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Abstract— This paper presents FFNet-S, a lightweight crowd counting model built on the simple and efficient architecture of FFNet, 

but enhanced via knowledge distillation (KD). The student model employs MobileNetV3 as the backbone with preservation of the multi-

scale feature fusion structure of FFNet. To guide the student effectively, a composite distillation loss is introduced. This combines soft 

target regression, intermediate feature alignment, and attention transfer. A two-stage training strategy is adopted. Initial training on 

the ground truth ensures stable convergence. Next, gradual incorporation of distillation losses enhance performance. Experiments on 

benchmark datasets, including the ShanghaiTech Part A (SHA) and Part B (SHB), show that FFNet-S is over 90% smaller than the 

teacher model, but the accuracy is comparable. Moreover, FFNet-S makes inferences in real time, rendering it suitable for deployment 

on edge devices with limited computational resources. The proposed approach shows that a carefully designed KD framework enables 

compact models to exhibit the capacities of larger more complex networks without a significant loss of accuracy. Balancing of speed, 

accuracy, and efficiency renders FFNet-S very applicable in real-world scenarios such as surveillance systems, drones, and Internet of 

Things platforms. We present a practical and scalable solution for efficient crowd counting. This encourages further exploration of 

lightweight models for computer vision tasks when resources are constrained. 
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I. INTRODUCTION

Crowd counting using computer vision has become very 

important in terms of surveillance and public safety. This 

enables real-time monitoring and management of crowd 

densities. Traditional approaches to crowd counting can be 
classified into detection- and regression-based methods, 

including density map estimation and point regression [1]. In 

recent years, increasingly complex deep neural networks, 

such as multi-column CNNs, attention mechanisms, and 

transformer-based models, have been introduced, leading to 

significant improvements in counting accuracy. However, 

such models are often complex and have high computational 

costs. 

The Fuss-Free Network (FFNet), which aims to address 

these issues, features simple yet effective architecture 

consisting of only a backbone and a multi-scale feature fusion 
module [2]. Despite the simple design, FFNet performs 

comparably to more complex models, demonstrating that 

simplicity and efficiency are not mutually exclusive. 

Recently, as the need to deploy crowd counting models on 

resource-constrained devices such as CCTV cameras, drones, 

and Internet of Things (IoT) sensors have grown, model 

compression and acceleration have become increasingly 

important. Knowledge distillation (KD) compacts models by 

transferring knowledge from a large teacher to a smaller 

student. KD was first introduced by Hinton et al [3] and 

guides the student using softened teacher outputs (soft targets) 

[3], [4]. Since then, KD has been refined to include 
intermediate feature alignment, attention map imitation, and 

self-distillation [5], [6]. 

KD-based models have demonstrated promising results in 

crowd counting. Some student models that use only about    6% 

of the teacher model parameters are as accurate as, or more 

exact than, the whole model [7]. For example, Wang et al. [8], 

[9] proposed the dual knowledge distillation (DKD)

framework that mitigates teacher errors by combining

teacher- and self-guided learning. Chen et al. [10], [11]

introduced Review KD. The “review phase” further refines

the student's density map estimation. The student outperforms
the teacher.
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A. Crowd Counting 

Early crowd counting methods used either detection or 

regression. Detection-based approaches, such as those 

employing Haar wavelets or a histogram of oriented gradients, 
were used to identify individual people or heads; however, 

they often failed when some individuals occluded others in 

large crowds [12], [13]. In contrast, regression-based methods 

used density maps to bypass explicit detection. For example, 

Chen et al. employed multi-scale convolutional neural 

networks with a multi-column CNN architecture to address 

scale variations [14], [15]. Subsequent studies employed 

multi-branch architectures, dilated convolutions, and pyramid 

pooling to obtain multi-scale receptive fields, effectively 

tackling issues such as perspective distortion and scale 

diversity [16] as shown in Fig. 1. 
 

 
Fig. 1  Challenges associated with crowd counting and the role of FFNet. 

 

Input crowd images often vary in terms of scale, occlusion, 

and lighting. FFNet effectively addresses these issues using 

simple architecture that features a backbone and multi-scale 

feature fusion. This generates robust density maps without 

requiring a complex model structure. 

