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Abstract—This research addresses the need for improved accuracy and efficiency in lung disease classification from X-ray images by 

developing a novel approach that integrates Graph Neural Networks (GNNs) with Transformer models. Using the extensive ChestX-

ray14 dataset, which includes a wide array of lung disease cases, this study introduces and validates the TransGNN model. TransGNN 

harnesses the complementary strengths of GNNs and Transformers through advanced attention mechanisms and a dual-branch 

architecture, effectively capturing the complex and variable characteristics inherent in medical imaging data. The methodological 

framework includes rigorous data preprocessing, the application of weighted focus loss functions to address significant class imbalances, 

and extensive data augmentation techniques to bolster the model’s robustness during testing. Results show that TransGNN surpasses 

conventional models by achieving superior classification accuracy across multiple lung diseases, demonstrating substantial 

improvements in diagnostic precision and reliability. Furthermore, the model’s continuous learning mechanisms enable it to adapt 

seamlessly to new data and advances in medical imaging technology, making it highly versatile. This study highlights the potential of 

GNNs and Transformers to revolutionize the diagnostic landscape, offering a powerful, precise, and efficient tool for lung disease 

diagnosis. Future research should aim to incorporate additional patient-specific data, explore more advanced neural network 

architectures, and validate the model across diverse patient populations to enhance diagnostic accuracy further and expand its practical 

applicability in clinical settings, paving the way for a new standard in AI-driven medical diagnostics. 
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I. INTRODUCTION

Lung diseases pose significant global health challenges, 

requiring prompt and accurate diagnosis for effective 

treatment. Traditional diagnostic methods, such as 

radiologists' manual interpretation of X-ray images, are often 

time-consuming and prone to variability and errors. The 

increasing prevalence of lung diseases and the growing 

volume of medical imaging data demand more efficient and 

reliable diagnostic tools. Recent advancements in artificial 

intelligence (AI) have introduced powerful techniques like 

Graph Neural Networks (GNNs) and Transformers, which 

have shown promise in enhancing medical image analysis. 
The concept of graph neural networks (GNNs) was first 

introduced by Gori et al. [1] in 2005 and further detailed by 

Scarselli et al. [2]. in 2009. A Graph Neural Network (GNN) 

directly operates on graph structures. Graphs, consisting of 

nodes (vertices) connected by edges, represent complex 

relational data effectively. GNNs capture dependencies 

between nodes, making them highly effective for graph-

representative data in applications like social networks, 

molecular structures, and communication networks [3]. Graph 
Neural Networks, known for their ability to handle relational 

data, offer a novel approach to medical image analysis. Unlike 

traditional convolutional neural networks (CNNs) that process 

images as a grid of pixels, GNNs can interpret images as a 

series of interconnected nodes (or regions of interest). This 

perspective is particularly advantageous in understanding the 

complex spatial relationships and patterns present in lung X-

rays, which are crucial for accurate disease classification [4]. 

Vaswani [3], in their seminal paper “Attention Is All You 

Need”, presented the Transformer model, which significantly 

diverged from traditional sequence modeling techniques such 
as Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks. This model is a deep learning 

framework that utilizes a multi-head attention mechanism. In 
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2023, Peebles developed the Diffusion Transformer (DiT), 

adapting the Transformer for diffusion-based image 

generation. Initially developed for natural language 

processing, Transformers have recently gained traction in 

computer vision [4]. Their self-attention mechanisms allow 

them to focus on relevant input parts, making them suitable 

for analyzing medical images. Transformers can efficiently 

handle sequential pixel intensity variations in X-rays, 

providing a complementary approach to GNNs for 

understanding and classifying lung diseases. 
GNNs are particularly effective in capturing complex spatial 

relationships within medical images, making them suitable for 

tasks like lung disease classification from X-ray images. 

Initially developed for natural language processing, 

transformers have been successfully adapted for image analysis 

due to their ability to handle sequential data and long-range 

dependencies. By integrating GNNs and Transformers, it is 

possible to leverage their complementary strengths, leading to 

improved feature extraction and classification accuracy. 

This study aims to develop an efficient hybrid model 

combining GNNs and Transformers for lung disease 
classification from X-ray images. The proposed models, 

TransGNN, incorporate attention mechanisms and dual-

branch architectures to enhance diagnostic performance.   

