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Abstract—Software testing is a critical process in ensuring the quality and reliability of applications before they are deployed to 

production. However, it is resource-intensive and often tedious, particularly in the context of Android applications, which pose unique 

challenges due to their vast state space, diverse user interactions, and variable behaviors. Reinforcement learning (RL), a machine 

learning framework where agents interact with environments to improve decision-making policies, has gained attention for its potential 

in software testing. This systematic literature review examines the application of reinforcement learning in software testing of Android 

applications, focusing on widely researched areas, prevalent techniques, and emerging trends. The review analyzes 22 selected studies 

from an initial pool of over 30,000 articles published between 2020 and 2024. The findings highlight that automated testing is the 

primary focus in this domain, with Q-learning emerging as the dominant RL technique. Actor-critic methods, deep Q-networks (DQN), 

and policy gradient approaches are also explored in several studies, aiming to improve the adaptability and efficiency of testing 

processes. Most research emphasizes fault detection and coverage maximization, often targeting event-driven interactions and GUI-

based behaviors. Despite significant advancements, the study identifies underexplored areas, such as test case prioritization and the 

integration of user behavior or user interaction data, as promising directions for future research. This review contributes to 

understanding the current landscape and offers guidance for future RL-based Android application testing investigations. 

Keywords—Android application; machine learning; reinforcement learning; software testing; systematic literature review. 

Manuscript received 5 Feb. 2024; revised 14 Oct. 2024; accepted 27 Dec. 2024. Date of publication 30 Apr. 2025. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Software applications usually contain a lot of bugs and 

errors, as they are developed by software developers who 

naturally cannot escape making mistakes [1]. This is why 
software testing is crucial before the application is developed 

and pushed to production, so the application is free from 

major and minor bugs. Although software testing does not add 

direct functionality to an application, it can consume over 

50% of resources, including time and money [1], [2]. Other 

than that, performing regression testing after developers 

resolve a bug can be tedious for the software testers as they 

have to write test scripts and perform the testing all over again 

[3], [4]. This is where artificial intelligence (AI) comes to the 

rescue by making life easier for the software tester [5], [6].  

At present, some applications provide AI functionality, 

sparing the human testers the challenge to comprehensively 

evaluate the entire product with a human-level precision [2], 

[7], [8]. Android applications, especially, are challenging to test 

due to their variability in user interactions [9]. Android 

applications have a vast state space, making thorough 

exploration during testing a significant challenge [10]. Testing 

must consider different gestures, orientations, and user 

behaviors, making it challenging to create comprehensive test 

cases [11]. While regression is a statistical approach used to 
model relationships between variables and predict continuous 

outcomes, reinforcement learning is a learning framework in 

which an agent interacts with an environment to improve a 

policy based on a specified objective, adapting as it perceives 

the state of the environment [1], [12].  

Reinforcement learning is a learning framework in which 

an agent interacts with an environment to improve a policy 

based on a specified objective, adapting as it perceives the 

state of the environment [1], [12]. Reinforcement learning is 

widely used in software testing of Android applications 
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because of its ability to learn and adapt [13]. Due to the nature 

of this technique, many studies have proposed the usage of 

various reinforcement learning techniques in software testing 

of Android applications [14]. The growing number of studies 

on reinforcement learning in software testing for Android 

applications underscores the need to systematically review 

current knowledge and identify areas for future research [1]. 

II. MATERIALS AND METHOD  

This SLR review method was designed to align with 

established best practices by adhering to both general and 

specific SLR guidelines in software engineering. Specifically, 

this SLR follows the general SLR guidelines specified by [15] 

and specific SLR guidelines established by [16]. By following 

both sets of guidelines, this SLR methodology is structured 

into three primary phases: planning the review, conducting 

the review, and reporting the review as shown in Fig. 1. This 

phased approach ensures a systematic process, beginning with 
the careful planning and formulation of research questions, 

progressing through a comprehensive review and concluding 

with a thorough reporting of findings [15], [16], [17]. 

 

 
Fig. 1  Systematic Literature Review (SLR) Phases 

A. Research Questions 

Formulating strong and precise research questions is 

crucial for an effective SLR. By clearly specifying the 

research questions, the process of SLR can become more 
efficient as it helps determine the relevant studies that are 

aligned with the research objectives. This SLR aims to 

explore and synthesize the application of reinforcement 

learning techniques in software testing for Android 

applications. Aside from that, the researchers aim to 

investigate how the software testing of Android applications 

is optimized to address the multimodal user interactions 

inherent in these applications. The research questions for this 

SLR comprise five components. These components are 

known as PICOC and were proposed by [16]. Table 1 shows 

the criteria and scope of research questions.  