In particular, the multi-scale fusion approach combines 

features from different levels of a network. For example, the 

feature pyramid network inspired crowd counters that 

integrate hierarchical features [17], [18]. Transformer-based 

models have also emerged. For example, “Crowd Counting 
with Transformer” utilizes transformer blocks to model 

contextual information effectively [19]. The scale-adaptive 

selection network uses a segmentation approach to handle 

scale variations more effectively [20]. 

Recent methods have emphasized the need to strike a 

balance between accuracy and efficiency. For example, 

MobileCount uses MobileNetV2 as the backbone, and models 

that leverage GhostNet have also been introduced [21], [22]. 

Neural architecture search techniques such as the “Efficient 

Crowd Counting Neural Architecture Search” have been used 

to design efficient architectures automatically for crowd 

counting [23]. Additionally, point-based approaches such as 
P2PNet have been proposed. These directly predict individual 

head positions; they do not generate density maps.  

Despite such advances, a significant gap remains between 

large, high-performing models and lightweight models for 

edge devices. This motivates our present study. We aimed 

further to compress the efficient yet strong architecture 

(FFNet) using knowledge distillation (KD). 

B. Knowledge Distillation 

Hinton et al. [3] introduced KD to compress classification 

models. A student network is trained using the softened 

outputs (soft labels) of a large teacher network. Soft labels 

contain richer “dark knowledge” (example: inter-class 

relationships) than do traditional hard labels and, thus, 

improve the generalizability of the student model. 

Soft targets aside, Murata et al. [24] proposed FitNets. 

Intermediate feature hints allowed the student to learn more 

effectively the internal representations of the teacher. 

Zagoruyko and Komodakis [25] and Liu et al. [26] utilized 

attention transfer (AT) to assist students in mimicking the 

teacher's attention maps. Various loss functions have since 

been explored. These include the L2 distance and advanced 
metrics, such as the optimal transport distance (OTD) 

between teacher and student features, the use of cosine 

similarity for directional alignment, and activation boundary 

loss. In the fields of semantic segmentation and object 

detection, structured distillation methods have been applied to 

align pixel- or region-wise outputs [27]. 

In the context of crowd counting, KD poses unique 

challenges given the continuous nature of a density map and 

the significant scale variation. Some recent studies have 

developed distillation strategies specifically for crowd 

counting. For example, Wang et al. [28] introduced dual KD 
(DKD). In the first stage, knowledge is transferred from 

teacher to student by aligning the density distributions via 

feature alignment and use of the OTD loss. During the second 

stage, the student employs self-distillation to refine their 

predictions. This corrects any teacher-imparted bias. 

Remarkably, the DKD model's performance was comparable 

to that of a complete model, but it used only about 6% of the 

teacher’s parameters. 

Huang et al. [29] presented a KD method for IoT 

deployment. The approach focuses on selecting hints to robust 

features that withstand real-world noise. The cited studies 
highlight the significant potential of KD in terms of crowd 

counting, while also emphasizing the capacity gap—an overly 

small student model struggles to match the performance of a 

larger teacher model. In this paper, we address this issue by 

carefully designing a student that is moderately smaller than 

FFNet and leveraging a combination of distillation losses to 

exploit the teacher's knowledge fully. 

In this paper, we propose a lightweight crowd counting 

model based on FFNet, combined with knowledge distillation 

(KD) techniques. The main contributions of this study are: 

a. We designed a student model that significantly reduces the 

number of parameters required while preserving the 
simple, multi-scale feature fusion structure of FFNet. 

b. We developed a composite distillation loss function that 

combines soft target regression, feature map alignment, 

and AT to transfer knowledge effectively from the teacher. 

c. Experiments using two benchmark datasets, 

ShanghaiTech Part A and B (SHA/SHB), revealed that the 

distilled student model is as accurate as the full teacher 

FFNet. Still, both the model size and computational cost 

are significantly reduced. 

We evaluated the proposed method in terms of the mean 

absolute error (MAE), mean squared error (MSE), number of 
model parameters, floating-point operations per image 

(FLOPs), and frames per second (FPS). These metrics verified 

the model's efficiency in making real-time inferences. The 

Materials and Methods describe the architecture of the FFNet 

student model and the distillation methodology. The Results 

and Discussion detail the experimental settings, the results, 
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and the analysis. Finally, the Conclusion summarizes the 

study and indicates the directions of our future work. 

