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Abstract—The spatial regression model is used to illustrate the extent of the influence of independent variables on the dependent variable 

with the presence of spatial effects of adjacent locations. In such models, the dependent variable usually follows the normal distribution. 

In this research, a different case was studied, which is when the dependent variable is distributed in a negative binomial distribution, 

which is considered one of the important discrete distributions, and the basis of statistical models for count data. This distribution is 

suitable for data with overdispersion characteristics. In this research, a spatial negative binomial regression model is estimated using 

the maximum likelihood method of estimation, and based on the Queen adjacency criteria and the proposed longitudes to form the 

modified weight matrix, and simulation study is conducted to choose the best matrix from among the two used matrices. The results 

showed that the modified proposed longitude matrix is the best, as it was used to estimate the parameters of the negative binomial 

regression model using traffic accident data for 14 Iraqi governorates for the year 2022 as a response variable and based on the 

explanatory variables (temperature, rainfall, and amount of falling dust). The results showed that there is an effect of temperature and 

rainfall on the number of traffic accidents with spatial dependence. 
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I. INTRODUCTION

Over the course of the last thirty to forty years, spatial 

models have been utilized in a broad variety of econometric 

applications. The modeling of spatial heterogeneity is the 

application that is utilized the most frequently in relation to 
the examination of census facts. In the first attempt to define 

spatial econometrics and its methodology, authors in [1] 

released a tiny volume with the title Spatial Econometrics. 

This volume was recognized as the first attempt. A number of 

publications on spatial analysis and spatial time series were 

published in the same year after they were first published. 

Inquiries and studies by [2], [3] include information that is 

associated with locations, spatial data is considered to be 

spatially oriented data. This data is distinct from other data in 

that it has two essential components, namely information 

denoting the place (spatial) and information that describes the 
attributes of the location. The geographic coordinates, such as 

latitude and longitude, are the subject of the information 

pertaining to location [4]. 

In contrast, descriptive information, often known as non-

spatial information, includes facts like the density of the 

material and the sort of metal it is. There are distinctions in 

the circumstances of each of the places [5]. There is, however, 

a tight association between the state of each site and the 

condition of surrounding sites, and the correlation between 

the sites that were analyzed is referred to as spatial 

heterogeneity [6]. Among the several types of regression, one 

that is dependent on spatial variables is called spatial 

regression. When it comes to regression models. The link 
between the variables that are being explained and those that 

are being explained can be referred to as spatial dependency. 

Every piece of information that the researcher analyzes for 

any phenomena that he is interested in studying is not 

autonomous in and of itself; rather, it is reliant on the source 

of the information [7]. Studies in [8] and [9] aims to estimate 

a spatial negative binomial regression model (SAR), Using 

the maximum likelihood method, relying on the Quinn 

adjacency criterion, and a new adjacency criterion, relying on 

longitudes, and comparing them using the simulation method 

to reach the most appropriate matrix in obtaining an efficient 

estimate of the model, and then using it in the applied aspect 
in estimating the number of traffic accidents in the Iraqi 

governorates . 
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A. The spatial negative binomial regression model 

An investigation of a spatial regression model is carried out 

with the purpose of elucidating the amount to which the 

independent variables have an impact on the dependent 
variable, taking into account the geographical impacts of 

neighboring sites. Researchers in the field of measurement 

have produced a number of spatial models that are concerned 

with spatial analysis processes, applying them to a wide 

variety of applications, and dealing with spatial dependency 

[10]. 

  ���� = ���		
 − � ������� (1) 

w is the spatial adjacency matrix with dimension (n×n). 

λ is the spatial correlation parameter. 

x is the matrix of variables. 

β is a vector of parameters. 

B. Binary contiguity matrix 

Providing data allows the construction of a spatial weight 

matrix based on proximity. We assume that n refers to the 
number of spatial units. The spatial weight matrix with 

dimension n × n will be denoted by the symbol W, and it will 

be a positive, square, symmetric and non-random matrix. 

Each element within the matrix is denoted by Wᵢⱼ at location 

i,j. A value is assigned to each pair at adjacent or non-adjacent 

locations by some predefined rules that define the spatial 

relationship between the locations. The general formula for 

the spatial weight matrix is as follows [11], [12]. 

 �ᵢⱼ = {1       ��          � ����ℎ���   ! (2) 

Through formula (2), the values of each element of the spatial 

weights’ matrix are determined. Where if the sites i and j are 

adjacent, then the value of Wᵢⱼ=1, and if they are not adjacent, 

then the value of Wᵢⱼ=0. The elements of the main diagonal of 
the weight matrix are equal to zero because the regions are not 

adjacent to themselves [13], [14], [15]. 

