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Abstract—Recent research and studies show widespread interest in semiparametric regression model analysis, which combines 

parametric and nonparametric components. This interest is because it gives accurate and effective statistical model estimates. This 

paper proposes to improve estimates of semiparametric regression models using opposition-based learning technology on the Golden 

Jackal Optimization (GJO) algorithm to increase the accuracy of these models, accelerate convergence, and expand the exploration 

area. The effectiveness of using this algorithm was evaluated by comparing it with the original algorithm before optimization and the 

most commonly used methods for estimating the model statistically, such as CV and GCV. Using simulation, the results showed that 

the improvement in the OBL-GJO algorithm in terms of accuracy and convergence speed outperformed the original algorithm and 

traditional methods by a large margin in calculating the simulation results of the kernel semiparametric regression models. We strongly 

advocate for applying the GJO algorithm across various domains within machine learning, particularly in the realms of deep learning 

and reinforcement learning. Furthermore, we have employed enhanced and evolved algorithms to optimize semiparametric regression 

models effectively. To address the challenges encountered by any algorithm operating within a vast search landscape, we suggest an in-

depth exploration of optimization techniques and integrating diverse algorithms, which could lead to more robust and efficient solutions. 
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I. INTRODUCTION

The modeling phenomenon is one of the main objectives in 
studying various problems or phenomena, including 
economic, engineering, medical, and other areas. It involves 
finding a mathematical model that serves as a primary means 
to understand these phenomena' patterns and behaviors, and 
analyze their data [1]. In some cases, particularly with 
economic phenomena, the model that describes the situation 
does not meet the assumptions of a parametric model, leading 
to inconsistencies. Consequently, the functional form of the 
phenomenon remains undetermined without adequate 
knowledge about the subject under study [2]. There are 
numerous reasons, such as conducting an experiment for the 
first time, being unable to ascertain the causal relationships 
between variables, or failing to fully explain the relationship 
between the response variable and the explanatory variables. 
Non-parametric models, while offering high flexibility, face 
challenges associated with the curse of dimensionality [3]. 

The curse of dimensionality is a common issue in 
nonparametric models, which becomes apparent as the 
number of dimensions (variables) in the data significantly 
increases, resulting in difficulties in analysis and 
interpretation [4]. Estimates in nonparametric models rely on 
the available data without imposing strong assumptions about 
the relationship between variables, making them sensitive to 
rising dimensions. This sensitivity leads to various problems 
in analysis and modeling [5].  

Here, semiparametric regression models emerged, 
combining the characteristics of parametric and 
nonparametric regression models. This model is considered 
one of the hybrid models, as it integrates both types. It 
encompasses all the positive features of the previous two 
models. In this paper, we estimated the regression function of 
the kernel semiparametric model using two methods (the 
smoothing matrix method and a different approach) [6]. 

The most common statistical methods used to evaluate 
model performance and enhance accuracy include the CV and 
GCV methods. Additionally, it incorporates the most 
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effective algorithms currently applied in optimization (the 
Golden Jackal Improvement algorithm) [7], [8]. It employs 
opposition learning technology, utilizing opposition-based 
learning within the Golden Jackal Improvement algorithm to 
improve the kernel parameter selection in the semi-parametric 
model [9]. Consequently, it addresses statistical problems and 
identifies optimal opportunities to enhance results, which is 
evident when comparing the simulation results and 
elucidating them in Economic Data (Money Supply) [10].  

The most important references on parametric and 
nonparametric regression models have been included in [11], 
[12], as well as a detailed explanation of the estimators of 
those models. Another study by [13] has proposed a new way 
to find missing data (semiparametric data). AI is used to 
bandwidth in the kernel method and applied in simulation and 
real data. The results demonstrated that calculating random 
semiparametric regression is better than the current 
deterministic semiparametric regression regarding efficiency 
and effectiveness. The simulation results indicate that the 
estimator is superior to many designs, and this estimator is 
consistent and natural without convergence [14]. A 
cumulative incidence function model with missing and 
variable values has been proposed by [15]. The study has 
introduced a new class of generalized semiparametric 
regression models for CIF based on the missing variable 
distribution estimator and linear regression model. The study 
has used simulations to compare the results and then applied 
the models based on real data of patients with myelogenous 
leukemia [16]. 

