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Abstract—The Frobenius problem is a classical problem in number theory and combinatorics that explores the range and maximum 

values of integers that can be represented as combinations of a given set of integers. There is a simple formula for the Frobenius Number 

for the case of two integers. There are just some special results for the cases of three or more integers, and the general formula has not 

been discovered. In this paper, we study the approximation of Asymptotic behavior using Linear Regression to get a Frobenius Number 

for one existing and a new result. Initially, finding the Frobenius number required a lot of computation, including finding an Apery set. 

Still, we took advantage of the fact that the Frobenius number can be found directly by making a function prediction using the individual 

data of the found Frobenius numbers. The main reason why function prediction in this way can be correct is that the calculation to find 

the Frobenius number involves a non-negative integer combination of the elements of the numerical semigroup, so if we think of it as a 

non-negative integer combination with the coefficients of the integers closest to the function found in Linear Regression, we can get a 

predicted function that is expected to be accurate. The methodology of this study may not be well applied to functions with general real 

numbers. Still, we found that if we analyze discrete values well, we can get a sufficiently predicted function. 
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I. INTRODUCTION

The Frobenius problem is a subject that has been studied 

continuously in number theory for a very long time until the 

present day. This problem is also related to the expression of 

various structures, in that the analysis of a given numerical 

sample group is performed. When there is a set of disjoint 

natural numbers, consider numbers that can be written as their 

nonnegative integral combination. Numbers above a certain 

number can always be expressed at this time. For example, 
thinking about 3 and 4, we see that more than six natural 

numbers can always be expressed. Or thinking about 4, 5, 6, 

and 8, and more numbers can always be expressed. 

Given two mutually prime natural numbers, it is known that 

the Frobenius number is easy to find. However, there is no 

general solution for finding the Frobenius number when given 

three or more mutually prime natural numbers, and the 

Frobenius number of a numerical semigroup of three or more 

mutually prime natural numbers has only been limited to the 

exceptional cases. 

Exact solutions are not generally available in a closed-form 
expression for three coprime positive integers. However, 

significant progress has been made through computational 
methods. For instance, the algorithmic approach for solving 

the Frobenius number problem for three or more integers was 

notably advanced in the early 2000s, when efficient 

algorithms utilizing integer programming techniques were 

developed [1]. Some recent works are on the Frobenius 

number of numerical semigroups for special cases. In [2], the 

authors focus on the Frobenius number generated by the 

following numerical semigroup. �� � ��, ℎ� � 	, ℎ� � 
 � �	, ℎ� � 2
 � �	, . . . , ℎ� � �
 � ��	�. In addition, there are a number of recent related

studies that deal with a set commonly created by a nonnative 

integrator combination of three or more disjoint numbers. The 

statement is not complex, but it is by no means easy from the 

standpoint of problem solving, because the problems have to 

be dealt with not only in finding the Frozenius number itself 

but also various other indicators. In common with the research 
results, a standardized technique was used after obtaining the 

Apery set. However, it can be seen that the pre-processing 

before obtaining the set is still not standardized and very 

diverse [4]-[10]. 

In addition, as an application method of the Provenius 
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problem, research results deal with Covariate, distribution of 

generus, and multiplicity using it [11]-[13]. The p-Frobenius 

number (or the generalized Frobenius number) for a 

numerical semigroup generated by ��, �, . . . , ��   with gcd(��, �, . . . , ��) � 1 is the largest integer that the number 

of solutions of the nonnegative integer combination of  ��, �, . . . , ��   is at most p . Note that the 0 The Frobenius 
number is the classical Frobenius number. Recent research 

results exist on these p-Frobenius numbers, and studies have 

mainly been conducted to define p-Apery sets and p-Normal 

semigroups to obtain p-Frobenius numbers as related 

characteristics or to find p-Frobenius of Affine semigroups.  

Many research results have been conducted on the 

numerical semigroup itself, including theoretical or 

algorithmic techniques to save the numerical semiconductor 

itself, research on numerical semigroup with certain types of 

constraints, research on complexity for the numerical 

semiconductor, and research on various indicators given 

constraints on the concentration of the numerical 
semiconductor [17]-[26]. 

