyond just button clicks and activity names, such as gestures,

voice commands, or environmental contexts. The model

described here seems focused on capturing specific user

actions in a single mode (clicks/taps), rather than

incorporating diverse types of interaction data from multiple

input channels.

Fig. 8 Frequency of User Behavior Data Integration

The CamDroid [25] model incorporates user behavior data

to enhance its testing capabilities. Specifically, it utilizes

historical context knowledge from previous testing runs. This

context-aware approach allows it to generate more realistic

text inputs and select events based on the patterns of user

behavior observed during prior tests. Since this paper focuses

on generating inputs and selecting events based on historical

patterns, likely in a single mode (such as text inputs), it does

not address Android applications' complex and vast state

space problem.

While the remaining 20 papers did not incorporate user

behavior data or user interaction into their proposed models,
several studies recognize its relevance and potential impact.

For instance, a survey of DroidbotX [34] notes that its current

implementation does not fully capture all possible behaviors

during exploration and expresses a commitment to extending

its capabilities in the future. [39] referenced [38], whose work

collects sequence patterns from user interactions to prioritize

test cases. This suggests that although the current model does

not integrate such data, there is an acknowledgment of its

importance and potential application in enhancing test case

prioritization strategies in future research work.

IV. CONCLUSION

To summarize, this systematic literature review explores

and evaluates the application of reinforcement learning in

software testing of Android applications by examining a

mass-researched area of studies, prevalent techniques, and

emerging trends. The review reveals that automated testing is

currently the primary focus in software testing, with Q-

learning dominating the method utilized. However, the study

also identifies significant underexplored regions, such as test
case prioritization and the integration of user behavior data in

Android applications, which present promising opportunities

for future research. Addressing these gaps could lead to more

robust approaches in Android application testing, ultimately

advancing the field of software testing.

ACKNOWLEDGMENT

This work was supported by the Ministry of Higher

Education, Malaysia (MOHE) under the Fundamental
Research Grant Scheme (FRGS/1/2024/ICT01/UTM/02/1).

The full article acknowledges this research: “Communication

of this research is made possible through monetary assistance

by Universiti Tun Hussein Onn Malaysia and the UTHM

Publisher’s Office via Publication Fund E15216”.

REFERENCES

[1] A. Abo-eleneen, A. Palliyali, and C. Catal, "The role of reinforcement

learning in software testing," Inf. Softw. Technol., vol. 165, Dec. 2023,

doi: 10.1016/j.infsof.2023.107325.

[2] K. Sugali, C. Sprunger, and V. N. Inukollu, "Software testing: Issues

and challenges of artificial intelligence & machine learning," Int. J.

Artif. Intell. Appl., vol. 12, no. 1, pp. 101-112, Jan. 2021,

doi:10.5121/ijaia.2021.12107.

[3] H. You et al., "Navigating the testing of evolving deep learning

systems: An exploratory interview study," in Proc. IEEE/ACM 47th

Int. Conf. Softw. Eng. (ICSE), 2025, p. 643,

doi:10.1109/ICSE55347.2025.00106.

[4] M. Idham et al., "Test case prioritization for software product line: A

systematic mapping study," JOIV Int. J. Inf. Vis., vol. 7, p. 2126, Nov.

2023, doi: 10.30630/joiv.7.3-2.1340.

[5] J. Wang et al., "Software testing with large language models: Survey,

landscape, and vision," IEEE Trans. Softw. Eng., vol. 50, no. 4, pp.

911-936, Apr. 2024, doi: 10.1109/TSE.2024.3368208.

[6] S. Haldar, M. Pierce, and L. F. Capretz, "Exploring the integration of

generative AI tools in software testing education: A case study on

ChatGPT and Copilot for preparatory testing artifacts in postgraduate

learning," IEEE Access, vol. 13, 2025,

doi:10.1109/access.2025.3545882.

[7] Y. Matsuo et al., "Deep learning, reinforcement learning, and world

models," Neural Netw., vol. 152, pp. 267-275, Aug. 2022,

doi:10.1016/j.neunet.2022.03.037.