II. MATERIALS AND METHOD 

A. Teacher and Student Model Architectures 

Our teacher model is the original FFNet. This is 

structurally simple and performs well. FFNet uses the 

ConvNeXt-Tiny backbone to extract features that are then 
passed to a multi-scale feature fusion module with three 

parallel branches [30]. Each branch processes features from a 

different stage of the backbone through a focus transition 

module (FTM) that employs dynamic convolution and 

attention mechanisms to refine features and reduce 

dimensionality, thereby addressing any misalignment 

between different scales. The outputs of the three FTMs are 

concatenated and passed through a final convolutional layer 

to generate a density map that shows the crowd density at each 

pixel. The total crowd count is obtained by integrating the 

entire map. 
The student model, termed Student FFNet (FFNet-S), 

retains the overall FFNet structure but replaces the backbone 

with a lighter network and reduces the number of channels 

within the FTM modules. Specifically, as our focus was on 

model efficiency in low-power devices, we used MobileNet-

v3 as the model backbone. This required only 3.05 million 

parameters, much less than the 29.0 million of the ConvNeXt-

T teacher model. However, FFNet-S retains the three-branch 

fusion structure, but each branch now features a simplified 

FTM that uses fewer filters. The output of the student model 

is also a density map. 

B. Knowledge Distillation Framework 

Our KD approach uses multiple loss components to 

effectively transfer knowledge. Below, �  is the teacher 

network and � the student network. The pretrained weights of 

� are frozen during KD training. � is trained from scratch by  

�. Fig. 2 shows the overall KD process.  
 

 
Fig. 1  The KD framework for crowd counting. 

 
The training data, (diverse crowd scenes) are 

simultaneously fed into both T and �. �, typically a large and 

very accurate model, generates soft labels—refined 

predictions that capture richer distributional knowledge on the 

crowd density. These soft predictions supervise/guide the 

training of �, as do hard labels derived from the ground truth 

density maps. 

The distilled knowledge imparted by � allows � to learn 

not only the final output distribution but also the implicit 

structural understanding captured by � during training. Such 

dual supervision via soft and hard labels improves the 

generalizability of � , even when the capacity of �  is 

significantly lower than that of �. As Fig. 2 shows, the aim 

was to allow a lightweight � to mimic the predictive behavior 

of a high-capacity �. � produces accurate density maps using 

far fewer parameters and less computational time than � . 

Such a framework is particularly effective for crowd counting, 

where all scale variations, occlusions, and visual complexities 

pose significant challenges, and where real-time performance 

on edge devices is a practical necessity. 

1) Soft Target Distillation Loss (����� ): We obtain the 

output density maps from the teacher D	   and the student D
. 

Instead of training the student solely with the ground truth 

density map (hard labels), we include a loss term that 

encourages D
  to mimic D	 . Following Hinton’s KD 

formulation, we treat D	  as the "soft target" for the student S. 

We use a standard L2 loss on the density maps, defined as: 

 L���� = |D
 − D	|�
� (1) 

This loss encourages � to imitate the final predictions of �, 

which reflect �′s refined understanding of crowd distribution. 

If necessary, D	  can be subjected to temperature scaling 

(often applied during classification tasks), but we found that 

direct application of the L2 loss to the density maps was 
sufficient. 

2) Feature Distillation Loss ( ����� ): To address the 

capacity gap, we aligned the intermediate representations. We 

extracted feature maps from key layers (backbone stages and 

FTM outputs) of � and the corresponding layers of �. For 

each teacher-student feature pair ��	
� , �


��, we applied two 

strategies: 

a. Regression loss: A 1 × 1 convolution (a learnable linear 

projection) is applied to �

� , and the L2 loss with �	

�  is 

computed. This helps the student learn feature 
representations close to those of the teacher. 

b. Attention Transfer: We compute attention maps as A	 =
��� !"#$%�|�	

�|� and A
 = ��� !"#$%�|�

�|�, where the 

maps are derived by summing the absolute feature values 

across channels and then applying L2 normalization. The 

L2 loss between the two attention maps is then calculated. 

The final feature loss L���� is the sum of the regression and 

attention losses across all selected layers. This not only 

encourages S to match the values of � but also to focus on 

similar spatial regions requiring attention. 