In recent years, there have been many attempts to find the 

algorithmic complexity of the problem of finding the 

Frobenius number. For example, in [27], for the equation 

 ���� � �����. . . � ���� � � (1) 

where � ≥ 0 for all i, and  �� ≤ �� ≤. . . ≤ �� , gcd( ��, ��, . . . , ��)  �  1 , the author 

studies pseudo-polynomial time algorithms when the running 

time is a function of  �� or �� . 
The study on the Frobenius problem for various numerical 

semigroups is still ongoing. For example, for the sequence 

 �� � ∑ �$�%�$&� (� − � %� � �� %, ()* +,+*- . ≥ 2) (2) 

where b ≥ 2  is a positive integer, we call {��, �, . .. } the 

generalized Repunit Numerical Semigroup [28] and the 

Frobenius number for  

 �0(�, 1)  �  �
_1�_1 � 
_2�_2 � ⋯  |
 ≥ 0 ()* �66 . � (3) 

F(�0(�, 1))  

�  
⎩⎪
⎨
⎪⎧(1 − 1)(�� − 1 − �) � �(< �$

�%�

$&�
) .( � < �� − 1

�� − 1 − � � �(< �$
�%�

$&�
) .( � >  �� − 1

 

(4) 

So, the Frobenius number can be characterized to only two 

cases. There are some recent results about Frobenius problems 

that have been unsolved for a long time, which seem to be just 

simple numerical semigroups. For example, in [29], the 

authors solve the Frobenius problem for 

 A �  �a, a � 1, a � 2, . . . , a � �� (5) 
where a, k is a fixed natural number and a > 2. After that, the 

authors in [30] generalized this result to solve the Frobenius 

problem for 

 A(a)  �  �a, ha � d, ha � �d, . . . , ha � ��d� (6) 

with some partial cases for a, h, and � . 
Also, there are results about the Frobenius number 

generated by some binomial coefficients, such as [3]. There 

are two results: the Frobenius number for the numerical 

semigroups generated by triangular and tetrahedral numbers. 

In the Result and Discussion Section, we focus on the 

Frobenius number for the numerical semigroups generated by 

triangular numbers.  

While researching estimating the Frobenius number for the 

above numerical semigroups, we are simultaneously working 

on computing the Frobenius number for numerical 

semigroups that have not yet been studied. In this sequel, we 

are proving the Frobenius numbers for various cases of 
numerical semigroups. If a predictive model can estimate the 

Frobenius number even without proofs, it might be more 

helpful for predictions and provide additional support for our 

proofs. Therefore, we decided to use a similar approach to 

predict the Frobenius number for the numerical semigroups 

we are researching. 

In general, finding a Frobenius number involves some steps. 

First, we search for the smallest integer of sets that can equally 

represent the set formed by nonnegative integer combinations 

of elements of a given numerical semigroup. For a given 

numerical semigroup, we call it the minimal system of 
generators. Finding it has many advantages not only it is 

essentially included in the steps to find the Frobenius number, 

but when we count the elements, we can find that it is infinite 

despite the minimal system of generators can be finite. Once 

we define a reasonable minimal system of generators, we 

define what is called an Apery set. The Apery set of n in S, or 

Ap(S, n), is the set of all the smallest elements of a given 

numerical semigroup that are 0, 1,...,n-1 modulo n, 

respectively. Of course, the number of elements of Ap(S, n) is 

n, and it is known that the Frobenius number is the largest 

integer of Ap(S, n) minus n. 
The process of finding the Frobenius number and other 

parameters such as genus, Pseudo-Frobenius number, type, 

etc. are also important, but we will not discuss it in this paper. 

In the above, in the part of finding the Frobenius number, it is 

especially important to find the Apery set, and the main 

difficulty is to find the shape of this set. Therefore, this paper 

describes how to estimate the Frobenius number without 

finding the Apery set and finding only the minimal system of 

generators. The advantage of this method is that it does not 

need to find the Apery set, and the limitation is that it may be 

difficult to guess the Frobenius number depending on the 

shape of the minimal system of generators. 
Below, we describe the process of finding the Frobenius 

number for a set of two mutually prime natural numbers to 

help readers understand.  

 Let S = {5,7,14}. Then S is a numerical semigroup 

because gcd(5,7,14) = 1. 

 The set generated by no negative integer combination 

of the elements of S is <S> = {5a + 7b + 14c | a, b, c ≥ 

0, and a, b, c are integers}. 

 Since 14c can be replaced by 7(2c), we can rewrite <S> 

= {5a + 7b | a, b ≥ 0, and a, b are integers} and {5, 7} 
is a minimal system of generators of S. 

 To obtain Ap(S, 5), we classify the nonnegative 

integers in <S>. 

 All nonnegative integers congruent to 0 modulo 5 are 0, 

5, 10, … and all numbers are also the element of <S>. 

 All nonnegative integers congruent to 1 modulo 5 are 1, 

6, 11, … and the integers greater than or equal to 21 are 
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elements of <S> because 21 = 3•7 and 21 + 5n = 5n + 

3•7 for any nonnegative integer n. 

 All nonnegative integers congruent to 2 modulo 5 are 2, 

7, 12, … and the integers greater than or equal to 12 are 

the elements of <S> because 12 = 5 + 7 and 12 + 5n = 

5(n+1) + 7 for any nonnegative integer n.  