C. Adjusted Weight Matrix 

This matrix is based on the binary adjacency weights 

matrix W_ij after modifications have been made to it, in 

which the sum of the row equals one, as in the following 

formula [16], [17]. 
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There are several types of adjacencies to build the weight 

matrix, we will take the following: 

1) Modified Queen Criterion (M-Q-C): This 

juxtaposition occurs by merging the Rook and Bishop matrix, 

i.e. the subscription becomes boundaries and points of the 

region. If the region shares a border or point, then the value of 

W_Q = 1, and if the region does not have a border or point 

with the neighboring region, then the value of W_Q = 0. 

2) Contiguity criterion for proposed modified longitudes 

(C-C-P-M-L): This Contiguity is between two or more 

neighboring regions through which a common longitude 
passes, where the value of the region through which the 

longitude passes has a value of Wᵢⱼ=1, and the common region 

through which the longitude does not pass has a value of 

Wᵢⱼ=0. 

D. The Maximum Likelihood Method for Estimating a 

Spatial Negative Binomial Regression Model 

Maximum likelihood estimators are stable, highly efficient, 

and consistent. That is, the estimation process is done by 

making the estimates of the maximum likelihood function for 

the random variables as large as possible [18], [19]. �56" |�" ,9:
= ;	6" + 9��� ;	6" + 1�;	9��� = 9���"��� + 9��>?@A = �"����"��� + 9��>B'

 
(4) 

Where 9 ≥ 0 , � = 1,2, … , � 
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To obtain the maximum likelihood estimates for a spatial 

negative binomial regression model. Numerical estimation 

methods can be adopted, such as tRaphson method. 

Therefore, we must find the first and second derivatives of the 

model parameters [20], [21]. R H� HR�
= I S−	6"

*
"L�

+ 9��� ��� ���		
 − ��������9	
 − ���T U���		
 − ��������9 + 1V
+ ���6	
 − ���TW = 0 

(6) 

 

Derivation with the ratio (β,θ) produces the following 

equations: [18]. R H� HR� = I �" 	6" − �"����1 + 9�"���
*

"L� = 0 (7) 

R H� HR9 = I X 1YT =H�	1 + 9 �"��� � + 9	6" − �"����1 + 9 �"��� >*
"L� + Z U6" + 19V − Z U19V[ = 0 

(8) 
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E. Moran's coefficient test 

It is a tool for measuring spatial dependence in the studied 

data, it is symbolized by the symbol I and is analogous to the 

Durbin Watson test in time series data. Its value ranges 
between (1+, 1-), as the closer the value of the Moran’s 

coefficient is to (1+), the spread pattern of the data is close. 

However, if the value of the Moran’s coefficient approaches 

(1-), the spread pattern of the data is divergent, but if the value 

approaches (0).) The spread of data is random. The formula 

for Moran's coefficient is [22], [23], [24]. 


 = �\1  ∑ ∑ �"# ]6" − 6^ ]6# − 6^*#L�*"L� ∑ ]6" − 6^T*"L�  (9) 
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*

#L�
*
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whereas: 

S The sum of the elements in the matrix W. 

n sample size. 

W is a matrix of adjacency weights with dimensions n×n. 

F.  Mean Squares Error 

It is calculated for the model for all matrices used. This 

criterion is one of the important comparison criteria in 

regression models. There is an inverse relationship between 

the MSE and the significance of the model, where the lower 

the MSE, the greater the significance of the model and vice 

versa. The formula for this standard [25], [26] is as follows:  

_\` = 1� I5abc − a:Td
"L�  (10) 

whereas: 

p: represents the number of times the experiment was repeated 

(B_i) represents the estimated value of parameter i 

B represents the real parameter value 

II.  MATERIALS AND METHOD 

A.  Stages of the simulation experiment 

The R 4.3.0 programming language was used to write the 

simulation program, which is attached in Appendix A. The 

written program includes four basic stages for estimating a 
negative binomial regression mod. At this stage, the default 

values for the parameters are chosen considering the presence 

of three explanatory variables [27][28][29]. Different default 

values were chosen for the parameters and these values are 

shown in Table 1. 