This research addresses the limitations of conventional 

methods, such as class imbalance and insufficient feature 

representation, by utilizing advanced AI techniques and 

continuous learning mechanisms. The ultimate goal is to 

provide a robust, accurate, and efficient diagnostic tool to 

improve patient outcomes and significantly support 

radiologists in clinical practice. 

For the literature review, from 2021 to 2024, the 
researchers applied traditional machine learning and deep 

learning to image recognition and classification of medical 

diseases. However, it has some disadvantages, such as low 

precision, low efficiency, and limited ability to process 

complex data. 

A. Shortcomings of Conventional Machine Learning 

Approaches 

Traditional machine learning methods such as SVM and 

decision trees have been widely used in medical image 
analysis due to their relatively low computational 

requirements and ease of implementation. However, these 

methods often rely on handcrafted features, which can limit 

their ability to capture the subtle and complex patterns 

inherent in medical images [5].This reliance on manual 

feature engineering can introduce bias and subjectivity, 

potentially leading to inconsistent diagnostic outcomes [6]. 

Additionally, conventional ML techniques struggle with the 

high dimensionality of medical images, which can result in 

overfitting and poor generalizability to new, unseen data [7]. 

B. Inefficiencies of Current Diagnostic Techniques 

Current diagnostic techniques for lung diseases heavily 

rely on manual interpretation of chest X-rays by radiologists, 

which is time-consuming and subject to variability and error 

[8]. This manual approach faces challenges such as difficulty 

in detecting subtle early-stage pathologies, which can lead to 

delayed treatments [3]. Moreover, traditional diagnostic 

methods often lack the flexibility to integrate and analyze 

complex data from modern electronic health records, resulting 

in incomplete patient assessments and impaired diagnostic 

accuracy [9]. 

C. Advancements in Graph Neural Network (GNN) 

Graph Neural Networks (GNNs) have emerged as a 

powerful tool in medical image analysis due to their ability to 

capture complex spatial relationships within data [10].  
GNNs are particularly effective in interpreting intricate 

patterns in lung X-rays, making them superior to traditional 

Convolutional Neural Networks (CNNs) in specific contexts 

[11]. Recent studies have demonstrated the effectiveness of 

GNNs in identifying spatial patterns and disease stages, with 

some models integrating clinical data for more personalized 

diagnoses [12]. However, GNNs still face challenges such as 

data scarcity and the need for extensive annotated datasets for 

practical training [13]. 

D. Adoption of Transformers in Medical Imaging 

Initially developed for natural language processing [4], 

transformers have recently been adapted for medical imaging, 

including lung disease classification from X-ray images. 

Transformers excel in capturing long-range dependencies and 

global context within images, enhancing the accuracy of 

disease diagnosis [4]. Hybrid models combining 

Transformers with CNNs have shown promise in effectively 

distinguishing between similar pathologies by focusing on 

critical areas of the images [14] Despite their potential, the 

high computational demands of Transformers pose challenges 
for their integration into clinical workflows [15]. 

E. Integration of GNNs and Transformers 

The integration of GNNs and Transformers in medical 

image analysis leverages the strengths of both models, 

offering a robust solution to the limitations of conventional 

methods [16]. GNNs' ability to capture complex spatial 

relationships complements Transformers' proficiency in 

handling sequential data and long-range dependencies [17]. 
This combination enhances feature extraction and 

classification accuracy, as evidenced by the superior 

performance of the proposed TransGNN models in lung 

disease classification [18].  

In summary, the advancements in GNNs and Transformers 

and strategies to address data imbalance represent significant 

progress in medical image analysis. These developments 

provide a strong foundation for further research and the 

development of more accurate and efficient diagnostic tools 

for lung disease classification [19].  

II. MATERIALS AND METHOD 

We first collect a lung dataset in the methodological section 

with X-ray images of public-sector diseases. 

