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Abstract—The fast-moving adaptation of the Internet of Things (IoT) and its devices has revolutionized the way we interact with 

connected systems and perceive the world around us. With the increasing deployment of IoT in various domains such as smart homes, 

healthcare, industrial automation, and intelligent transportation, ensuring the proper classification and management of IoT devices is 

essential. Accurate classification plays a crucial role in network management, security enforcement, Quality of Service (QoS), and 

overall system performance optimization. However, the dynamic nature of IoT environments presents a significant challenge for 

effective IoT device classification, specifically in the form of drift. Drift occurs when device characteristics and behaviors change over 

time, making it challenging to maintain accurate classification. This issue is particularly prevalent in applications like smart homes, 

smart infrastructures, smart cities, and industrial IoT, where diverse and evolving devices contribute to data variability and 

uncertainty. This survey examines the application of machine learning techniques in mitigating drift in IoT device classification, with 

a focus on prevention, detection, adaptation, and mitigation strategies. Additionally, we discuss the open challenges and limitations of 

existing machine learning (ML)-based models used for drift management, as well as future research directions. By analyzing the current 

landscape of drift management in IoT, this research survey provides valuable insights. It highlights critical gaps that need to be 

addressed for more robust and efficient IoT classification models. 
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I. INTRODUCTION

The Internet of Things (IoT) has emerged in a new era 

where smart IoT devices are an integral part of our daily lives, 

spanning from smart homes to smart cities and finally moving 

towards large-scale industries and infrastructures. These 

smart IoT devices extend their influence even further into 

areas like construction, healthcare, transportation, and beyond 

[1]. Effective and efficient classification of these IoT devices 

is essential for network management (NM), security, QoS and 

performance optimization. However, the dynamic nature of 

the IoT ecosystem presents a persistent challenge known as” 
drift” [2], which is a nuanced phenomenon characterized by a 

gradual shift in data distribution away from the original 

patterns [3] because of a variety of factors, including firmware 

updates, network changes, and the addition of new IoT 

devices [4]. While these updates are essential for enhancing 

device functionality and security, they simultaneously 

introduce changes in device behavior and data traffic patterns, 

rendering machine learning (ML) classification less accurate. 

Furthermore, the continuous release of new device versions, 

each with unique features and communication methods, adds 

complexity to the classification task [5]. With each new 

iteration, the data characteristics evolve, exacerbating the 

challenge of concept drift [6]. Additionally, IoT devices 

operate within network environments characterized by 

inherent variability, leading to fluctuations in data traffic 

patterns and intensifying the concept of drift. The 

repercussions of concept drift extend throughout the IoT 
ecosystem, impacting every layer of device classification 

severely [7]. 

In case of IoT device classification, machine learning 

models are always fine-tuned for accuracy and performance 

[8]. However, drift can lead to a decline in accuracy, which is 

detrimental and unacceptable for security-focused 

applications [9]. Misclassifications resulting from concept 
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drift can expose vulnerabilities that malicious actors exploit, 

jeopardizing user privacy, security, and organizational 

integrity. Moreover, the operational efficiency of IoT 

applications becomes increasingly vulnerable to disruption as 

machine learning (ML) models struggle to adapt to shifting 

data distributions. These disruptions introduce significant 

complexity and necessitate retraining, which is concerning in 

terms of both time and cost. In response to these multifaceted 

challenges introduced by concept drift, ML models have 

evolved, adapted, and emerged as a pivotal solution [10]. 
These models possess the innate capacity to evolve and 

recalibrate their decision boundaries, accommodating the 

changing characteristics and behaviors of IoT devices. 

Through continuous learning from newly generated data, 

these dynamic models exhibit the resilience required to 

navigate the intricacies and dynamism of the ever-evolving 

IoT landscape. 