A previous study by [17] has employed the semiparametric 
mixed effects model through longitudinal data analysis. The 
kernel approach was used to estimate the nonparametric 
function, and the weighted least squares method was utilized 
to estimate the regression coefficients. They discovered that 
the back-fitting procedure frequently produces additional bias 
and contrast. An iterative technique is used to estimate the 
variance function to enhance efficiency. The study employed 
the bat algorithm in a different space when determining the 
homogeneity coefficient for semiparametric regression 
models. The results have shown that the technique based on 
optimal values of the homogeneity coefficient was more 
accurate than other comparison methods, including CV and 
GCV [18].  

Considering the revolution of improving efficiency and 
performance and developing data modeling and analysis 
concepts to reach the best and most accurate results. It 
improves quality and facilitates integration between systems 
to reduce redundancy and build on them in making future 
decisions for institutions and countries. Significantly, the 
economic and financial aspects need good results to be built 
upon [19]. Especially in the absence of complete knowledge 
of the behavior of these variables in those data, it is impossible 
to determine the causal or behavioral relationship that links all 
these variables. It leads to problems in choosing the 
appropriate model for the phenomenon. Estimates of 
inaccurate parameters, such as assuming a linear relationship 
between variables and neglecting the effect of nonlinear 
variables, are made. Complexity in processing and large time 
consumption results from the multiplicity of variables and the 
magnitude of data in an ample research space [20]. The above 
and other complications lead to apparent problems in the 

accuracy of description and prediction of future values. This 
is reflected in the analysis of financial statements when using 
traditional estimation methods. 

II. MATERIALS AND METHOD 

A. Semiparametric Regression Models  

Semiparametric regression models have gained interest in 
advanced statistical analyses to obtain highly efficient 
estimators [21]. They combine rigorous parametric regression 
models with highly flexible parametric regression models. 
The partial linear regression model (PLRM) is a standard 
parametric regression model where the relationship between 
parametric and nonparametric parts is displayed [22]. 
Robinson [23] proposed the PLRM model. The general form 
of the semiparametric regression model is: 

 �� = ∑ ����� + 	(��) + 
�����      , � = 1,2,3 … , � (1) 

whereas, �: represents the response variable vector or dependent 
variable and is of the degree n × 1. � : represents a matrix of explanatory variables of the degree 
(n×(p+1)). �     : Represents the vector of unknown features to be estimated 
in degrees ((p + 1) ×1).  
 : is a vector of random errors of degree n × 1 and is 
independent with mean 0 and variance ��.  ��    Continuous variable that expresses the nonparametric 
variable in dimensions (nx1). 

The model described in the previous equation in matrix 
form is: 

 � = �β + g +  ε (2) 

where: Zβ : The parametric part of the model under study. g: An indefinite prime function of the variable (u) of degree 
(nx1), which represents the nonparametric part of the model 
[24]. 

B. Parameters of the Parametric Part 

We estimated the parameters of the parametric model using 
the least squares method, the mathematical formula of which 
is as follows [25]. 

 �� = �� + ∑ ����� + 
�����      , � = 1,2,3 … , �  (3) 

The multiple linear regression model is commonly used to 
study the effect of numerous explanatory variables on the 
response variable, and its mathematical formula. It consists of 
(p) explanatory variables, (p + 1) parameters, and (n) 
observations. Using the matrix method, the formula is: 

 � = �� + 
 (4) 

Its parameters are estimated using the least squares (OLS) 
method, and their formulas are: 

 � !"# = (�$�)%��$� (5) 

Then, we estimate the parameters of the nonparametric model 
using the smoothing matrix method [26]. 