A. Materials 

In this section, we conduct experiments on a publicly 

available chest X-ray 14 dataset [20], the most extensive 
available collection of chest radiographs. It comprises 

112,120 X-ray images from 30,805 patients, each with a 

resolution of 1024×1024 pixels, and stored in 8-bit grayscale 

PNG format. The dataset includes labels for 14 chest diseases 

derived from radiologists’ reports using Natural Language 
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Processing (NLP) with an accuracy exceeding 90%. Of all the 

chest radiographs, 51,759 contain one or more diseases, while 

60,361 are labeled as “no findings.” Table 1 lists the pulmonary 

disease types in the dataset. The dataset includes multi-label 

classification with a sample size large enough for deep learning. 

In this experiment, the entire dataset is divided into a hospital-

scale training set (totaling 75,708 images), a validation set 

(totaling 10,816 images), and a test set (totaling 25,596 images). 

All images of the same patient appear only once across the 

training, validation, and test sets. Chest X-ray 14 dataset 
statistical table of lung disease types shown in Table 1. 

TABLE I 

CHEST X-RAY 14 DATASET STATISTICAL TABLE OF LUNG DISEASE TYPES 

Pulmonary 

Disease 

Number of cases 

of the disease 

Number of 

non-local 

disease cases 

Ratio 

Atelectasis 11559 100561 10.31 

Cardiomegaly 2776 109344 2.48 

Effusion 13317 98803 11.88 

Infiltration 19894 92226 17.74 

Mass 5782 106338 5.16 

Nodule 6631 105789 5.65 

Pneumonia 1431 110689 1.28 

Pneumothorax 5302 106818 4.73 

Consolidation 4667 107453 4.16 

Edema 2303 109817 2.05 

Emphysema 2516 109604 2.24 

Fibrosis 1686 110434 1.50 

Pleural Thickening 3385 108735 3.02 

Hernia 227 111893 0.20 

No finding 60361 51759 53.84 
 

 
Fig. 1  Quantitative distribution of 14 lung diseases [19]  

 

The bar graph presents the distribution of lung disease 
cases within a dataset, showcasing the prevalence of various 

conditions. Infiltration is the most common disease, 

evidenced by the highest count of 19,894 cases, followed by 

Effusion and Atelectasis with 13,317 and 11,559 cases, 

respectively. Diseases like Nodules, Masses, and 

Pneumothorax also display significant occurrences. Hernia is 

the least common condition towards the lower end, with only 

227 cases. This graph helps understand the relative 

frequencies of these diseases, which could inform healthcare 

priorities and resource allocation in medical settings. 

B. Data Description 

Pre-trained models require normalized input images, 

typically small batches of three-channel RGB images 

(3×H×W), with H or W at least 224 [21]. Chest X-ray 14 

images are 1024×1024 with 8-bit grayscale values. The 

dataset is split into training, validation, and test sets. 

Grayscale images are converted to three-channel RGB, 

center-cropped to 224×224, and normalized using the mean 

([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224, 

0.225]). The model was trained with the Adam optimizer, an 

initial learning rate of 1.0e-4, and a batch size of 32 [22]. 

Training iterations were completed, and the model was 

validated, tested, and saved after each cycle for optimal 

performance. ROC curves and AUC values evaluated multi-

class classification performance, saving model weights 

corresponding to the best AUC value for feature extraction. 

To avoid confusion, the family name must be written as the 

last part of each author's name [23]. Each affiliation must 
include, at the very least, the name of the company and the 

name of the country where the author is based [24]. 

To solve the problem of data imbalance in the sample of 14 

diseases, we use focus loss in the weighted loss function, 

which adjusts the contribution of each sample to the overall 

loss according to the classification difficulty. By increasing 

the weight of underrepresented categories, models can focus 

more on learning the characteristics of those categories and 

improving their performance on less common diseases. 

C. Lung Disease X-ray Image Processing 

The images come from various datasets with differing sizes 

and conditions. Preprocessing is applied to minimize 

performance impacts. Different X-ray types are used, each 

with distinct technologies and resolutions. This represents the 

dataset normalization process: 

 �� � ������	�
���	�
����	�
 (1) 

where, y is for original images and M is a normalized image.  

X represents the standardized image. The mean and standard 

deviation from the training set is used to standardize the data 

distribution for the test and validation sets. 

 � � �������	�
�.�	�
  (2) 

Histogram equalization extends pixel intensity from 0 to 

255, producing an image with higher contrast and intensity. 