Hence, this research embarks on a comprehensive 

exploration of drift management within the realm of IoT 

device classification from a machine learning (ML) 

perspective. It aims to explore a wide range of methodologies, 
techniques, and strategies for preventing, detecting, adapting 

to, and mitigating drift issues. This extensive study provides 

invaluable insights into drift management through an 

evaluative analysis of various machine learning (ML) based 

algorithms for IoT device classification. By managing the 

drifts, this research aims to elevate the security, performance, 

and efficiency of IoT systems in real-world scenarios, thereby 

facilitating the seamless and secure integration of IoT devices 

into our interconnected world. 

A. Research Questions and Motivation 

1) RQ1: How can a machine learning technique effectively 

manage drift in IoT device classification? 

Motivation Behind: The aim is to identify and evaluate the 

various ML techniques through previously published research 

and mention the important components of drift management 

and their ML utilization. 

2) RQ2: What are the practical challenges and potential 
future directions in addressing concept drift management, 

covering drift detection, adaptation, and mitigation in IoT 

device classification? 

Motivation Behind: This research also aims to identify the 

main challenges of existing drift management and its 

components. The various concepts discussed here will aid in 
identifying future research areas for the prevention, detection, 

adaptation, and mitigation of drift. 

3) RQ3: What are the research gaps in the field of drift 

management in the context of machine learning-based IoT 

device classification? 

Motivation Behind: The aim is to identify the research gaps 

at each level of the component of drift management so that in 

the future, we can avoid the drift at an early stage. 

B. Contributions 

The contribution of this study includes: 

a. This research explores the use of machine learning 
techniques to manage drift management in IoT device 

classification, encompassing drift prevention detection, 

drift adaptation, and drift mitigation. 

b. To study and discuss the practical open issues and 

challenges of various ML-based models, along with 

future directions in the context of managing concept 

drift for IoT device classification. 

c. To investigate and evaluate the critical analysis for 

research gaps of drift management and its components 

in ML-based IoT device classification. 

This research aims to investigate the application of 
machine learning methods for comprehensive management of 

concept drift in IoT device classification, focusing on drift 

prevention, detection, adaptation, and mitigation techniques. 

It addresses the practical challenges and prospects in real-

world IoT applications. 

C. The Structure of this Study 

The structure of this study outlines how drift management 

is controlled and managed. In terms of various sections and 
sub-sections, it provides more details for the readers. Overall, 

this research paper serves as a guide to help readers navigate 

and open the hidden doors of drift management regarding IoT 

device classification effectively and efficiently. 

This research paper includes sections as mentioned in 

Figure 1, which include an introduction, related surveys, 

methodology, machine learning (ML) algorithms for IoT 

device classification, drift and its effects on IoT classification, 

comparison analysis and evaluation, challenges of drift 

management, critical gap analysis, discussion and 

suggestions, future direction of drift management and 

conclusion. 

 
Fig. 1  Paper Structure 

D. Related Survey 

Several studies have been proposed related to drift 

management. However, to our understanding, we did not find 

any related research similar to this one. Here, we provide a 

comprehensive systematic review of drift management, 

covering all key aspects of drift prevention, detection, 
adaptation, and mitigation in detail, along with an evaluation, 

valuable insights, and a detailed analysis of challenges and 

gaps. The review also includes discussions and suggestions 

for the future. Some of these works are presented in Table 1 

and are also compared with this research work. 
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TABLE I 

RELATED SURVEYS AND COMPARISON 

Ref. Year Description Concepts Addressed Comparison with Our Work 

[11] Year 
2020 

The objective of this work is 
more towards a systematic 

literature review of existing 
concepts of drift detection 
methods on unlabeled data 
streams 

Covers various aspects, focusing on the 
learning process and the way concept 

drift is monitored in the data stream 
mining models 

Our research extends the insights; we 
focus specifically and more on IoT 

device classification and streams in a 
broader vision 

[12] Year 
2022 

The objective of this work is 
more towards evaluating 
performance-based methods for 
detecting drift in Predictive 

Systems 

Covers review, taxonomy, and literature Our research explores more than the 
detection of drift management, including 
other aspects besides detection 