TABLE I 

DEFAULT VALUES FOR PARAMETERS 

Model ef eg eh ei j λ 

1 0.1 0.1 0.1 0.1 1/2 0.2 

2 2 0.07 -0.02 0.2 1/2 0.2 

3 0.5 0.3 0.2 0.4 1/2 0.2 

4 0.1 0.1 0.1 0.1 1/8 0.2 

5 2 0.07 -0.02 0.2 1/8 0.2 

6 0.5 0.3 0.2 0.4 1/8 0.2 

7 0.1 0.1 0.1 0.1 1/2 0.8 

8 2 0.07 -0.02 0.2 1/2 0.8 

9 0.5 0.3 0.2 0.4 1/2 0.8 

10 0.1 0.1 0.1 0.1 1/8 0.8 

11 2 0.07 -0.02 0.2 1/8 0.8 

12 0.5 0.3 0.2 0.4 1/8 0.8 

B. Generating data 

At this stage, the explanatory variables are generated as 

being generated from a uniform distribution [30]. The error is 

generated from a negative binomial distribution, and then the 

dependent variable is collected according to the approved 

model. Each experiment was repeated 5000 times.  Three 

different sample sizes were chosen (56, 112, 168). 

III. RESULTS AND DISCUSSION  

A. Contiguity criterion for proposed modified longitudes (C-

C-P-M-L) Modified Queen Criterion (M-Q-C) 

The MSE criteria was utilized for the aim of evaluating 

several weight matrices for parameters and locating the 

optimal weight matrix. This is because the matrix that has the 

lowest MSE value is deemed to be superior. As shown in 

Tables 2,3 ,4 ,5,6,7,8,9,10,11,12 and 13. 

TABLE II 

ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE FIRST CASE

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.09669 0.09961 0.09954 0.10011 0.46839 0.20474 0.14247 

M-Q-C 0.06654 0.10047 0.10040 0.09980 0.46854 0.20644 0.14342 

112 C-C-P-M-L 0.10745 0.09951 0.09976 0.09969 0.48586 0.20004 0.06598 

M-Q-C 0.06932 0.10060 0.09989 0.10052 0.48249 0.20002 0.06793 

168 C-C-P-M-L 0.13152 0.09841 0.10012 0.10023 0.48943 0.19992 0.03846 

M-Q-C 0.08893 0.10008 0.10026 0.09992 0.48983 0.19987 0.04290 

TABLE III 

ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE SECOND CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 1.92344 0.07168 -0.01903 0.20049 0.46678 0.20280 0.13347 

M-Q-C 1.98511 0.06968 -0.01958 0.19985 0.46631 0.19877 0.14436 

112 C-C-P-M-L 1.96347 0.07134 -0.02041 0.19970 0.48607 0.19989 0.06361 

M-Q-C 2.02933 0.06862 -0.02025 0.20004 0.48564 0.19922 0.06393 

168 C-C-P-M-L 2.02786 0.06871 -0.01988 0.19993 0.49027 0.20052 0.04235 

M-Q-C 1.99045 0.07005 -0.01985 0.20007 0.48930 0.20010 0.04031 
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TABLE IV 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE THIRD CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.48286 0.30021 0.19963 0.39964 0.47002 0.20211 0.13128 

M-Q-C 0.51903 0.29909 0.20016 0.39878 0.46518 0.20301 0.14935 

112 C-C-P-M-L 0.51721 0.29854 0.20058 0.40021 0.48490 0.20007 0.06304 

M-Q-C 0.47991 0.30036 0.20020 0.39972 0.48316 0.20015 0.06576 

168 C-C-P-M-L 0.50526 0.29944 0.19986 0.40032 0.48766 0.20012 0.03999 

M-Q-C 0.50360 0.29983 0.19983 0.39946 0.49129 0.20086 0.04237 

TABLE V 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE FOURTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.09517 0.10008 0.10007 0.09972 0.11493 0.20102 0.03508 

M-Q-C 0.11805 0.09908 0.09979 0.10012 0.11441 0.19945 0.03841 

112 C-C-P-M-L 0.10842 0.09953 0.09982 0.10038 0.12059 0.19901 0.01724 

M-Q-C 0.09406 0.10015 0.10000 0.09994 0.12104 0.19827 0.01983 

168 C-C-P-M-L 0.09752 0.10003 0.10024 0.09989 0.12086 0.20053 0.01106 

M-Q-C 0.09623 0.10010 0.10008 0.10002 0.12222 0.20023 0.01235 

TABLE VI 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE FIFTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 2.00596 0.06955 -0.02007 0.20009 0.11589 0.19783 0.03411 

M-Q-C 1.99248 0.07015 -0.02007 0.19991 0.11789 0.19750 0.03539 

112 C-C-P-M-L 1.98632 0.07043 -0.02021 0.20016 0.12041 0.19962 0.01657 

M-Q-C 2.01169 0.06963 -0.02032 0.19986 0.12139 0.20025 0.01810 

168 C-C-P-M-L 1.99459 0.07024 -0.01991 0.19978 0.12216 0.19982 0.01062 

M-Q-C 1.98829 0.07036 -0.02005 0.20005 0.12199 0.20149 0.01179 

TABLE VII 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE SIXTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.48414 0.30038 0.19983 0.40027 0.11638 0.20080 0.03047 