Gaussian blur with a filter size of 55 minimizes noise, while 

a bilateral filter with values of 5, 75, and 75 preserves edge 

information. To enhance classification accuracy, the 

diaphragm is removed using adaptive masking, which 

calculates pixel intensity’s maximum and minimum and 

applies binary thresholding. 

D. Methods 

The algorithm enhances the Mask GNN architecture for 

segmenting lung disease areas from chest X-ray 

(CXR)images. Mask GNN, introduced in 2018 [19], generates 

pixel-level masks for detected objects, and showed high 

accuracy in the COCO segmentation challenge (see Fig .2) 

[19]. 
 

 

Fig. 2  The overall architecture of GNN [19] 
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In graph representation learning, graph neural networks 

(GNNs) have become the dominant choice, achieving state-of-

the-art performance in tasks such as node classification, link 

prediction, and graph classification [25]. Although GNNs and 

their variants have made significant progress, some limitations 

remain. On the one hand, the message-passing mechanism 

relies on edges to fuse graph structure and node attributes, 

resulting in strong bias and noise. If there are no connections 

between nodes, some helpful information cannot be obtained.  

Furthermore, in real graph data, many noisy edges connect 
irrelevant nodes. These biases and noise caused by the 

message-passing mechanism cause the representation learned 

by the GNN to contain incomplete information, thus harming 

the performance of downstream tasks [26].  On the other 

hand, the receptive field of GNN is also limited due to the 

over-smoothing problem. It turns out that as the architecture 

of GNNs becomes deeper and reaches a certain extent, the 

model no longer responds to the training data, and the node 

representations obtained by such deep models tend to be over-

smoothed and become indistinguishable. These limitations 

lead to frustrating compromises in GNNs, where shallow 
GNNs with limited receptive fields can only aggregate 

incomplete information within the neighborhood, while deep 

GNNs suffer from over-smoothing [24]. With the help of 

Transformer, the receptive field of GNN can be expanded to 

more relevant nodes, which may be far away from the central 

node. On the other hand, GNN can help the Transformer 

capture complex graph topology information and efficiently 

aggregate more relevant nodes from the neighborhood. 

The framework of TransGNN is shown in Fig.3. The 

framework consists of three essential components: (1) attention 

sampling module, (2) position encoding module, (3) 
TransGNN module. First, each central node's most relevant 

nodes are sampled by considering the semantic similarity and 

graph structure information in the attention sampling module. 

Then in the positional encoding module, the positional 

encoding is calculated to help the Transformer capture the 

graph topology information. After these two modules, we use 

the TransGNN module, which contains three sub-modules in 

sequence: (i) Transformer layer, (ii) GNN layer, and (iii) 

Sample update sub-module. Among them, the Transformer 

layer is used to expand the receptive field of the GNN layer and 

efficiently aggregate attention sample information, while the 

GNN layer helps the Transformer layer perceive graph 
structure information and obtain more relevant information 

about neighboring nodes. The sample update sub-module is 

used to update attention samples upon new representations 

efficiently.  

 

Fig. 3  TransGNNs Framework [24] 

 

First, relevant node sampling is performed on the central 

node, then the position encoding is calculated, and the original 

attributes are enhanced by combining structural information. 

In the TransGNN module, the Transformer layer and the GNN 

layer improve each other, followed by the sample update sub-

module [27]. 

1) Transformer layer: Use Transformer layers to improve 

GNN layers, extending the receptive field to more relevant 

nodes that may be far away from the neighborhood [28]. 
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2) Multi-head attention: 

 �)*+,�- .	ℎ�
 � /012 +	ℎ- .3, ⋯ , ℎ- .�
�� (4) 

3) GNN layer: Use the GNN layer to fuse representation 

and graph structure to help the Transformer layer make better 

use of the graph structure [29]. 

 6ℎ�	��
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  (5) 

4) Sample update submodule: After the Transformer layer 

and GNN layer, the attention samples should be updated 

according to the new representation [30]. 

E. Methods 

Various crucial metrics are employed when evaluating 

medical image analysis, especially within machine learning 

and deep learning models. These metrics are instrumental in 

assessing the models' performance, accuracy, and reliability 

in classifying, segmenting, or detecting medical conditions 

from images. Image classification is a fundamental computer 

vision task categorizing images into distinct classes with 

minimal error. In single-label classification, where each 

image belongs to one category, key performance indicators 

include accuracy, ROC curve, and AUC [31]. 