[13] Year 
2022 

The objective of this work is to 
focus on the active and passive 
concepts of drift handling 
methods 

It covers the classification of drift 
handling methods, compares 
algorithms, and provides drift types, 
Advantages, and disadvantages 

Our research complements this by 
providing more details on all pillars of 
drift management, not only active and 
passive classification 

[14] Year 
2023 

The objective of this work is 
more towards drift detection in 
unlabeled data streams only 

It covers a literature review, adapts 
and detects concepts along with 
challenges and performance Metrics, 

ML approaches, new research trends, 
and future research directions were 
discussed 

Our research offers detailed insights into 
overall drift management, not only 
detecting, but also filling a gap in the 

literature via gap analysis and discussion 

Year 
2024 

Our 
Survey 

We analyze IoT device 
classification drift challenges, 
and present a cutting-edge drift 
management analysis 
comprehensive review tailored 
to IoT device classification 

The objective of this work is more 
toward a comprehensive review, along 
with an evaluation 

Our research offers IoT drift 
management via its four essential 
components. It also provides IoT-
specific drift solutions and complete 
insights for challenges, gap analysis, and 
future direction 

II. MATERIALS AND METHOD 

The research methodology employed in this paper consists 

of two distinct review strategies. The first review strategy 

entails conducting a systematic literature review to identify, 

evaluate, and interpret influential studies within the specific 

area of interest of IoT device classification. This systematic 

literature review primarily aimed to synthesize recent and 

pertinent academic literature and assess the current research 
landscape of ML based IoT device classification. It facilitated 

the extraction of key findings from published works related to 

the research study at hand. 

The second strategy was to explore the various papers 

related to “drift detection,”” drift adaptation,” drift mitigation, 

“drift prevention,”” ML and Drifts,” as well as” Machine 

Learning and Drifts”. To collect our research papers, we 

accessed various respected academic databases such as 

Scopus, Elsevier, and IEEE, as well as various other online 

resources and academic journals related to ML, IoT 

classification, and drift. We initiated our search by collecting 

30 papers using diverse search engines. After eliminating 
duplicates, we were left with 20 distinct research articles. 

Next, we performed an in-depth review of the abstracts to 

ensure that the selected papers aligned with our research 

objectives. Basic review articles and those not directly related 

to “IoT and Drift” were excluded from our final selection. 

This careful curation process resulted in the inclusion of 14 

research articles, which form the core of our investigation. 

The paper selection process is illustrated in Figure 2, which 

provides a clear overview of our meticulous data-gathering 

approach. 

 

 

Fig. 2  Methodology Used 

III. RESULTS AND DISCUSSION 

Machine learning (ML) algorithms for IoT device 

classification are trained on datasets containing features 

extracted from IoT device data, allowing them to learn 

patterns and make predictions about the device’s class. 

Various machine learning (ML) algorithms, including 

supervised learning, unsupervised learning, and deep 
learning, can be applied to tackle IoT device classification 

challenges [15]. Supervised ML algorithms like neural 
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networks, decision trees, and support vector machines (SVM) 

are commonly employed. Particularly, deep learning (DL) 

models stand out for their ability to automatically learn 

relevant features from raw data. Decision trees are prized for 

their interpretability, while SVMs excel in dimensional spaces 

and complex decision boundaries. Hybrid techniques 

combining K-Means clustering and SVM can be valuable for 

concept drift detection in network anomaly detection [16]. 

Unsupervised learning algorithms, such as clustering methods 

and anomaly detection, prove their worth when labeled data 
is limited. Clustering methods like K-Means and hierarchical 

clustering group similar IoT devices based on data patterns, 

aiding in identifying common characteristics, while anomaly 

detection techniques are crucial for maintaining IoT network 

security [17]. Semi-supervised learning and active learning 

bridge the gap between labeled and unlabeled data, offering 

cost-effective solutions and intelligent data selection for 

labeling, respectively [18]. Lastly, transfer learning is 

leveraged when dealing with limited labeled data, allowing 

for the fine-tuning of pre-trained models for specific IoT 

classification tasks. Clustering methods, as mentioned earlier, 
remain valuable for grouping devices with similar 

characteristics in scenarios where labeled data is scarce [19]. 