[8] M. Binjubier et al., "A GPU accelerated parallel genetic algorithm for

the traveling salesman problem," J. Soft Comput. Data Min., vol. 5,

no. 2, pp. 137-150, 2024, doi: 10.30880/jscdm.2024.05.02.010.

[9] F. Pecorelli et al., "Software testing and Android applications: A large-

scale empirical study," Empir. Softw. Eng., vol. 27, no. 2, Mar. 2022,

doi: 10.1007/s10664-021-10059-5.

[10] Z. Chen et al., "Exploring better black-box test case prioritization via

log analysis," ACM Trans. Softw. Eng. Methodol., vol. 32, no. 3, Apr.

2023, doi: 10.1145/3569932.

[11] X. Li, "GUI testing for Android applications: A survey," in Proc. 7th

Int. Conf. Comput., Softw. Model. (ICCSM), 2023, pp. 6-10,

doi:10.1109/iccsm60247.2023.00010.

[12] M. Naeem, S. T. H. Rizvi, and A. Coronato, "A gentle introduction to

reinforcement learning and its application in different fields," IEEE

Access, vol. 8, pp. 209320-209344, 2020,

doi:10.1109/access.2020.3038605.

[13] P. S. N. Mindom, A. Nikanjam, and F. Khomh, "Integrating

reinforcement learning in software testing automation: A promising

approach," Empir. Softw. Eng., 2023, doi: 10.5753/ise.2023.235976.

[14] S. Elbaum, G. Rothermel, and J. Penix, "Techniques for improving

regression testing in continuous integration development

environments," in Proc. ACM SIGSOFT Symp. Found. Softw. Eng.,

2014, pp. 235-245, doi: 10.1145/2635868.2635910.

[15] H. A. M. Shaffril, S. F. Samsuddin, and A. A. Samah, "The ABC of

systematic literature review: The basic methodological guidance for

beginners," Qual. Quant., vol. 55, no. 4, pp. 1319-1346, Aug. 2021,

doi: 10.1007/s11135-020-01059-6.

[16] B. Kitchenham and S. Charters, "Guidelines for performing systematic

literature reviews in software engineering," Keele Univ., Keele, UK,

Tech. Rep. EBSE-2007-01, 2007.

[17] H. Eljak et al., "E-learning-based cloud computing environment: A

systematic review, challenges, and opportunities," IEEE Access, vol.

12, pp. 7329-7355, 2024, doi: 10.1109/access.2023.3339250.

2, 9%

20, 91%

Freqeuncey of User Behavior Data

Integration

Yes No

652

[18] C. Tao et al., "A reinforcement learning-based approach to testing GUI

of mobile applications," World Wide Web, vol. 27, no. 2, Mar. 2024,

doi: 10.1007/s11280-024-01252-9.

[19] E. Collins et al., "Deep reinforcement learning based Android

application GUI testing," in Proc. ACM Int. Conf. Proceeding Ser.,

2021, pp. 186-194, doi: 10.1145/3474624.3474634.

[20] L. Cai et al., "Automated testing of Android applications integrating

residual network and deep reinforcement learning," in Proc. IEEE Int.

Conf. Softw. Qual., Rel. Secur. (QRS), 2021, pp. 189-196,

doi:10.1109/qrs54544.2021.00030.

[21] L. Cai et al., "Reinforcement learning application testing method based

on multi-attribute fusion," in Proc. 9th Int. Conf. Dependable Syst.

Appl. (DSA), 2022, pp. 24-33, doi: 10.1109/DSA56465.2022.00013.

[22] Y. Zhao, B. Harrison, and T. Yu, "DinoDroid: Testing Android apps

using deep Q-networks," ACM Trans. Softw. Eng. Methodol., vol. 33,

no. 5, Jun. 2024, doi: 10.1145/3652150.

[23] H. Guo et al., "SQDroid: A semantic-driven testing for Android apps

via Q-learning," in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.

(QRS), 2021, pp. 301-310, doi: 10.1109/qrs54544.2021.00041.