We also utilized a semi-parametric regression model 
(Kernel smoother). The kernel semi-parametric regression 
model is one of the most essential methods to estimate the 
nonlinear component in semi-parametric models by 
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employing a kernel function (Kernel smoother) or, in other 
words, by altering the data representation [27].  

�: X = (x�, x�, … , x)) → Z= +z� = �(x�), z�= �(x�), . . . , z) = �(x)).   (6) 

Two kernel functions were used : 
Polynomial kernel functions 

 /(0, �) = 10$� + 123 (7) 

Gaussian radial basis kernel functions 

 /(0, �) = 45�+%‖5%7‖8.�98  (8) 

The semi-parametric regression model is defined as 
follows: 

Polynomial: 

 � = �� + 10$� + 123 + : (9) 

Gaussian radial basis: 

 � = �� + :0;(−‖0 − �‖�/2>�) + : (10) 
C. Cross-Validation and Generalized Cross-Validation 

Method 

It is a technique widely used in machine learning and 
statistics to evaluate the performance of a predictive model. It 
helps estimate how well the model performs on unobserved 
data [28], [29]. Below are the detailed rules of the cross-
validation method: 

1) Data partitioning: The data set is divided into two 
parts: a training set and a test set. 

2) K-Fold Cross Validation: The data set is divided into 
subsets (segments) of approximately equal size K clusters. 

3) Training and testing iterations: The cross-validation 
process consists of K iterations. 

4) Performance metrics: Performance metrics such as 
accuracy or mean squared error (MSE) are calculated for each 
iteration. 

5) K-Fold cross-validation frequency: Steps 3 and 4 are 
repeated K times, each time using a different group as the test 
set. 

6) Evaluation: The performance metrics obtained in each 
iteration are averaged to find a single estimate of the model's 
performance.  

7) Parameter setting: Cross-validation is also used to 
tune hyperparameters. 

8) Final model: After cross-validation, the final model 
can be trained on the entire dataset using the best-performing 
hyperparameters and evaluated on an utterly unseen dataset to 
estimate its performance in real-world scenarios. 

The detailed rules of the GCV Method are as follows [30]: 

1) Split data: The dataset is divided into a training group 
and a test set. 

2) Model training: The model is trained in the training 
group. 

3) Performance evaluation: The test group evaluates the 
model's performance and calculates predictive errors. 

4) Generalized Cross-Validation Calculation: The GCV 
value is calculated, which reflects the model's accuracy in 
predicting new data. 

5) Evaluation: A GCV score provides an estimate of 
model performance. A low GCV score indicates better data 
fits with good generalization of invisible data. 

6) Choose the optimal model: Choose the model that 
reduces the GCV score, as the lower value indicates the best 
model. 

7) Parameter adjustment: Generalized Cross-Validation 
is also used to adjust superparameters. 

8) Final model: After the Generalized cross-validation 
process, the final model can be trained over the entire dataset 
using the best-performing superparameters and evaluated on 
an utterly invisible dataset to estimate its performance in real-
world scenarios. 

D. Improving Kernel Semi-parametric Model by 

Opposition-based Learning in Golden Jackal 

Optimization Algorithm 

To enhance the procedure for choosing the kernel 
parameter in the parametric model, this technique aims to 
employ opposition-based learning in the initial community 
formation of the Golden Jackal Improvement algorithm.  Here 
are some of the most fundamental ideas that this algorithm 
addressed [31]: 

 GJO algorithm, which stands for Golden Jackal 
Optimization. 