Hence, Figure 3 illustrates the taxonomy of machine learning 

(ML) for IoT device classification. 

A. Drift and Its Effect on IoT Device Classification 

Drift in IoT device classification refers to the changing 

statistical characteristics of data over time, which can 

challenge the accuracy of classification models. In IoT 

environments, device behaviors can evolve due to firmware 
updates, changes in user behavior, or malfunctions. Formally, 

the concept of drift between two points at time instants t = 0 

and t = 1, respectively, can be defined as Eq. (1) [20], in which 

pt = 0 is the coexisting distribution of the input variable X and 

the target variable y at time t = 0. 

 ∃X : pt=0(X,y) , pt=1(X,y) (1) 

 
Fig. 3  Taxonomy of ML for IoT Device Classification 

 

The data shows less variation, indicating no drift values, 
within the range of 2-4 on the variation axis. However, sudden 

changes over time are apparent from the range of 4 to 6 on the 

variation axis, indicating drift values. Figure 4 illustrates the 

drift problem.[21], hence continuous detection/monitoring, 

adaptation, mitigation and the development of robust, real-

time machine learning algorithms are essential to deal with 

the issue. These algorithms should detect and respond to 

concept drift, ensuring that IoT devices can be accurately 

identified and classified, even as their behaviors change, 

thereby maintaining the effectiveness of security and 

management systems in IoT ecosystems [22]. 

Concept drift occurs when the joint probability 

distributions between input data x and outcomes y at two 

different times, denoted as Pt=0 and Pt=1, are not equal, as 

shown by the equation Pt=0(x,y) , Pt=1(x,y). Additionally, 

suppose the product of the probability of x and the conditional 

probability of y given x, Pt(x)Pt(y|x), is not equal between the 
two-time points. In that case, concept drift also occurs, which 

is represented by Eq. (2). 

 Pt0(x)Pt0(y|x) , Pt1(x)Pt1(y|x) (2) 

These changes can be categorized into virtual concept drift, 

where only the probability of x changes; real concept drift, 

where only the conditional probability of y given x changes; 

and hybrid concept drift, where both occur simultaneously [23]. 

 
Fig. 4  Drift In IoT Classification 

B. Drift Management 

Drift management involves the comprehensive handling of 

drift-related challenges in the era of machine learning. Drift 

prevention is the proactive first stage and step in issue 

management, aimed at minimizing the likelihood of issues 

before they occur. It involves designing systems and protocols 

to reduce risks. It is essential for system reliability in dynamic 

environments, laying the foundation for post subsequent 

stages like drift detection, adaptation, and mitigation stages to 

ensure that models remain accurate and reliable in dynamic 

data environments [24].  

 
Fig. 5  Drift Management Components 

 

Effective drift management aims to minimize the impact of 

drift events, reduce the frequency of adaptations, and 

proactively maintain model stability, ultimately contributing 

to the overall performance and resilience of machine learning 

systems, especially in applications like IoT device 

classification [25]. Various drift management components in 

IoT device classification are presented in Figure 5, which 

include drift prevention, drift detection, drift adaptation, and 

drift mitigation. 

1) Drift Prevention and Types: 

In the context of IoT device classification, drift prevention is 

the proactive endeavor to mitigate the occurrence of concept 

drift (a phenomenon where data characteristics from IoT 

devices change over time). These changes can manifest 

gradually or suddenly due to various factors, including device 
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aging, firmware updates, environmental variations, or 

malicious activities. Drift prevention plays a crucial role as a 

pre-stage in maintaining the stability and performance of 

machine learning models utilized for IoT device classification. 