 All nonnegative integers congruent to 3 modulo 5 are 3, 

8, 13, … and the integers greater than or equal to 28 are 

the elements of <S> because 28 = 4•7 and 28 + 5n = 5n 

+ 4•7 for any nonnegative integer n. 

 All nonnegative integers congruent to 4 modulo 5 are 4, 

9, 14, … and the integers greater than or equal to 14 are 

the elements of <S> because 14 = 2•7 and 14 + 5n = 5n 

+ 2•7 for any nonnegative integer n. 

 Therefore we can conclude that the Apery set of 5 in S 

is Ap(S, 5) = {0, 21, 12, 28, 14} and the Frobenius 

number for S is F(S) = max(Ap(S, 5)) – 5 = 28 – 5 = 23. 

In this paper, we describe the method to get a formula for 

Frobenius number by estimating the asymptotic property of 

the Frobenius number using Linear regression. We introduce 

two numerical semigroups, one where the method of this 
paper applies well, and the other where the method of this 

paper does not apply well. The first one is 

 �� � � BC� D, BC D, . . . , E CC%�F � (7) 
where p is an odd prime number. And the second one is 

 � � � B�G� D, B�G D, . . . � (8) 
where n is any integer greater than 1. 

The first case, ��, by the well-known formula B��D � B ��%�D, �� can be replaced by 

 �� � � BC� D, BC D, . . . , ECC F � (9) 
and we can observe that BC� D  �  2H, BC D  �  H(2H − 1) and 

for any positive integer k less than p, BC� D is a multiple of p 

because k! does not divided by p. Therefore BC� D  is a 

nonnegative integer combination of BC� D, �1	 BC D  and we 

can conclude that a minimal system of generators is {pBC� D �
I BC D � * ECC F | p. q. r  are nonnegative integers  } and we 

denote the set <��>. 

The second case, �, we can rewrite: < � > 
� �H S1 � 12 T � I S1 � 22 T
� * S1 � 32 T |H. I. *  �*+ 1)11+V��.,+ .1�+V+*W� 

(10) 

because of the minimal system of generators of �. This paper 

[3] already provides the formula for the Frobenius number for �, but we assume that we do not know this formula. Instead, 

we only know the Frobenius numbers for several individual 

natural numbers. We will use linear regression to estimate the 

Frobenius number in general cases. 

II. MATERIALS AND METHOD 

The first case, �� � � BC� D, BC D, . . . , E CC%�F �, we compute 

the Frobenius number for all the prime numbers less than 

10,000. To obtain the general formula, we use the Linear 

Regression. In this study, we use the “pandas” library of the 

Python program, which can compute the constant and the 

linear coefficient. Because the exact Frobenius number is so 

large to compute, we pre-process the data to log-scale and we 

analyze them.   

After completing the log-scale approximation, we 

exponentiated the generated function using linear regression 

to estimate the Frobenius number. From this, we made an 

estimation about the coefficient of the largest element in the 
nonnegative integer combination of the minimal system of 

generators, which represents the Frobenius number. 

Fortunately, computing the coefficient of the second 

element of the minimal system of generators is so easy 

because this value is completely dependent to the Frobenius 

number and the coefficient of the largest element of the 

minimal system of generators.  

For the second case � � �B�G� D, B�G D, . . . �, we compute  

the Frobenius number for all natural numbers 3 ≤ n ≤ 1002. 

After that, from the computed data, we estimate the Frobenius 

number for general n using the Linear Regression. In the 

process, we found that the data was split into two distinct 

functions, which were not predicted by a simple linear 

regression, but fortunately, both were defined as polynomial 

functions that depended on the remainder of n divided by 2, 

so it wasn't too difficult to solve the problem as long as we 
classified them correctly. 

III. RESULTS AND DISCUSSION 

The following Fig. 1 shows the estimation of the log of the 

Frobenius number for  

 �� � � BC� D, BC D, . . . , ECC F � (11) 

using the Linear Regression for each odd prime p < 10000. 
 

 
Fig. 1  Estimation of the log of Frobenius number for XY for odd primes. 

The estimated linear function is 

 f(x)  � 2.783 �  1.386x (12) 
with the Regression Score 0.9999999961656982. Therefore, 

we can estimate that the Frobenius number is +._`aG�.a`bC c16.17 • +�.a`bC for any sufficiently large prime number p.  

By the following Asymptotic behavior of ln ECC F 
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 limg→i
jkElmm F

C � 2ln2 (13) 

and 2ln2 c  1.386, we can estimate that 

 F(��) � Ω(ECC F). (14) 

To obtain the exact coefficient for ECC F  of F( �� ), we 

compute the integer.  