 O-BL stands for Opposition-Based Learning.  
 Make use of OBL in the OGJO Algorithm with the 

help of optimization 
A cooperative hunting strategy the Golden Jackal (Canis 

aureus) used inspired GJO [32]. An Improvement Method for 
Golden Jackals (GJO). Prey search, confinement, and pounce 
are mathematically modeled and implemented in three basic 
steps. The suggested algorithm's performance on modular 
functions is evaluated in contrast to state-of-the-art heuristics. 
The first step in solving an optimization problem with GJO is 
to initialize a set of possible solutions. A vector of values 
encoding the parameters or variables of each potential 
solution is used. At the first stage of the algorithm, called the 
"exploration phase", candidate solutions are evaluated based 
on their efficiency or function goal. The most suitable 
solutions are retained, while the less suitable ones are 
eliminated. The exploration phase is followed by the 
"exploitation phase", where retained solutions are used to 
direct the search toward better solutions. This stage is inspired 
by the Golden Jackal's tactic of working together to hunt prey. 
At this point, the retained solutions act as mentors or leaders, 
pulling other candidate solutions towards them. GJO has been 
proven effective in solving a wide range of optimization 
issues, including those that are nonlinear and polynomial. It is 
characterized by its ability to adapt to various optimization 
problems, and its performance has been positively compared 
to other common optimization algorithms such as ant colony 
algorithms and particle swarm optimization [33]. It can 
provide an understanding of the cooperative hunting behavior 
and strategies of the golden jackal in nature. This algorithm 
simulates foraging behaviors, infiltration, and surrounding 
prey to capture, helping to update the jackal's location and 

480



improve solutions. GJO represents one solution inspired by 
golden jackal hunting tactics that have applications in various 
fields, such as robotics and artificial intelligence. In the 
beginning, community members are randomly selected and 
prepared according to the minimum and upper limit of the 
problem according to equation (11): 

 �� = ? + @A�B ∗ (D − ?) (11) 
where L and U represent the lower and upper boundaries of 
the lookup area, and rand refers to a random number defined 
by the interval [0,1]. In the equation below, the prey matrix is 
produced at this stage, and two of its elements are selected as 
the fittest jackal pair. 

  ;@:� = E   ��,���,�⋮�G,�
   ��,���,�⋮�H,�

……   …  ��,I��,J⋮�G,J
      K (12) 

where the elementary solution, denoted as Z_(i,j), is the j^th. 
With d representing the number of variables and i^th 
representing the number of prey, the total number of prey is 
denoted by n.  where the placement of the prey serves as an 
indicator of the solution parameters. The next phase is 
discovery, or the hunt for food.  The GJO exploration strategy 
is now being proposed. Jackals are naturally good hunters; yet 
they seldom hunt because their prey is difficult to catch and 
escape from. Once they have encircled their prey, they leap 
on top of it to devour it. The following is the mathematical 
expression of this hunting activity, including a male and 
female jackal [34]. 

 �� (L) = �M (L) − N. ⌈�M(L) − @P ∗ ;@:�(L)⌉ (13) 

 �� (L) = �RM (L) − N. ⌈�RM(L) − @P ∗ ;@:�(L)⌉ (14) 

The goal of rl is included in the formula.  (1), (2), and (3).  
The goal is to generate irrational behavior during exploitation, 
emphasizing discovery and avoiding the readily available 
local optimal solution. Prey evasion energy is represented by 
E. Finally, the following is how the new Golden Jackal 
update's location is determined: 

 �(L + 1) = ST(U)VS8(U)�  (15) 

After the prey is located, the jackal pairs encircle or pounce 
on it, depending on the situation. At this point, the victim's 
ability to flee is compromised due to the jackal's harassment.  
They pounce on their target after encirclement and devour it.  
Mathematically, this hunting behavior looks like this: 

  �� (L) = �M (L) − N. ⌈@P. �M(L) − ;@:�(L)⌉ (16) 

 �� (L) = �RM (L) − N. ⌈@P. �RM(L) − ;@:�(L)⌉ (17) 