It focuses on proactively implementing strategies to reduce the 

likelihood of these unwanted changes taking place, 

safeguarding the accuracy and consistency of the models [26]. 

Drift prevention encompasses several distinct forms in the 

form of types, each tailored to address specific types of drift. 

First, there are Proactive strategies for mitigating concept drift, 
which aim to anticipate and mitigate changes in the 

fundamental concepts that a model captures over time. For 

instance, in the context of a smart home, where devices may 

have seasonally changing behavior, proactive adaptation 

strategies can help maintain model accuracy. Second, 

Preventive approaches for contextual Shift involve measures to 

counter variations in contextual factors related to IoT devices. 

These contextual changes may include shifts in location or user 

preferences, which can impact the performance of devices like 

wearable fitness trackers. Finally, the measures to ensure data 

value stability focus on measures to minimize fluctuations in 
the scale or magnitude of data values [27], [28]. Consider 

sensor readings from IoT devices that may experience 

variations in magnitude due to external factors; drift prevention 

strategies can be put in place to ensure stable data collection 

and accurate model performance. Hence, drift prevention is 

pivotal in the realm of IoT device classification, helping to 

proactively safeguard the integrity of machine learning models 

and the reliability of IoT applications by minimizing the 

chances of concept drift occurrences [29]. 

2) Drift Prevention Techniques in IoT Device 

Classification: 

Drift prevention methods in IoT device classification 

encompass a distinct set of approaches and strategies aimed at 

proactively reducing the likelihood of concept drift 

occurrences. These techniques are fundamentally different 

from drift detection measures and are crucial for establishing 

robust and resilient machine learning models [30]. Several 
preventive strategies that can be employed are as follows:  

 Model Maintenance and Continuous Training. 

 Model Generalization and Feature Engineering. 

 Data Quality Control. 

 Change Management. 

Model maintenance and continuous training refer to 

regularly updating and retraining machine learning models with 

new and relevant data. It helps prevent models from becoming 

outdated and less accurate over time. Developing a generalized 

model that can adapt to changing scenarios and work with 

various updated features is crucial. Careful feature selection 

and feature engineering can lead to more stable and less 
sensitive models, thereby effectively reducing the risk of 

concept drift. Even with new additions of IoT devices or 

network changes, opting for no change in the existing ML 

model training or updated training can maintain model stability. 

Implementing rigorous data quality control measures is 

essential to ensure the consistency and reliability of training 

data. This reduces the chances of unwanted shifts and helps 

prevent drift-related issues from occurring. Establishing 

thorough change management protocols can help manage 

firmware updates, system modifications, and other potential 

sources of concept drift, ensuring they are well-controlled and 

tested before implementation. Anomaly Detection: 

Employing anomaly detection techniques can help identify 

unexpected deviations in data patterns, allowing for 

immediate action to be taken to prevent drift. 

These preventive techniques play a vital role in preserving 

the accuracy and reliability of machine learning models in IoT 

device classification. By proactively addressing potential 

sources of drift and maintaining the quality of data and 

models, these strategies contribute to the long-term success of 
IoT applications. 

3) Drift Detection and Types: 

In the context of IoT device classification, drift refers to the 

phenomenon where data characteristics from IoT devices 

change over time. These changes can occur gradually or 
abruptly due to factors like device aging, firmware updates, 

environmental variations, or malicious activities. Drift 

detection holds immense importance as it ensures the 

continued performance and reliability of machine learning 

models used for IoT device classification. Drift detection 

involves identifying changes or shifts in data patterns over 

time. It enables these models to adapt to evolving data patterns 

and make accurate predictions [31]. 