 
 � o��(� ∶ q(��) −  � ECC F  >  0) (15) 

for each odd prime p < 1000. After that, we estimate 
 using 

the Linear Regression. 

 
Fig. 2  Estimation of rs for odd primes 

 

The estimated linear function is 

 f(x)  �  −0.999 �  x (16) 

with the Regression score 1.0. Therefore, we can conclude 

that t �  p − 1 for any sufficiently large prime p and we have: 

F(��)=max(Ap(S, BC� D) −  BC� D =� BC D � (H −
1) ECC F −  BC� D 

(17) 

and the last part is obtaining b, because:  

 b �  u(vw)%(C%�)Elmm F G Blmw D
Blml D   (18) 

we compute the value b for odd primes p < 1000 and all values 

of b is 1. Therefore, we conclude that: 

 F(��) = BC D � (H − 1) ECC F − BC� D (19) 

and it is equal to 

 H(2H − 3) � (H − 1) ECC F (20) 

for any sufficiently large p.  

 

The following Fig. 3 shows the estimation of the Frobenius 
number for  

 � � � B�G� D, B�G D, . . . � (21) 
using the Linear Regression. 

 
Fig. 3  Estimation of the Frobenius number for Xs for natural numbers greater 

than or equal to 3. 

 

The estimated function is 

 f(x) = -786.381 + 11.886x + 1.841xs � y. z{yx| (22) 

with the Regression score 0.9999993782505251. This 

prediction is better than the prediction made using linear 

regression with a linear or quadratic function. Because the 1st 

and 2nd degree of f(x) do not seem to be clear to estimate the 

exact formula, we set. 

 g(n)  �  F(�) −  a
} 1a (23) 

and use the Linear Regression again. 

Fig. 4 shows the g(x) estimation using the Linear 

Regression. 

 

Fig. 4  Estimation of the Frobenius number for Xs - 
|
~ x| for natural numbers 

greater than or equal to 3. 

 

Fig. 4 shows that g(x) cannot be estimated exactly because 
g(x) splits into two distinct functions. Fortunately, we can 

observe that the real values of g(x) have a pattern in which 

these values depend on the value of x modulo 2, as shown in 

Figs. 5 and 6. 
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Fig. 5 Estimation of the Frobenius number for Xs  - 
|
~ x|  for natural even 

numbers greater than or equal to 3. 

 

 
Fig. 6 Estimation of the Frobenius number for Xs  - 

|
~ x|  for natural odd 

numbers greater than or equal to 3. 

 
As in Fig. 5 and Fig. 6, we can estimate g(n) as 

 g(n)  �  � −2.5 − 0.751 � 1.51 .( 1 .W )		−1 �  1.51 �  2.251 .( 1 .W +,+1 (24) 

with both of the regression scores are exactly 1.0. Therefore, 

we can conclude that: 

F(S1 � 12 T , S1 � 22 T , . . . )  
�  

⎩⎨
⎧31a � 61 − 31 − 104   .( 1 .W )		

31a � 91 � 61 − 44  .( 1 .W +,+1  

(25) 

using F(B�G� D, B�G D, . . . )  �  g(n)  � a
} 1a . This is exactly 

the same as the result of [3]. 

IV. CONCLUSION 

As mentioned above, the Apery set provides much 

information about the numerical semigroup, including the 
Frobenius number. Still, the process of finding it requires a 

large amount of computation to account for all the 

incongruent elements for modulo n. If the shape of the 

numerical semigroup is complex, it becomes intractable even 

for computers. On the other hand, since the Frobenius number 

is in most cases determined by some function of n 

independent of modulo n, it was possible to approach the 

problem by making a function prediction, given enough data 

on individual Frobenius numbers. While these Frobenius 

numbers are estimates only, and need to be proved for clarity, 

it is safe to say that given the fact that the Frobenius number 

is a nonnegative integer combination of each element of a 

minimal system of generators, i.e., the sum over a discrete 
number of products, predicting the Frobenius number via 

linear regression will in effect give the correct answer to the 

Frobenius number. 

A good topic for future research would be to create models 

that use data science techniques to predict computationally 

complex sets, such as the Apery set, which is at the core of the 

Frobenius problem. As mentioned above, this requires a lot 

more thought, as it requires ensuring that the numbers 

obtained are the smallest number represented by a 

combination of nonnegative integers, each congruent to a 

specific value for modulo n, rather than simply predicting a 
function. Still, it is expected that an accurate prediction model 

for the Apery set will be able to provide a solution to the 

Frobenius problem in most cases. Proof would still be 

required, but knowing and proving an almost exact answer 

would make the research much easier for the mathematician 

and would be a very nice tool to have. 
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