M-Q-C 0.48135 0.30041 0.20004 0.40034 0.11522 0.20351 0.03342 

112 C-C-P-M-L 0.50928 0.29939 0.20020 0.40007 0.12116 0.20014 0.01463 

M-Q-C 0.48501 0.30048 0.19989 0.40016 0.12079 0.20064 0.01505 

168 C-C-P-M-L 0.48725 0.30040 0.20007 0.40009 0.12122 0.20017 0.01038 

M-Q-C 0.50116 0.29992 0.20000 0.39989 0.12191 0.19993 0.01061 

TABLE VIII 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE SEVENTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.11476 0.09850 0.10014 0.10036 0.46630 0.80077 0.13060 

M-Q-C 0.05070 0.10082 0.10079 0.09999 0.46726 0.80164 0.15005 

112 C-C-P-M-L 0.10801 0.09895 0.10039 0.10058 0.48237 0.80047 0.06430 

M-Q-C 0.06484 0.10094 0.10014 0.10019 0.48334 0.79963 0.06839 

168 C-C-P-M-L 0.08800 0.10036 0.09973 0.10021 0.49019 0.79962 0.04180 

M-Q-C 0.10254 0.09966 0.09968 0.10030 0.48880 0.80114 0.04413 

TABLE IX 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE FIFTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 2.03958 0.06750 -0.02037 0.20072 0.47238 0.80153 0.13667 

M-Q-C 2.02322 0.06855 -0.02068 0.20000 0.46885 0.79856 0.14178 

112 C-C-P-M-L 2.03827 0.06822 -0.01992 0.19960 0.48476 0.79857 0.06272 

M-Q-C 1.96796 0.07029 -0.01944 0.20073 0.48648 0.79932 0.07059 

168 C-C-P-M-L 1.95004 0.07169 -0.01990 0.19978 0.49172 0.79976 0.04114 

M-Q-C 2.01001 0.06961 -0.02003 0.19950 0.49104 0.80075 0.04478 

TABLE X 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE NINTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.43081 0.30189 0.19995 0.40043 0.47015 0.79623 0.13330 

M-Q-C 0.50463 0.29903 0.20067 0.39960 0.46771 0.79498 0.13771 

112 C-C-P-M-L 0.49181 0.30027 0.19959 0.39963 0.48266 0.79872 0.06278 

M-Q-C 0.47587 0.30063 0.19951 0.40015 0.48305 0.80057 0.07026 

168 C-C-P-M-L 0.50086 0.29975 0.19995 0.39994 0.48919 0.80098 0.04018 

M-Q-C 0.49312 0.30009 0.20023 0.39977 0.48725 0.79963 0.04487 
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TABLE XI 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE TENTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.09174 0.09990 0.10049 0.10015 0.11521 0.79954 0.03522 

M-Q-C 0.10529 0.09985 0.09943 0.10022 0.11646 0.79984 0.03535 

112 C-C-P-M-L 0.09534 0.10001 0.10009 0.10014 0.12016 0.79980 0.01647 

M-Q-C 0.10867 0.09961 0.09991 0.10011 0.11950 0.79886 0.01890 

168 C-C-P-M-L 0.09777 0.10022 0.10009 0.10044 0.12182 0.79912 0.01159 

M-Q-C 0.09322 0.10012 0.10005 0.10013 0.12198 0.80013 0.01177 

TABLE XII 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE ELEVENTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 2.00991 0.06959 -0.02019 0.19990 0.11573 0.79825 0.03380 