Detecting drift in IoT data is crucial for maintaining the 

accuracy and reliability of models, and it encompasses several 

distinct forms, categorized into types [32]. First, there's 

Concept Drift, which arises when the very essence of what a 
model seeks to capture evolves. Take, for example, a smart 

thermostat in a household setting; its behavior may shift 

seasonally, necessitating an adaptable model. Second, 

Context Drift involves alterations in contextual factors 

associated with IoT devices, such as changes in location or 

user preferences. This type of drift can impact the 

performance of devices like wearable fitness trackers, which 

may adjust their behavior based on a user’s current location 

and activities. Lastly, Magnitude Drift highlights fluctuations 

in the scale or magnitude of data values, indicating potential 

drift [33], [34]. Consider sensor readings from an IoT device 
that may vary in magnitude due to various external factors, 

underscoring the need for robust drift detection methods that 

can address these diverse manifestations of data drift. 

4) Drift Detection Techniques in IoT Device 

Classification: 

Drift detection methods in IoT device classification vary in 
complexity and approach. Standard techniques include 

statistical, ensemble, and change point detection methods. 

Statistical methods utilize and analyze the statistical 

properties of data, including the mean, distribution, and 

variance, to detect drift. Machine Learning Models: ML 

models can be trained to classify data instances as belonging 

to the current concept or showing drift. 

Ensemble methods encompass combining multiple drift 

detectors to enhance detection accuracy and robustness. At the 

same time, change point detection focuses on identifying 

abrupt changes in data patterns, which may signal a drift. The 
two common techniques for detecting concept drift are 

ADWIN and DDM. ADWIN is a distribution-based method 

that uses an adaptive sliding window to detect the drift issue 

based on data distribution changes. Once a drift point is 

detected, all old data samples before that point are discarded. 
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DDM is a very famous model performance-based method that 

utilizes two thresholds to monitor a model’s standard 

deviation changes and error rate for drift detection. While 

ADWIN is very effective at detecting gradual drifts, DDM is 

better suited for sudden drifts. However, DDM's response 

time can be slow for gradual drifts, and memory overflows 

can occur due to the large number of data samples needed to 

reach the drift level of a long gradual drift [35].  

5) Drift Adaptation and Types: 

During IoT device classification, drift adaptation is a 

critical concept and must be preplanned. Drift, which signifies 

the evolving characteristics of data from IoT devices over 

time, necessitates adaptation in machine learning models. 

Drift adaptation refers to the actions taken in response to 

detected drift to ensure that machine learning models remain 
accurate and reliable. These adaptations are crucial for 

maintaining accuracy [36]. And the reliability of classification 

models in the face of changing data patterns [37]. Effective 

drift adaptation ensures that models can seamlessly adjust to 

new conditions and continue to make precise predictions [27]. 

In IoT device classification, adapting to drift encompasses 

a range of strategies tailored to the specific characteristics of 

the encountered [37]. Various types of drift adaptation 

include, First, Model Update involves revising the 

classification model when the fundamental data concept 

shifts, accommodating changes such as seasonally evolving 

behavior in smart home devices. Second, Dynamic Parameter 
Tuning adjusts model parameters in real-time to address drift, 

as exemplified by wearable devices that modify classification 

thresholds in response to shifting user activity. Third, 

Ensemble Techniques combine multiple models or detectors, 

leveraging their strengths with weighted contributions for 

enhanced adaptability. Lastly, Reactive Strategies respond to 

detected drift with immediate actions, such as switching to 

alternate classifiers when the primary one becomes 

ineffective, ensuring continual and accurate classification in 

the dynamic landscape of IoT environments. 

6) Drift Adaptation Techniques in IoT Device 

Classification:  

Several techniques are employed for drift adaptation in IoT 

device classification. The first technique is reactive model 

updates. When drift is detected, the model is retrained or 

updated to accommodate the new data concept. The second 

technique is threshold adjustments. Classification thresholds 
can be dynamically adjusted based on data changes, enabling 

real-time adaptation. The following technique is an ensemble 

that combines multiple models or drift detectors to improve 

adaptation performance. Finally, automated machine learning 

methods can facilitate the adaptation process by 

autonomously reconfiguring models. 