 ?22)@ 2A � 	BC D B<
/	BC D FC D B< D F<
 (6) 

The accuracy rate and the recall rate in the machine 

learning classification algorithm contradict each other. As the 

judgment threshold increases, the accuracy rate will continue 

to increase while the recall rate will continue to decrease. 

Generally, the higher the Recall rate, the lower the Precision 

rate. The precision-recall curve can be drawn according to 

different values, as shown in Fig.4.  

ROC curves evaluate a classifier’s performance at various 

thresholds and are typically shown in Fig.5. In a ROC curve, 

each point’s horizontal coordinate is the False Positive Rate 
(FPR), and the vertical coordinate is the True Positive Rate 

(TPR), illustrating the balance between true positives and 

false positives [32]. 

 BCG � BC/	BC D F<
 (7) 

 FCG � FC/	FC D B<
 (8) 
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Fig. 4  Precision-Recall curve [19] 

 

 
Fig. 5  ROC curve [19] 

 

The ROC curve can remain unchanged when the 

distribution of positive and negative samples in the test set 

varies, showing insensitivity to sample imbalance. For 

instance, a tenfold increase in negative samples does not 

impact TPR, while FPR will also increase proportionally with 

little overall change. Therefore, ROC is usually used as the 
evaluation criterion for unbalanced sample problems. The 

optimal classifier performance is indicated when its ROC 

curve approaches the top left corner. The superiority of one 

classifier over another is established if its ROC curve entirely 

encompasses that of the other [33]. 

III. RESULTS AND DISCUSSION 

A. Results 

Different models, including MobileLungNetV2, GNN, and 

TransGNN models, were selected for comparison to verify the 
generalization performance of the TransGNN method. 

Experiments were carried out using the same method on the 

same data set [26]. Each ROC value of the generalization 

experiment is shown in Fig.6. 

The comparison of the classification performance of each 

model for 14 chest diseases is shown in Fig.6. Here, each bar 

graph corresponds to each disease, and the text on the 

horizontal axis of the bar graph represents MobileLungNetV2, 

GNN, TransGCN and TransGNN and the average 

performance of the six models. The values on the vertical axis 

are the AUC values, the red bar is the model with the highest 
AUC value, and the green bar is the arithmetic mean of the 

AUC values of the six models. The AUC values of the six 

models for the classification of 14 chest diseases and their 

average AUC values are shown in Table 2. 

Table II compares the classification accuracy of each 

model for 14 chest diseases. The classification accuracies of 

MobileLungNetV2, GNN, and TransGNN were 0.7930, 

0.9697, and 0.9766. 

TABLE II 

ACCURACY COMPARISON WITH EXISTING METHODS ON CHESTXRAY14 

DATASET 

 

Table III shows that TransGNN's classification of 14 chest 

diseases is superior to two advanced methods such as 

MobileLungNetV2 and GNN, with better AUC value and 

stronger classification and generalization ability. 

TABLE III 

AUC COMPARISON WITH EXISTING METHODS ON CHESTX-RAY14 DATASET 

Type MobileLungNetV2[26] 
GNN 

[18] 
TransGNN 

Atelectasis 0.936 0.816 0.941 
Cardiomegaly 0.855 0.926 0.929 
Effusion 0.931 0.958 0.959 
Infiltration 0.912 0.749 0.910 
Mass 0.883 0.806 0.898 

Nodule 0.962 0.799 0.964 
Pneumonia 0.904 0.774 0.916 
Pneumothorax 0.967 0.891 0.963 
Consolidation 0.889 0.873 0.931 
Edema 0.958 0.893 0.962 
Emphysema 0.935 0.947 0.943 
Fibrosis 0.891 0.805 0.899 
Thickening 0.872 0.817 0.882 

Hernia 0.975 0.931 0.971 
Average 0.923 0.856 0.933 

B. Discussion 

TransGNN achieves the highest AUC value of 0.933, 

outperforming MobileLungNetV2 by 0.010 due to its 

enhanced feature extraction capabilities, attributable to its 

deep network layers. The complexity of GNN training 

frameworks, especially when using deeper transformers, 

complicates training and increases the risk of overfitting, 

which may hinder achieving optimal classification 

performance with the TransGCN model. Suggesting that its 

key technologies significantly enhance classification 

performance. 