3) Hard Label Loss (�&�'( ): To ensure that � does not 

drift from the actual task, we retained traditional supervision 

using the ground truth. This is the standard regression loss 

between the � output D
  and the ground truth density map 

D)	, derived using the MAE or MSE. We found that the MAE 

was slightly better in terms of count accuracy. This loss 

anchors � to the actual objective—accurate crowd counting— 
� does not overfit any errors made by �. As some � outputs 

may be inaccurate, L&�'( is corrective. 
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4) Total Loss: The overall loss is defined as a weighted 

sum: 

 L����* = + ∙ �&�'( + . ∙ ����� + / ∙ ����� (2) 

where + , . , and /  are hyperparameters controlling the 

influence of each component. Typically, +  is set relatively 

high (e.g., 1) to prioritize ground truth supervision, and . and 

/ to about 0.5 each, to balance the distillation effects without 

overwhelming the true labels. 

The experimental results showed that � is sensitive to this 

balance. If .  or / is too high, � may overfit errors of �; if 

either parameter is too low, knowledge transfer becomes 

ineffective. Our composite loss function is similar to the 

multi-term loss structure of DKD but tailored to the output 

characteristics, features, and attention alignment of FFNet. 

C. Training 

We initialize � randomly. The pretrained � remains fixed 

during training. The dataset images are fed into both networks, 

and �  generates output density maps 0	  with intermediate 

features �	
� . However, no gradient propagates through �; only 

the parameters of �  are updated to minimize the total loss 

L����*. 

We use the AdamW optimizer with a moderate learning 

rate of 1023. Training continues until the validation error of 

� becomes stable. We adopted a two-stage training schedule 

inspired by DKD. In the first stage, the model is trained 

primarily using ����� + �����  so that � quickly aligns with the 

features and outputs of �. In the second stage, the weight of 

L&�'( is gradually increased to fine-tune the model toward the 

ground truth density maps. This helps correct any errors 

introduced by the pseudo-labels of � and ultimately reduces 

the MAE of �. 

During inference, only � is used to enable fast lightweight 

crowd counting. As � is fixed and therefore may not adapt to 

shifts in the input domains, the batch normalization layers 

within �  must be carefully tuned either by selecting an 

appropriate batch size or via recalibration. This ensures stable 

performance. 

III. RESULTS AND DISCUSSION 

A. Experimental Setup 

We evaluated our model using two standard benchmark 

datasets [31] that differ in terms of crowd density and scene 

diversity. SHA contains highly congested crowd scenes (482 

images). SHB contains moderately dense street scenes (716 

images). Following a standard protocol, both SHA and SHB 

were evaluated using predefined training/test splits. 

We used two primary metrics commonly adopted in crowd 

counting: the MAE and MSE that are based on the differences 

between the predicted and actual head counts. MAE measures 

prediction accuracy (lower is better). MSE penalizes larger 

errors more heavily. To evaluate model efficiency, we also 

measured the numbers of parameters and the FLOPs. 

Our teacher model, �  (FFNet with the ConvNeXt-T 

backbone) was loaded from the website of the authors earlier 

cited and achieved near state-of-the-art performance, as they 

reported. The student model, � (FFNet-S with MobileNet-v3 

as the backbone) was initialized using pretrained weights 

from ImageNet (excluding the final output layers). The entire 

implementation employed PyTorch. To augment data, we 

used both random horizontal flipping and cropping to obtain 

256×256 image patches. 

The learning rate was warmed up for 1 epoch and then 

decayed by a factor of 0.1 every 20 epochs. Training was 

terminated after 100 epochs. Ground truth density maps were 

generated using Gaussian kernels with fixed spread values 

specific to each dataset. 

The loss weights were tuned and set to α = 1, β = 0.5, γ =
0.5 . KD was applied only after �  had learned an initial 

alignment. As early application of KD sometimes triggered 

instability, we trained S using only  �&�'(  for the first five 

epochs, and then added both �����  and �����  during later 

epochs. 

B. Quantitative Results 

Table 1 compares the performance of our �  (FFNet), � 

(FFNet-S), and several recent crowd counting models across 

all datasets. Despite a near 90% reduction in the number of 

parameters, � exhibited only a minimal drop in performance. 

More importantly, �  outperformed many previous models. 

This slight decrease in accuracy is considered acceptable, 

especially when weighed against the practical benefit of a 10× 

improvement in efficiency. 

TABLE I 

THE PERFORMANCES OF CROWD COUNTING MODELS USING A TEACHER 

MODEL (FFNET) AND A STUDENT MODEL (FFNET-S). 