7) Drift Mitigation and Types:  

Drift mitigation is a vital component in IoT device 

classification, addressing the challenges posed by evolving 

data patterns over time. It takes a proactive stance, extending 

beyond detection and adaptation, to ensure the ongoing 

stability, accuracy, and reliability of classification models. By 

implementing strategies such as enhancing data quality, 

optimizing feature engineering, selecting robust algorithms, 

and designing systems resistant to drift, drift mitigation 

significantly reduces the frequency and severity of drift events 

[38]. This proactive approach yields a machine learning 

system that maintains high accuracy with fewer adaptations, 

making it particularly valuable in dynamic environments, 

such as IoT device classification [39]. 

Drift mitigation in IoT device classification encompasses a 

range of proactive strategies to enhance system resilience. 

Various types of drift mitigation include, First, Data Quality 

Enhancement focuses on improving data quality and 

reliability to minimize the occurrence of drift. Second, 
Feature Engineering involves crafting robust features that are 

less affected by data changes. Third, Robust Algorithm 

Selection entails choosing algorithms that are less sensitive to 

evolving data patterns. Lastly, Inherent Drift Resistance 

involves designing systems inherently resilient to drift, 

ensuring a dependable classification process in dynamic IoT 

environments. 

8) Drift Mitigation Techniques in IoT Device 

Classification:  

Techniques employed for drift mitigation in IoT device 

classification include proactive strategies like: 

a. Pre-emptive Model Updates: Updating models 

proactively to align with evolving data patterns. 

b. Adaptive Thresholds: Dynamically adjusting 

classification thresholds based on data changes. 

c. Ensemble Approaches: Combining multiple models or 

drift detectors to enhance mitigation. 
d. Automated Mitigation: Leveraging automated machine 

learning methods to reconfigure models autonomously. 

C. State of the Art for Drift Management (Detection, 

Adaptation, and Mitigation) using ML 

Table II summarizes various works of machine learning 

drift techniques and their applications in different domains, 

offering several key insights. Firstly, many of these 

techniques are computationally intensive and resource 
demanding, potentially impacting their practicality due to 

increased complexity and computational costs. Additionally, 

the performance of these methods heavily relies on the quality 

of data and the suitability of base models. Furthermore, while 

some drift detection techniques reduce the need for manual 

intervention, complete elimination may not be achievable, 

particularly when statistical expertise is required. Finally, 

computational complexity poses challenges in IoT intrusion 

detection, where resource constraints are typical. Also, we 

have seen that fewer initiatives are taken to deal with the drifts 

before they exist, as in the case of drift prevention. 

We further discuss challenges and future directions for 
managing drift in IoT device classification. Drift, a significant 

challenge in this field, arises due to the dynamic nature of IoT 

environments, where devices exhibit evolving behaviors over 

time. Key concerns include developing adaptable 

classification models, ensuring scalability to handle large 

datasets, addressing privacy considerations, and mitigating 

ethical implications. Security is paramount, given the 

vulnerability of IoT devices to malicious attacks and the threat 

posed by adversarial machine learning. Robust models that 

can handle noisy and incomplete data are needed. Specific 

challenges, including drift prevention, detection, adaptation, 
and mitigation, are presented in Figure 6. 
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TABLE II 
EXISTING ML WORK RELATED TO DRIFT TECHNIQUES (ALL) 

Works 
Drift 

Management 

Drift Handling 

Technique 
Purpose and Domain Advantages Disadvantages 

2022 

[40] 

Adaptation Uses Random Forests 

(RFs) to accommodate 

drift effectively 

Security purpose for 

smart IoT and Non-IoT 

device classification 

Frequently updated for 

high performance. The 

original model is rebuilt 

only when data drift is 

detected 

Each addition of new devices 

requires updates, increasing 

complexity and computational 

cost 

2021 

[41] 

Adaptation Uses Weighted 

Probability Averaging 

Ensemble (PWPAE) 

framework to control 

drift 

Adaptive IoT anomaly 

detection via IoT data 

stream and analytics 

Improved weighting 

function. Strong robust 

ensemble model 

Performance heavily depends on 

well performing base learners. 