TABLE I  

CRITERIA AND SCOPE OF RESEARCH QUESTIONS 

Criteria Scope 

Population Reinforcement learning 
Intervention Software testing 
Comparison NA 
Outcomes Reinforcement learning technique applied in 

the software testing of an Android application 

Context Review(s) of any empirical studies of software 
testing for Android applications with 
reinforcement learning 

 

To achieve the aim of this SLR, five research questions 

have been formulated as follows: 

 RQ1: Which part of software testing does the paper 

discuss? 

 RQ2: What reinforcement learning algorithms are used 

in the paper to improve the area of software testing for 

Android applications? 

 RQ3: What kind of datasets are used in the software 

testing Android applications using reinforcement 

learning? 

 RQ4: What evaluation metrics are used to assess 

reinforcement learning algorithms' performance in 
Android software testing? 

 RQ5: Is there any integration of user behavior data or 

user interaction into the proposed model? 

B. Data Sources 

Seven online databases have been selected and thoroughly 

searched for this SLR. The online databases chosen were 

Google Scholar, Scopus, IEEE Xplore, ScienceDirect, 

SpringerLink, WOS, and ACM Digital Library. These 
databases were selected from a list of available online 

databases subscribed to by UTM’s Library. 

C. Search Strategy 

Establishing a clear search strategy is essential for 

conducting a systematic literature review. A well-defined 

search strategy ensures that the search for relevant studies 

remains aligned with the research objectives. Multiple test 

runs were done using combinations of keywords and Boolean 

operators to develop the strategy to determine the optimal 
search query for finding the relevant studies. The steps taken 

to create an optimal search query are as follows: 

 Derivation of essential keywords based on the research 

questions formulated. 

 Identification of keywords from the relevant studies 

 Usage of Boolean operators such as AND to link 

keywords and OR for alternative keywords 

After several test runs, the researcher determined that 

linking all necessary keywords was optimal to find relevant 

studies. However, even using AND operators to connect all 

keywords, the search results still returned over 10,000 results 
in Google Scholar. The finalized search query is as follows: 

(“Reinforcement Learning” AND (“Software Testing” OR 

“Test”) AND (“Android Application” OR “Android”)) 

D. Inclusion and Exclusion Criteria 

After several test runs, the researcher determined that 

linking all necessary keywords was optimal to find relevant 

studies. As this SLR aims to study all relevant and up-to-date 

studies on software testing of Android applications using 

reinforcement learning, it is crucial to define explicit 
inclusion and exclusion criteria. The inclusion criteria are: 

 All papers must be published between 2020 and 2024. 

 All papers must be in English. 

 All papers must focus on using reinforcement learning 

techniques for software testing of Android applications. 

Each of the studies is reviewed against the exclusion 

criteria before being accepted for the next phase of data 

extraction and analysis: 

 Theses and dissertations 

 Papers that are under three pages in length 

 Duplicate studies 
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 Incomplete papers (e.g., research in progress, lacking 

empirical results) 

E. Quality Assessment 

A quality assessment checklist is applied to ensure that the 

data extracted from the studies meets quality standards. This 

checklist, designed by [16], is a guideline for evaluating study 

relevance. Table 2 presents a set of general questions designed 
to assess the quality of the selected studies. A three-point 

scale is used for the quality assessment, with scores assigned 

as follows: Yes = 1, Partially = 0.5, and No = 0. Each paper is 

assessed against the checklist items, resulting in a quality 

score ranging from 0 (very poor) to 5 (excellent). 

TABLE II  

QUALITY ASSESSMENT CHECKLIST 

No Item Answer 
SQ1 Are the aims and objectives of the 

research clearly stated? 

Yes/No 

SQ2 Is the research design specified? Yes/No/Partially 

SQ3 Have the researcher(s) adequately carried 

out the data collection process? 

Yes/No/Partially 

SQ4 Have the researcher(s) given enough data 

to support their results and conclusions? 

Yes/No/Partially 

SQ5 Is there a comparison of other techniques 

involved in the experiment? 

Yes/No 

F. Paper Selection 

The initial search returned over 30,000 articles. Applying the 

inclusion criterion of publication years from 2020 to 2024 

reduced this number to 16,700. Next, additional inclusion and 

exclusion criteria—such as language, study area, type of 

publication (articles and conference papers), and removal of 

duplicates—were applied, narrowing the results to 160 

articles as shown in Fig. 2.  