Method SHA SHB Parame

ters 

FLOPs 

MAE MSE MAE MSE 

P2PNet 5.27 85.1 6.3 9.9 19.2M 104.7G 
SASNet 53.5 88.3 6.3 9.9 38.9M 232.9G 
FFNet 48.3 80.5 6.1 9.0 29M 23.7G 
FFNet-

S(ours) 
50.4 83.7 6.5 9.3 3.1M 1.5G 

 

In terms of efficiency, � offers significant advantages. The 

number of parameters is reduced from 29.0 M (T) to 3.1M (S) 

and the FLOPs decrease from 23.7G (T) to 1.5 G (S), 

substantially boosting the inference speed. � is well-suited for 

edge devices and can engage in real-time crowd counting (for 

example, surveillance applications). 

C. Ablation Study 

We conducted an ablation study using the SHA and SHB 

datasets to examine the contributions of each component in 

our framework. First, we removed the various distillation 

losses. When the soft target loss (�����) was eliminated and � 

was trained only on ground-truth density maps (hard labels), 

the MAE increased by approximately 10, indicating 
significant degradation in performance and highlighting the 

crucial role played by �-delivered soft target guidance. In 

contrast, when �����  was retained but the feature distillation 

loss (����� ) was excluded, the MAE rose by about 3. This 

suggests that feature alignment plays a vital role in stabilizing 

learning. Additionally, we compared attention transfer (AT) 

to vanilla L2 feature loss. The absence of AT increased the 
MAE by about 1 point, implying that AT afforded a slight but 

meaningful performance gain. Next, we evaluated the 

importance of FTM. Removal of the S FTM meant that S now 

engaged in only simple multi-scale fusion. The MAE 
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increased by approximately 5, confirming that the FTM was 

useful even in the lightweight S. 

Last, we assessed the effects of different KD training 

schedules. Our two-stage training strategy—where �����  and 

�����  were not applied during the initial epochs, which 

reduced the MAE by around two compared to the figure when 
all losses were applied from the commencement. Delaying the 

distillation loss avoided instability during early training. We 

next tested a self-distillation strategy; � refined its predictions 

after initial KD training. However, this did not further 

improve performance, possibly because � was already strong. 

This result is not in line with the findings of the first DKD 

paper and may be attributable to differences in the datasets or 

model capacity. 

D. Discussion 

Our experimental results demonstrate that a lightweight 

FFNet student model was nonetheless very accurate, thanks 

to its feature of knowledge distillation (KD). The 

performance meets the practical requirements of real-world 

applications. For example, an MAE of approximately 50 on 

the SHA dataset indicates an average error of about 50 

people, which is considered acceptable during trend analysis 

of high-density crowds. 

Notably, S is capable of real-time operation, rendering � 
useful in embedded systems (such as drones) that monitor 

crowd sizes at outdoor events. Sometimes—particularly on 

the SHB dataset, which includes urban scenes— � performed 

as well as �, possibly attributable to the regularization effect 

of KD. As � is smaller than �, � is less prone to overfitting 

and may therefore generalize better during training. Similar 

findings have been reported in other studies on ReviewKD 

and DKD, where student models sometimes surpassed teacher 

models under specific conditions. Nevertheless, in most cases, 
the teacher model still serves as the upper bound in terms of 

performance. 

IV. CONCLUSION 

We leveraged KD when designing a lightweight crowd 

counting model based on the FFNet architecture. By 

effectively combining soft target regression with feature-level 

distillation, a simple S was as accurate as a complex �. Both 
model size and the computational cost were significantly 

reduced. 

Extensive evaluations were conducted using several 

benchmark datasets. The MAE/MSE figures demonstrated 

that the distilled FFNet-S model performed as well as the 

original FFNet but with only about 10% of the parameters. 

Moreover, the new model yields real-time inferences using 

only standard hardware. This study demonstrates that, when a 

well-designed distillation strategy is employed, it is possible 

to create a simple yet high-performing network architecture 

without compromising accuracy. 

In the future, we plan to explore an online distillation 
approach in which a teacher guides a student in a single 

session, potentially reducing the training time. Additionally, 

we can utilize structured pruning and quantization to further 

compress the already distilled model, aiming to optimize 

deployment on low-power devices. We plan to extend the 

method beyond simple counting. We can distill spatial 

distribution data that localizes crowds. We plan to use point-

supervised losses to help the student learn not only how many 

people are present but also where they are located. We aim to 

contribute to the development of more efficient and practical 

crowd counting systems that can be deployed on real-world 

edge platforms. 
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