Fig. 6 and Table III depict the model's overall performance, 
with an accuracy of 97.66% and an AUC value of 0.933, 

reflecting its excellent classification and generalization 

abilities. The study utilizes graph neural networks and 

transformers to classify multiple lung lesions effectively. The 

TransGNN model and two other transfer learning models 

Type MobileLungNetV2[26] 
GNN 

[18] 
TransGNN 

Atelectasis 0.9949  0.8356  0.9951  
Cardiomegaly 0.9963  0.9683  0.9968  
Effusion 0.9694  0.7911  0.9752  
Infiltration 0.9635  0.9040  0.9759  
Mass 0.9371  0.9135  0.9689  
Nodule 0.9697  0.7681  0.9689  
Pneumonia 0.9968  0.8140  0.9952  
Pneumothorax 0.9596  0.6852  0.9764  
Consolidation 0.9459  0.6472  0.9552  
Edema 0.9692  0.7748  0.9723  
Emphysema 0.9779  0.8189  0.9781  
Fibrosis 0.9562  0.7222  0.9646  
Thickening 0.9686  0.6918  0.9755  
Hernia 0.9705  0.7666  0.9736  
Average 0.9697 0.7930 0.9766 
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were trained on the ChestX-ray14 dataset, which is widely 

recognized for its size and has been used in numerous prior 

studies for benchmarking and technique comparison. 

Fig.6 and Table III present a comparative analysis of the 

classification performance across 14 lung diseases using three 

different models: MobileLungNetV2, GNN, and TransGNN.  

The figure uses bar graphs to depict the AUC values for each 

disease, allowing for a clear comparison of the models' 

effectiveness. The results demonstrate that TransGNN 

consistently achieves the highest AUC values across most 

diseases, indicating its superior classification capability. 

 

    

 
 

 
 

 
   

 

  

 

Fig. 6  Comparison of classification performance of each model for 14 diseases 
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For example, in diseases such as Atelectasis, Cardiomegaly, 

and Pneumonia, TransGNN significantly outperforms the other 

models, reaching near-perfect AUC values close to 1.0.  This 

suggests that TransGNN has a strong ability to distinguish 

between classes in these specific diseases. In contrast, 

MobileLungNetV2 and GNN show lower performance, 

particularly in complex diseases like Pneumothorax and 

Consolidation, where their AUC values are notably lower. This 

underperformance highlights their limitations in capturing 

intricate patterns in medical imaging data. 
The figure also shows that, on average, TransGNN has a 

superior generalization ability, achieving higher overall AUC 

scores than the other models. This superiority is likely due to 

the enhanced feature extraction and attention mechanisms 

employed by TransGNN, allowing it to capture the nuances in 

lung disease images better. Overall, Fig.6 and Table III 

illustrate the effectiveness of TransGNN in lung disease 

classification, showcasing its potential as a robust diagnostic 

tool in medical imaging. 

IV. CONCLUSION 

This research has demonstrated that the integration of 

Graph Neural Networks (GNNs) and Transformers 

significantly enhances the accuracy and efficiency of lung 

disease classification from X-ray images. The proposed 

models, TransGNN, leverage advanced AI techniques, 

including attention mechanisms and dual-branch architectures, 

to address and overcome the limitations of traditional 

diagnostic methods. These models offer superior performance 

in recognizing various lung conditions and adapting 
continuously to new data, making them highly effective in 

clinical settings. 

Through extensive validation of the ChestX-ray14 dataset, 

these models have shown a marked improvement over 

conventional methods, particularly in managing the inherent 

class imbalance in medical datasets. Applying a weighted 

focus loss function has proved instrumental in this success, 

ensuring that the models prioritize learning from 

underrepresented classes without sacrificing accuracy. 

For future work, exploring the integration of additional 

contextual patient data, such as demographic and clinical 
histories, is recommended to further personalize and enhance 

the diagnostic processes. Moreover, developing methods to 

reduce the computational demands of these AI models could 

facilitate their integration into existing medical infrastructure, 

making advanced diagnostics more accessible to a broader 

range of healthcare providers. Further exploration into multi-

modal learning, combining X-ray imaging with other 

diagnostic modalities, could also provide a more 

comprehensive understanding of lung diseases, potentially 

leading to earlier and more accurate diagnoses. 