E. Opposition-Based Learning (O-BL) 

When applied to complicated situations, especially those 
involving research and improvement, the concept of O-BL 
was presented as a new technology that might speed up the 
convergence of evolutionary approaches. The sudden and 
dramatic changes in social progress serve as inspiration.  
Crucial to this iteration's operation is that, similar to initial 
population preparation, each particle or potential optimization 
problem solution can be constructed in one of two ways: by 
incorporating data collected throughout algorithm 
development or by making basic random guesses [35]. In the 
second stage, increasing the convergence speed can likely be 
achieved by initially and iteratively producing an inverse 

point for each potential solution.  According to O-BL, a more 
transparent method of determining the optimal value may be 
to investigate both the forward and backward directions of the 
initial candidate solution. Consequently, the essential concept 
is the inverse of a number; for instance, given a set of 
solutions to a problem, we can find the inverse of each of 
those solutions. This can hasten the search for ideal solutions 
and enhance performance.  This is where the inverse of any 
given real value Z ∈ [L,U] may be found using the following. 

    �̅ = ? + D − � (18) 

where the real position vector Z∈R^n is opposed to the 
imaginary position vector Z ̅∈R^n. Another step-in 
optimization is comparing the fitness functions of the two 
solutions; the better ones are saved, and the worst ones are 
removed.  As an illustration, Z is preserved if F(Z) is smaller 
than F(Z ̅) (to zoom out), while Z ̅ is preserved if F(Z) is larger 
than F(Z ̅). 

F. Combination of OBL and GJO Algorithms 

In this section, the suggested OGJO is shown as an 
amalgam of GJO algorithm features and OBL technology that 
improves the accuracy of the ideal answer by expanding the 
scope of study. Due to its many flaws, OBL improves the GJO 
approach. These flaws include slow convergence, a tendency 
to settle for adjacent answers, a lack of investigation of the 
study region, and an inefficient use of time. Avoiding these 
problems is the goal of the suggested method, which covers 
the study area by considering the two possible outcomes of 
the computed point, which entails contradictory values. This 
enhancement enhances the probability of using optimal 
solutions in half the time. There are two phases to executing 
the suggested plan of action.  
G. Optimization in Kernel Semiparametric Model  

The superparameters associated with the type of kernel 
have a direct impact on improving the solution of the target 
function. The performance of the kernel function depends 
heavily on the choice of these superparameters, but no 
mathematical methods are available to determine their exact 
values. Thus, the research on the parametric regression model 
of the nucleus depends heavily on selecting these 
superparameters. While the CV and GCV methods, as these 
are the most common techniques used in literature to 
determine these parameters, are time-consuming. Optimized 
algorithms are used in computing, resulting in more 
appropriate performance than any algorithm alone [36]. One 
such algorithm is OGJO (see the diagram in Fig. 1), which can 
overcome local optimal solutions and share features into a 
compromise between exploration and exploitation, delaying 
the beginning of each algorithm's convergence, and 
preventing falling into the local optimal level. To improve the 
performance characteristics of the proposed algorithm and 
obtain faster convergence to escape from local optimization, 
which enhances the exploration and exploitation of the GJO 
algorithm, making it more effective. This efficiently helps to 
find the most essential superparameter values related to the 
semiparametric kernel model with high prediction 
performance. A flowchart to optimize the algorithm used for 
the kernel semiparametric model is displayed (see Fig. 2) as 
follows: 
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Fig. 1  OGJO algorithm diagram 

 

 
Fig. 2  Semi-parametric kernel model using the OGJO 

 

 Twenty-five Golden Jackals were allocated, and a 
maximum of t = 500 repetitions were planned. 

 Golden Jackal exhibitions were developed through the 
concept of opposition learning.  

 For each of the two groups, in the first iteration, the best 
and second (male and female Golden Jackal) are 
calculated between the set of elements and the 
corresponding elements. 

 Male and female Golden Jackals are placed in their 
positions randomly. The superparameter Y (the 
parameter of the kernel function) is represented by 
Golden Jackal position. Golden Jackal starts randomly 
and is selected from the normal distribution within the 
interval. 