 
Fig. 2  Papers Selection Process 

 

Following a detailed review of each paper's title, abstract, 

introduction, and primary content, the selection was further 

reduced to 31 articles. Finally, after thoroughly reviewing the 

full content of these 31 papers, 22 were deemed eligible for 

inclusion in the final study set. Fig. 2 illustrates the flowchart 

of the paper selection process using the PRISMA approach. 

G. Quality Assessment Scores 

Table 3 presents the quality assessment scores for each of 

the 22 studies included in the review. Based on this 

assessment, 13 papers achieved a good quality score, while 9 

received a very good quality score. Many papers rated as good 

quality did not reach very good quality due to limited use of 

evaluation metrics. Notably, no papers fell into the fair, poor, 

or very poor-quality categories, which reflects positively on 

the quality of studies included in this SLR. 

TABLE III  

QUALITY ASSESSMENT SCORES 

Quality 

Scale 

Very 

poor 

(= 1) 

Poor 

(=2) 

Fair 

(=3) 

Good 

(=4) 

Very 

Good 

(=5) 

Total 

Number of 

studies 

0 0 0 13 9 22 

Percentage 0 0 0 59 41 100 

III. RESULTS AND DISCUSSION 

This section presents the results of the relevant data 

extracted from all 22 studies to address the respected research 

questions. The findings are displayed graphically to enhance 

visualization and understanding. 

A. RQ1: Which part of software testing does the paper 

discuss? 

This question examines the application of reinforcement 

learning in the software testing of Android applications. It 
aims to identify which areas of software testing are well-

researched, which areas remain underexplored, and which 

represent emerging fields of study. This analysis helps to 

highlight both established research trends and potential gaps 

where further investigation could contribute to the 

advancement of reinforcement learning in Android software 

testing. Fig. 3 and Table 4 display the frequency of areas of 

software testing for Android applications using reinforcement 

learning. 

TABLE IV 

FREQUENCY OF RESEARCH AREAS 

Research Area Authors 

Automated 
Testing 

[18], [19], [20], [21], [22], [23], [24], 
[25], [26], [27], [28], [29], [30], [31], 
[32], [33] 

Test Case 
Generation 

[34], [35], [36], [37] 

Test Case 
Prioritization 

[38], [39] 

 

 
Fig. 3  Frequency of Research Areas 

Automated 

Testing; 16; 

73%
Test Case 

Generation; 

4; 18%

Test Case 
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Frequency of Research Areas
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Based on the data summarized, “Automated Testing” is a 

very popular research area of software testing that utilizes 

reinforcement learning in software testing of Android 

applications, with a majority of 16 papers (73%). This data 

suggests that automated testing is a dominant focus for 

researchers applying reinforcement learning to Android 

application testing. In contrast, “Test Case Generation”, while 

recognized, has less coverage, with a frequency of 4 papers 

(18%) exploring this area. This indicates a moderate level of 

research interest, focusing on how RL can create diverse test 
cases based on learned behaviors.  

Meanwhile, “Test Case Prioritization” appears to be an 

emerging area, with only 2 papers (9%) dedicated to it, 

signaling an opportunity for future research to delve deeper 

into how reinforcement learning can improve the efficiency 

of test execution by identifying and prioritizing critical test 

cases first. Together, these findings highlight a clear 

preference for automated testing in the field, while also 

suggesting the potential for expanded RL research in 

underexplored areas like test case generation and 

prioritization. 

B. RQ2: What reinforcement learning algorithms are used 

in the paper to improve the area of software testing for 

Android applications? 

This research aims to explore the different types of 

reinforcement learning techniques used in the selected 

studies. Analyzing this data will provide insights into the gaps 

and prevalent techniques within the field, highlighting well-

researched areas and those requiring further investigation. 

Fig. 4 displays the frequency of reinforcement learning 
techniques used in each paper. 

 
Fig. 4  Frequency of RL Techniques 

 

Based on the chart, Q-learning has the highest frequency of 

technique utilization, appearing in 11 out of 22 studies. It is 

widely applied across all areas of software testing, including 
automated testing, test case generation, and test case 

prioritization. Q-learning is a model-free, control-temporal 

difference learning method inspired by behaviorist 

psychology [23]. It enables an agent to learn optimal actions 

through trial and error, aiming to maximize cumulative 

rewards in an unknown environment [34]. The agent 

gradually identifies the best action to take in similar situations 

by repeatedly trying actions in various states and receiving 

delayed rewards. Its popularity in software testing of Android 

applications suggests that many studies favor simple RL 

algorithms that can effectively adapt to dynamic 

environments. 