[24] Y. P. Lopez et al., "Q-funcT: A reinforcement learning approach for

automated black box functionality testing," in Proc. 2nd IEEE Int.

Conf. Softw. Eng. Artif. Intell. (SEAI), 2022, pp. 119-123,

doi:10.1109/seai55746.2022.9832177.

[25] H. Wang et al., "CamDroid: Context-aware model-based automated

GUI testing for Android apps," Tsinghua Sci. Technol., vol. 30, no. 1,

pp. 55-67, Feb. 2024, doi: 10.26599/tst.2024.9010038.

[26] Y. Lan et al., "Deeply reinforcing Android GUI testing with deep

reinforcement learning," in Proc. Int. Conf. Softw. Eng., Feb. 2024,

doi: 10.1145/3597503.3623344.

[27] M. Pan et al., "Reinforcement learning based curiosity-driven testing

of Android applications," in Proc. 29th ACM SIGSOFT Int. Symp.

Softw. Test. Anal., Jul. 2020, pp. 153-164,

doi:10.1145/3395363.3397354.

[28] Z. Lv et al., "Fastbot2: Reusable automated model-based GUI testing

for Android enhanced by reinforcement learning," in Proc. ACM Int.

Conf. Proceeding Ser., Sep. 2022, doi: 10.1145/3551349.3559505.

[29] K. Murase and S. Takada, "Applying reinforcement learning for

automated testing of mobile application focusing on state definition,

reward, and learning method," in Proc. Int. Conf. Softw. Eng. Knowl.

Eng., 2023, pp. 64-69, doi: 10.18293/SEKE23-154.

[30] C. Peng et al., "Hawkeye: Change-targeted testing for Android apps

based on deep reinforcement learning," in Proc. ACM Int. Conf.

Proceeding Ser., Apr. 2024, pp. 298-308,

doi:10.1145/3639477.3639749.

[31] Y. Gao et al., "A deep reinforcement learning-based approach for

Android GUI testing," in Lect. Notes Comput. Sci., vol. 13975, pp.

262-276, 2023, doi: 10.1007/978-3-031-25201-3_20.

[32] F. Wang, C. Tao, and J. Gao, "REDQT: A method for automated

mobile application GUI testing based on deep reinforcement learning

algorithms," Softw. Syst. Model., 2024, doi: 10.1007/s11761-024-

00413-y.

[33] Z. Zhang et al., "UniRLTest: Universal platform-independent testing

with reinforcement learning via image understanding," in Proc. 31st

ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2022, pp. 805-808,

doi: 10.1145/3533767.3543292.

[34] H. N. Yasin, S. H. A. Hamid, and R. J. R. Yusof, "Droidbotx: Test case

generation tool for android applications using q-learning," Symmetry,

vol. 13, no. 2, Feb. 2021, doi: 10.3390/sym13020310.

[35] M. K. Khan and R. Bryce, "Android GUI test generation with

SARSA," in Proc. IEEE 12th Annu. Comput. Commun. Workshop

Conf., 2022, pp. 487-493, doi: 10.1109/ccwc54503.2022.9720807.

[36] A. Usman et al., "Test case generation approach for Android

applications using reinforcement learning," Eng., Technol. Appl. Sci.

Res., vol. 14, no. 4, pp. 15127-15132, Aug. 2024,

doi:10.48084/etasr.7422.

[37] Y. Koroglu and A. Sen, "Functional test generation from UI test

scenarios using reinforcement learning for android

applications," Softw. Test., Verif. Reliab., May 2021,

doi:10.1002/stvr.1752.

[38] M. Waqar et al., "Test suite prioritization based on optimization

approach using reinforcement learning," Appl. Sci., vol. 12, no. 13, Jul.

2022, doi: 10.3390/app12136772.

[39] M. K. Khan et al., "Post prioritization techniques to improve code

coverage for SARSA generated test cases," in Proc. IEEE 13th Annu.

Comput. Commun. Workshop Conf., 2023, pp. 1029-1035,

doi:10.1109/CCWC57344.2023.10099120.

653