REFERENCES 

[1] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning 

in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 

2, 2005, pp. 729–734, doi: 10.1109/ijcnn.2005.1555942. 

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, 

“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20, 

no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/tnn.2008.2005605. 

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. 

Gomez, et al., "Attention is all you need", Proc. 31st Int. Conf. Neural 

Information Processing Systems, pp. 6000-6010, 2017. 

[4] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” 

in 2023 IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2023, pp. 4172–

4182, doi: 10.1109/iccv51070.2023.00387. 

[5] D. Ahmedt-Aristizabal, M. A. Armin, S. Denman, C. Fookes, and L. 

Petersson, “Graph-based deep learning for medical diagnosis and 

analysis: Past, present and future,” Sensors, vol. 21, no. 14, p. 4758, 

Jul. 2021, doi: 10.3390/s21144758. 

[6] L. Zhang, Y. Zhao, T. Che, S. Li, and X. Wang, “Graph neural 

networks for image-guided disease diagnosis: A 

review,” iRadiolog,vol. 1, no. 2, pp. 151–166, Jun. 2023, 

doi:10.1002/ird3.20. 

[7] J. Zhou et al., “Graph neural networks: A review of methods and 

applications,” AI Open, vol. 1, pp. 57–81, 2020, 

doi:10.1016/j.aiopen.2021.01.001. 

[8] A. Zanfei, B. M. Brentan, A. Menapace, M. Righetti, and M. Herrera, 

“Graph convolutional recurrent neural networks for water demand 

forecasting,” Water Resour. Res., vol. 58, no. 7, Jul. 2022, 

doi:10.1029/2022wr032299. 

[9] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional 

neural networks: An overview and application in radiology,” Insights 

Imaging, vol. 9, no. 4, pp. 611–629, Jun. 2018, doi: 10.1007/s13244-018-

0639-9. 

[10] L. Wu et al., “Graph neural networks for natural language processing: 

A survey,” Found. Trends Mach. Learn., vol. 16, no. 2, pp. 119–328, 

2023, doi: 10.1561/2200000096. 

[11] L. Wu, P. Cui, J. Pei, L. Zhao, and X. Guo, “Graph neural networks: 

Foundation, frontiers and applications,” in Proc. 29th ACM SIGKDD 

Conf. Knowl. Discov. Data Min., 2023, pp. 5831–5832, 

doi:10.1145/3580305.3599560. 

[12] S. Thirumalaisamy et al., “Breast cancer classification using 

synthesized deep learning model with metaheuristic optimization 

algorithm,” Diagnostics, vol. 13, no. 18, p. 2925, Sep. 2023, 

doi:10.3390/diagnostics13182925. 

[13] R.-K. Sheu and M. S. Pardeshi, “A survey on medical explainable AI 

(XAI): Recent progress, explainability approach, human interaction 

and scoring system,” Sensors, vol. 22, no. 20, p. 8068, Oct. 2022, 

doi:10.3390/s22208068. 

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based 

learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, 

pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791. 

[15] M. Mamalakis et al., “DenResCov-19: A deep transfer learning 

network for robust automatic classification of COVID-19, pneumonia, 

and tuberculosis from X-rays,” Comput. Med. Imaging Graph., vol. 94, 

p. 102008, Dec. 2021, doi: 10.1016/j.compmedimag.2021.102008. 

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional 

networks for biomedical image segmentation,” in Med. Image Comput. 

Comput.-Assist. Interv. (MICCAI), 2015, pp. 234–241, 

doi:10.1007/978-3-319-24574-4_28. 

[17] Y. Li, X. Wu, P. Yang, G. Jiang, and Y. Luo, “Machine learning for 

lung cancer diagnosis, treatment, and prognosis,” Genomics, 

Proteomics Bioinf., vol. 20, no. 5, pp. 850–866, Oct. 2022, 

doi:10.1016/j.gpb.2022.11.003. 