Deep Q-Network (DQN) is the second most common 

technique, with a frequency of 4, and it is exclusively utilized 

in the automated testing area of studies. DQN is an extension 

of the Q-learning algorithm that employs a deep neural 

network to approximate the action-value function [19]. 

Because a neural network can input and output high-

dimensional state and action spaces, DQN can effectively 

scale to more complex environments [22]. This capability is 

advantageous for Android applications, which often involve 

intricate interfaces and diverse user interactions. 
State-Action-Reward-State-Action (SARSA) comes in the 

third place with a frequency of 3. SARSA is an on-policy 

algorithm that uses and learns with the same policy to select 

an action and update the action value [35]. This approach 

allows SARSA to adjust its policy based on its current actions, 

making it more cautious and stable in uncertain environments. 

By learning with the policy, it actively uses, SARSA offers a 

conservative alternative to off-policy methods like Q-

learning, which can benefit scenarios requiring gradual and 

reliable improvements. 

Other techniques like Double Q-learning, ATAC, and 
ATPPO are least common, with an equal frequency of 2. Both 

studies that implement the Double Q-learning technique focus 

on the automated testing area. Double Q-learning in general 

is an advanced version of the Q-learning algorithm that uses 

randomization and ensemble learning techniques to reduce 

overestimation bias that is commonly found in the traditional 

Q-learning algorithm [32]. In a study by [20], the researcher 

applied the Double Q-learning algorithm and integrated it 

with deep reinforcement learning to improve application 

automation, resulting in ResiDRLTesting (Residual network 

and Deep Reinforcement Learning Testing). 
ATAC is Automatic Testing with Adaptive Coverage that 

is based on the Advantage Actor-Critic (A2C) algorithm. 

ATAC is a type of reinforcement learning method that 

combines both policy (actor) and value (critic) functions to 

optimize the testing process [31]. A study done by [31] 

utilizes only ATAC in the paper. The researcher utilizes 

ATAC to automatically generate test cases to enhance the 

efficiency and effectiveness of Android GUI testing. A study 

by [18] proposed ATAC and ATPPO for Android GUI testing 

to mitigate the state explosion problem. ATPPO stands for 

“Automated Testing with Proximal Policy Optimization”. 

ATPPO employs the Proximal Policy Optimization (PPO) 
algorithm, an advanced reinforcement learning technique. 

PPO is known for its stability and efficiency in training, 

making it suitable for complex environments like mobile 

application testing [18]. Similar to ATAC, ATPPO aims to 

achieve higher levels of code coverage compared to 

traditional testing tools. This distribution of techniques 

highlights the dominance of value-based RL methods, while 

also indicating opportunities for further research into policy-

based approaches in Android application testing. 

C. RQ3: What kind of datasets are used in the software 

testing of Android applications using reinforcement 

learning? 

This research question aims to investigate the types of 

datasets used in Android application testing across the 22 

studies reviewed. Each of these studies employs Android 

application datasets for experimental purposes, with two 
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studies additionally incorporating other dataset types. In a 

study by [38], the experiment utilizes test-suite execution 

sequences and user interaction sequences datasets, which are 

generated from test case execution sequences written in 

natural language and derived from recorded user interactions 

with the application. In a study by [25], on the other hand, 

uses a diverse set of datasets from Kaggle, including 

categories like banking-related vocabulary, news headlines, 

movie information, Twitter data, and book excerpts. Fig. 5 

illustrates the frequency of each dataset type used across the 
studies, categorizing them into three types: industry, 

benchmark, and case study datasets. This analysis provides 

insight into the variety of data sources used to enhance testing 

realism and relevance across different studies.  
 

 
Fig. 5  Frequency of Dataset Type 

 

Benchmark datasets are the most frequently used, 

appearing in 11 out of the 22 studies reviewed. Case study 

datasets rank second, utilized in 7 studies. Two studies 

incorporate a combination of industry and benchmark 

datasets, leveraging both real-world applications and 

benchmark applications. Only two studies exclusively use 

industry datasets, drawing from real-world applications to test 

their proposed methods in practical scenarios. This 
distribution highlights a preference for benchmark datasets to 

ensure comparability. 

D. RQ4: What evaluation metrics are used to assess the 

performance of reinforcement learning algorithms in 

Android software testing? 

The purpose of this research question is to determine the 

number of evaluation metrics used and what type of 

evaluation metric is most popular. Fig. 6 shows the number of 

evaluation metrics used by the papers reviewed. 
 