 Calculate �̅ for each superparameter using equation 
(18).  

 The fitness function is defined as follows: 

 Z�L�:[[ = ∑ (7\%7]\)8\̂_T H    (19) 

 Locations are updated using equations (13), (14).  
 8. Repeat steps 3,4 and 5 to get to L3`5 . 

III. RESULTS AND DISCUSSION  

This is in line with the study's objective. Both simulation 
experiments and the application of models using near-real 
data provide evidence of the validity of theoretical 
assumptions. These results emphasize the importance of 
choosing the appropriate estimation method when dealing 
with real data. 

A. Simulation Result 

Many experiments are designed and simulated using one of 
the statistical programming languages R(Ver.4.0.3) to 
generate and process data statistically, The effect of sample 
size was taken into account on the estimators under study, 
where three different sizes of samples n (50,100,200) were 
used, and to reduce the variation in the generation of 
simulation data, the experiment was repeated (1000) times, 
Comparisons were made for the different methods used CV 
and GCV with Golden Jackal optimization algorithm and the 
proposed algorithm OGJO using the Gaussian Radial basis 
function and the Polynomial function as the kernel functions, 
with four different models being studied. 

1) First model: This model was generated according to 
the following regression equation parameters: � =(−1.5,3,2, −5,4)$ The values of the variable (��) of the 
nonparametric component is generated according to the 
uniform distribution and within the interval � ∈ 10,1.52 which 
can be used to find the nonparametric function according to 
the following equation: 

 g (��) = exp+sin(5��) + i��j   .  

In addition to the distribution of errors 
� ~lH(0, >m�)   , >� = 0.64   ,  o�� = exp (−3ا� − pا) 

2) Second model: In this model, we use the regression 
equation parameters.  � = (−1, −1,2,3, −5,4)$ The values of the variable (��) 
of the nonparametric component is generated according to the 
uniform distribution, within the interval � ∈ 1−9,92, which 
can be used to find the nonparametric function according to 
the following formula: 

  	 (�) = �r s∅(�; −7,1.44) + ∅(�; −3.5,1) + ∅(�; 0,0.64)+∅(�; 3.5,0.36) + ∅(�; 7,0.16) w  
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As for the distribution of errors, 
� ~lH(0, >m�) ,  >� = 4    ,    o�� =  ( �H )ا�%�ا    

3) Third model: This model was generated according to 
the following equation parameters ]: � = (1.5,2,3, −5,4)$  
Also, the values of the variable (��) of the nonparametric 
component was generated according to the formula, xy =(y%z.{)| ,within the interval � ∈ 1−9,92 which can be used to 

find the nonparametric function according to the following 
formula: 

 g (��) = i��  (1 − ��) sin } �.�~�\V�.�r�  
As for the distribution of errors, it is as follows 
� ~lH(0, >�),  >� = 0.01    
4) Fourth model: This model was generated according to 

the following equation parameters. 

 � = (1, −1,2,3 − 5,4)$  
Also, the values of the variable (��)  of the nonparametric 

component were generated according to the uniform 
distribution, within the interval � ∈ 10,12,which can be used 
to find the nonparametric function according to the following 
formula: 

 g (��) = sin(2 ��) cos (5��)  

As for the distribution of errors, it is as follows   
� ~l�(0, >m�), >� = 0.09,  o�� = �ا;9:0−)  − pا) 

B. Application of Mean Absolute Percentage Error 

The comparison between the above estimation methods 
and the statement of the best estimator is made using MAPE 
(Mean Absolute Percentage Error), in the following formula: 

 ��YN = 100 �H ∑ 7\%7 �7\H���  (20) 

The results were shown using the Gaussian Radial basis 
function with four models.  