M-Q-C 1.97368 0.07064 -0.01981 0.20035 0.11656 0.79931 0.03612 

112 C-C-P-M-L 1.99964 0.07007 -0.02020 0.19979 0.12143 0.80027 0.01607 

M-Q-C 1.99641 0.07001 -0.01989 0.20007 0.12039 0.79807 0.01768 

168 C-C-P-M-L 1.99669 0.06999 -0.01992 0.20018 0.12232 0.80039 0.01105 

M-Q-C 1.99708 0.07003 -0.01987 0.19984 0.12288 0.79999 0.01154 

TABLE XIII 

 ESTIMATION VALUES OF PARAMETERS AND MSE OF MATRICES FOR THE FIFTH CASE 

n Matrix β0 β1 β2 β3 9 λ MSE 

56 C-C-P-M-L 0.50365 0.29962 0.20000 0.39990 0.11610 0.79879 0.03005 

M-Q-C 0.52298 0.29888 0.19968 0.40036 0.11531 0.79842 0.03459 

112 C-C-P-M-L 0.51507 0.29928 0.19994 0.40026 0.12111 0.80022 0.01476 

M-Q-C 0.50282 0.29993 0.20002 0.39988 0.12176 0.79940 0.01548 

168 C-C-P-M-L 0.49362 0.30027 0.20004 0.39972 0.12188 0.79924 0.01006 

M-Q-C 0.49073 0.30036 0.19988 0.40001 0.12211 0.79981 0.01029 

From the Tables, we conclude that the best matrix for 

estimating the spatial negative binomial regression model is 

the proposed modified longitude matrix, and therefore we will 

rely on it in the applied aspect. 

B. Good Matching of Data 

The relationship between climate and transportation is 

ancient and close since the beginning of the process of trade 
exchange on a large scale between human societies. The 

climate was a contributing factor to this trade exchange, 

especially in the period when humans used sailing ships in 

human transportation and trade. We will study land transport, 

as it is also affected by climatic events, and to a lesser extent. 

Weather events may uproot railways, as can heavy rains, and 

disruption of traffic and traffic signals as a result of fog or as 

a result of freezing, although they have a significant impact 

on traffic safety. 

In order to ensure that the data of the dependent variable 

(the number of traffic accidents) is subject to a negative 
binomial distribution, goodness-of-fit tests provided by the 

ready-made statistical program Easy Fit 5.6 were used. These 

tests are the Kolmogorov-Smirnov (KS) Kolmogorov-

Smirnov test and the Anderson-Darling (AD) test. These tests 

test the following hypothesis: 

H_0: y~Negative Binomial 

H_1: y≁Negative Binomial 

It is clear from Table 6 that the probability value of the 

Kolmokrov-Smirnov (KS) test is (0.17823) greater than the 

significance level (0.05), which indicates acceptance of the 

null hypothesis that the data follows a negative binomial 
distribution, and this is supported by the Anderson-Darlink 

(AD) test. The probability value of this test is equal to 

(2.5018), which is greater than the significance level (0.05). 

The results of the two tests were as in Table 14. 

 

TABLE XIV 

GOODNESS-OF-FIT TESTS FOR THE VARIABLE NUMBER OF TRAFFIC 

ACCIDENTS 

 KS AD 

P- Value 0.17823 2.5018 

C.  Moran’s spatial dependence test 

The results of Moran's test for the spatial dependence of the 

proposed length matrix were obtained, and the results are as 

shown in Table 15: 

TABLE XV 

MORAN TEST RESULTS 

Moran I Expected Variance Z-Statistic P-Value 

0.18 -0.018 0.0005 9.02 <0.0001 

 

The results indicate that there is spatial dependence based 

on the P-Value, which is less than the significance level of 
0.05. 

D.  Model estimation 

The maximum likelihood method was used to estimate the 

parameters of the spatial binomial regression model based on 

the proposed longitudinal weight matrix because it gave very 

satisfactory results according to the simulation results as 

shown in Table 16 

TABLE XVI 

 PARAMETER ESTIMATES 

Parameters ef eg eh ei j Λ 

Estimates -1.89131 0.09610 0.01544 -0.00148 2.60530 0.87472 

 

Based on the results on the Figure 1, the observations of the 

dependent variable were estimated, and the following Figure 

shows a graph of the estimated values with the actual values 

of the number of traffic accidents in Iraq for the year 2022. 
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Fig. 1  Currently, estimated values of the dependent variable 

IV. CONCLUSION 

The spatial negative binomial regression model proved its 

efficiency in light of the two adjacent matrices adopted in the 

research with large sample sizes. This is evident from the 

decrease in the mean square error values, at a sample size of 

168, where  the weight matrix for the modified longitudes 

showed its efficiency when estimating the spatial negative 

binomial regression model. This is due to the low values of 

the mean square error (MSE).In the applied side and based on 

the results of Moran’s coefficient, it was concluded that the 

count data represented by the number of traffic accidents in 

the Iraqi governorates suffers from spatial dependency, and 

notice the correlation of the dependent variable. The number 
of traffic accidents has a positive, significant relationship with 

the two explanatory variables: the general average 

temperature and the average rainfall. That is, as temperatures 

increase, traffic accidents increase with them. The greater the 

amount of rain falling, the greater the number of traffic 

accidents depending on the type of road, the third explanatory 

variable, the amount of falling dust, is inversely related to the 

number of traffic accidents. We recommend Using a spatial 

negative binomial regression model in the economic and 

health fields 
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