 
Fig. 6  Frequency of Number of Metrics Used 

The chart shows that majority of studies (14 papers) utilize 

two or fewer evaluation metrics, making this the most 

common approach. In contrast, only a small subset of studies 

(3 papers) employ four or more evaluation metrics. This 

suggests a general tendency among researchers to focus on a 

limited set of key metrics. In the 22 studies reviewed, over 20 

distinct evaluation metrics are used, reflecting the focus on 

automated testing, test case generation, and prioritization. To 

facilitate analysis, these metrics have been grouped into 

broader categories for more precise differentiation. The four 
main metric types are: code coverage metric, fault detection 

metric, efficiency metric, and test generation metric. Fig. 7 

displays the frequency of evaluation metrics used. 
 

 
Fig. 7  Frequency of Evaluation Metric Type 

 

The most commonly used metric type is code coverage, 

with 19 studies incorporating it. This category includes 

metrics such as instruction coverage, line coverage, branch 

coverage, method coverage, class coverage, and others that 
assess the extent of code exercised during testing. Fault 

detection metrics are the second most frequent, used by 15 

studies. These metrics, including the number of failures, fault 

detection rate, and crashes, measure test cases' effectiveness 

in identifying defects. Efficiency metrics rank third, 

appearing in 4 studies, focusing on aspects like execution time 

and testing speed to evaluate testing performance. Finally, test 

generation metrics are used in only 2 studies, as only 4 studies 

focus specifically on test case generation. 

E. RQ5: Is there any integration of user behavior data or 

user interaction into the proposed model? 

Android applications often feature complex GUI layouts, 

presenting unique testing and interaction modeling 

challenges. This question aims to analyze how many of the 22 

selected studies tackle this problem, examining the methods 

and approaches they employ to handle intricate GUI 

structures effectively. Fig. 8 shows how many studies 

integrate user behavior data or user interaction in the proposed 

model. Based on the result, only 2 papers out of 22 integrate 

user behavior data or user interaction in the studies. The 
model proposed by [38] integrates user behavior data through 

a user interaction recording system. This system captures the 

interactions of users and testers with the application for 

effectively prioritizing test cases. The interactions are 

recorded in a structured manner, allowing the model to 

analyze the actions users take during their engagement with 

the application. The recorded data includes details such as 

activity names and IDs of buttons clicked, providing a 
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comprehensive log of user interactions from the login state to 

the logout state. However, this approach does not address the 

multimodal nature of Android applications. Multimodal 

interaction would involve capturing various input forms 

beyond just button clicks and activity names, such as gestures, 

voice commands, or environmental contexts. The model 

described here seems focused on capturing specific user 

actions in a single mode (clicks/taps), rather than 

incorporating diverse types of interaction data from multiple 

input channels.  
 

 
Fig. 8  Frequency of User Behavior Data Integration 

 

The CamDroid [25] model incorporates user behavior data 

to enhance its testing capabilities. Specifically, it utilizes 

historical context knowledge from previous testing runs. This 

context-aware approach allows it to generate more realistic 

text inputs and select events based on the patterns of user 

behavior observed during prior tests. Since this paper focuses 

on generating inputs and selecting events based on historical 

patterns, likely in a single mode (such as text inputs), it does 

not address Android applications' complex and vast state 

space problem.  

While the remaining 20 papers did not incorporate user 

behavior data or user interaction into their proposed models, 
several studies recognize its relevance and potential impact. 

For instance, a survey of DroidbotX [34] notes that its current 

implementation does not fully capture all possible behaviors 

during exploration and expresses a commitment to extending 

its capabilities in the future. [39] referenced [38], whose work 

collects sequence patterns from user interactions to prioritize 

test cases. This suggests that although the current model does 

not integrate such data, there is an acknowledgment of its 

importance and potential application in enhancing test case 

prioritization strategies in future research work. 

IV. CONCLUSION 

To summarize, this systematic literature review explores 

and evaluates the application of reinforcement learning in 

software testing of Android applications by examining a 

mass-researched area of studies, prevalent techniques, and 

emerging trends. The review reveals that automated testing is 

currently the primary focus in software testing, with Q-

learning dominating the method utilized. However, the study 

also identifies significant underexplored regions, such as test 
case prioritization and the integration of user behavior data in 

Android applications, which present promising opportunities 

for future research. Addressing these gaps could lead to more 

robust approaches in Android application testing, ultimately 

advancing the field of software testing. 
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