TABLE I 
MAPE VALUE FOR THE USED METHODS OF THE FIRST MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000183 0.000162 0.000152 0.000132 
GCV 0.000180 0.000159 0.000149 0.000129 
GJO 0.000155 0.000133 0.000124 0.000103 
OGJO 0.000148 0.000127 0.000117 0.000097 

TABLE II 
MAPE VALUE FOR THE USED METHODS  OF THE SECOND MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000280 0.000258 0.000248 0.000228 
GCV 0.000271 0.000250 0.000239 0.000219 
GJO 0.000245 0.000224 0.000214 0.000193 
OGJO 0.000243 0.000222 0.000212 0.000191 

TABLE III 
MAPE VALUE FOR THE USED METHODS OF THE THIRD MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000382 0.000361 0.000351 0.000331 
GCV 0.000373 0.000352 0.000342 0.000322 
GJO 0.000347 0.000327 0.000317 0.000296 
OGJO 0.000345 0.000324 0.000314 0.000294 

 

TABLE IV 
MAPE VALUE FOR THE USED METHODS  OF THE FOURTH MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000369 0.000348 0.000338 0.000317 
GCV 0.000360 0.000339 0.000329 0.000308 
GJO 0.000334 0.000313 0.000303 0.000283 
OGJO 0.000332 0.000311 0.000301 0.000281 

C. Application of Polynomial Kernel Semiparametric Model 

And also, other results shown by using the Polynomial 
kernel semiparametric function with the same four models.  

TABLE V 
MAPE VALUE FOR THE USED METHODS  OF THE FIRST MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000197 0.000176 0.000166 0.000145 
GCV 0.000193 0.000172 0.000162 0.000142 
GJO 0.000168 0.000147 0.000137 0.000116 
OGJO 0.000161 0.000140 0.000130 0.000110 

TABLE VI 
MAPE VALUE FOR THE USED METHODS  OF THE SECOND MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000293 0.000272 0.000262 0.000241 
GCV 0.000284 0.000263 0.000253 0.000232 
GJO 0.000259 0.000237 0.000227 0.000207 
OGJO 0.000256 0.000235 0.000225 0.000205 

TABLE VII 
MAPE VALUE FOR THE USED METHODS  OF THE THIRD MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000395 0.000374 0.000364 0.000344 
GCV 0.000386 0.000365 0.000355 0.000335 
GJO 0.000360 0.000340 0.000330 0.000310 
OGJO 0.000359 0.000338 0.000328 0.000307 

TABLE VIII 
MAPE VALUE FOR THE USED METHODS OF THE FOURTH MODEL 

Method n=30 n=100 n=200 n=500 

CV 0.000382 0.000361 0.000351 0.000331 
GCV 0.000373 0.000352 0.000342 0.000322 
GJO 0.000347 0.000327 0.000317 0.000296 
OGJO 0.000345 0.000324 0.000314 0.000294 

 
The results showed that the OGJO method is superior to the 

other traditional methods (GCV, CV) and the algorithm 
before improving GJO optimization in the MAPE. By the 
sample size, we notice that the value of MAPE decreases as 
the sample size increases, while the preference remains for 
our OGJO proposed algorithm in all tables.  

IV. CONCLUSION 

In conclusion, the proposed Opposition-Based Learning in 
Golden Jackal Optimization Algorithm (OGJO) works better 
than the Golden Jackal Algorithm. The optimization 
algorithm (OGJO) reduces the calculation time required for 
estimation compared to other methods, such as CV and GCV. 
OGJO explores the search space more effectively than other 
CV and GCV measurement methods. The proposed algorithm 
has the potential to enhance the applicability of parametric 
kernel models in various applications, including finance, 
economics, engineering, and medicine. The GCV method 
achieved better results in estimating the smoothing matrix of 
parameters compared with the CV method and for all models 
adopted in the simulation. We recommend applying the 
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algorithm (GJO) in other areas of machine learning, such as 
deep learning and reinforcement learning. Also, improved and 
developed algorithms were used to optimize semiparametric 
regression models. To overcome the problems experienced by 
any algorithm in an extensive search area, we recommend 
researching the optimization and integration of algorithms. 
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