[18] J. Hanson et al., “SPOT-Disorder2: Improved protein intrinsic disorder 

prediction by ensembled deep learning,” Genomics, Proteomics 

Bioinf., vol. 17, no. 6, pp. 645–656, Dec. 2019, doi: 

10.1016/j.gpb.2019.01.004. 

[19] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking 

atrous convolution for semantic image segmentation,” arXiv, 2017. 

[Online]. Available: https://arxiv.org/abs/1706.05587. 

[20] T. Dhar, N. Dey, S. Borra, and R. S. Sherratt, “Challenges of deep 

learning in medical image analysis—Improving explainability and 

trust,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 68–75, Mar. 2023, 

doi: 10.1109/tts.2023.3234203. 

[21] K. He et al., “Transformers in medical image analysis,” Intell. Med., 

vol. 3, no. 1, pp. 59–78, Feb. 2023, doi: 10.1016/j.imed.2022.07.002. 

[22] M. H. Al-Sheikh et al., “Multi-class deep learning architecture for 

classifying lung diseases from chest X-ray and CT images,” Sci. Rep., 

vol. 13, no. 1, Nov. 2023, doi: 10.1038/s41598-023-46147-3. 

[23] M. Hajij et al., “Topological deep learning: Going beyond graph 

data,” arXiv, 2022. [Online]. 

Available: https://arxiv.org/abs/2206.00606 

[24] F. J. M. Shamrat, S. Azam, A. Karim, K. Ahmed, F. M. Bui, and F. De 

Boer, “High-precision multiclass classification of lung disease through 

customized MobileNetV2 from chest X-ray images,” Comput. Biol. 

Med., vol. 155, p. 106646, Mar. 2023, 

doi:10.1016/j.compbiomed.2023.106646. 

281



[25] C. Metta, A. Beretta, R. Pellungrini, S. Rinzivillo, and F. Giannotti, 

“Towards transparent healthcare: Advancing local explanation 

methods in explainable artificial intelligence,” Bioengineering, vol. 11, 

no. 4, p. 369, Apr. 2024, doi: 10.3390/bioengineering11040369. 

[26] J. Shi, R. Wang, Y. Zheng, Z. Jiang, H. Zhang, and L. Yu, “Cervical 

cell classification with graph convolutional network,” Comput. 

Methods Programs Biomed., vol. 198, p. 105807, Jan. 2021, 

doi:10.1016/j.cmpb.2020.105807. 

[27] Y. Huang et al., “Transformer-based factorized encoder for 

classification of pneumoconiosis on 3D CT images,” Comput. Biol. 

Med., vol. 150, p. 106137, Nov. 2022, 

doi:10.1016/j.compbiomed.2022.106137. 

[28] D. Yao et al., “A mutual multi-scale triplet graph convolutional 

network for classification of brain disorders using functional or 

structural connectivity,” IEEE Trans. Med. Imaging, vol. 40, no. 4, pp. 

1279–1289, Apr. 2021, doi: 10.1109/tmi.2021.3051604. 

[29] R. Najjar, “Redefining radiology: A review of artificial intelligence 

integration in medical imaging,” Diagnostics, vol. 13, no. 17, p. 2760, 

Aug. 2023, doi: 10.3390/diagnostics13172760. 

[30] W. Zhang et al., “HyGAnno: Hybrid graph neural network–based cell 

type annotation for single-cell ATAC sequencing data,” Brief. 

Bioinform., vol. 25, no. 3, Mar. 2024, doi: 10.1093/bib/bbae152. 

[31] F. Shamshad et al., “Transformers in medical imaging: A 

survey,” Med. Image Anal., vol. 88, p. 102802, Aug. 2023, 

doi:10.1016/j.media.2023.102802. 

[32] S. Bharati, P. Podder, and M. R. H. Mondal, “Hybrid deep learning for 

detecting lung diseases from X-ray images,” Inform. Med. Unlocked, 

vol. 20, p. 100391, 2020, doi: 10.1016/j.imu.2020.100391. 

[33] B. Hu, C. Zhou, H. Wang, and S. Chen, “Nonlinear tribo-dynamic 

model and experimental verification of a spur gear drive under loss-

of-lubrication condition,” Mech. Syst. Signal Process., vol. 153, p. 

107509, May 2021, doi: 10.1016/j.ymssp.2020.107509. 

 

 

 

 

 

282