Limited scalability for large 

datasets. Performance may be 

affected by fluctuating real-time 

error rates 

2017 

[42] 

Detection Utilizes statistical 

comparison of samples 

for drift identification 

Malware Classification 

Models 

Statistical significance. 

A better understanding 

of model generalization 

More stress toward drift 

detection only. Manual 

intervention may be required. 

Statistical expertise needed 

2023 

[43] 

Detection Utilizes Lightweight 

Ensemble of Data Drift 

Detectors (LE3D1) 

Identify data 

irregularities in sensor 

stream 

Lightweight and 

minimal overhead. 

Dynamic adaptation 

Limited to two-tier hierarchical 

fashion. Limited information on 

approach 

2022 

[44] 

Detection and 

Mitigation 

Device identification 

using IPFIX to 

minimize data 

Detect devices posing 

security risk 

Minimizes data sent for 

identification. Handles 

concept drift 

Concept drift in some devices 

may affect accuracy 

2019 

[45] 

Adaptation Handles demand drift 

through adaptive 

learning 

IoT resource 

management 

Reduced energy 

consumption and 

response time. Better 

results under heavy 

traffic 

Complexity and resource-

intensive implementation. 

Overfitting, privacy, and security 

concerns 

2021 

[46] 

Adaptation Novel feature selection 

method based on feature 

drift 

Device Identification Enhanced accuracy and 

robustness 

Slow searching algorithms 

2019 

[47] 

Detection and 

Adaptation 

Employs improved 

Linear Four Rates 

(LFR) method for 

concept drifts 

Condition-Based 

Maintenance (CBM) for 

smart factories 

Improved accuracy. 

Compatible

 with existing

 offline 

classifiers 

Performance depends on data 

sampling 

2022 

[48] 

Detection and 

Adaptation 

Comprehensive solution 

for detecting and 

mitigating drift 

Intrusion detection Reduced FP and FN. It 

requires processing 

power and longer 

execution times 

Performance may vary 

2021 

[49] 

Detection and 

Adaptation 

Optimized Adaptive 

and Sliding Windowing 

(OASW) framework 

Anomaly detection Efficient addressed 

drift. High accuracy, 

low resource usage 

Longer execution times. 

Performance variation in 

different IoT applications 

2023 

[50] 

Adaptation Integrates active and 

passive adaptation 

strategies without 

requiring a predefined 

drift threshold 

Load forecasting in 

energy management 

systems (EMS) to 

optimize energy 

scheduling and enable 

intelligent power grids 

Improves prediction 

performance without 

drift threshold setting 

Computational cost trade-off 

with prediction accuracy 

2022 

[51] 

Detection and 

Adaptation  

Learns fraudulent 

transactions 

incrementally to adapt 

to real-time drifts 

Credit card fraud 

detection in online 

transactions with concept 

drift 

Improves fraud 

detection performance 

over time  

Improves fraud detection 

performance over time  

2023 

[52] 

Detection and 

Adaptation 

Detects and adapts to 

concept drift in network 

anomalies 

Network anomaly 

detection in 

cybersecurity 

Effective in detecting 

different types of drift 

and enhancing anomaly 

detection 

Computationally expensive due 

to the hybrid model and requires 

tuning 

2024 

[53] 

Mitigation Federated fuzzy c-

means clustering and 

federated fuzzy Davies-

Bouldin index 

Federated learning (FL) 

for data drift detection 

Detects global data 

drifts while preserving 

data privacy 

Sensitive to parameter choices 

2024 

[54] 

Detection and 

Mitigation 

Detects harmful drift 

using Data Distributions 

with Low Accuracy 

(DDLA) before 

retraining 

Machine learning (ML) 

pipeline optimization 

Reduces unnecessary 

retraining  

 and enhances cost 

Relies on decision tree 

interpretation and may not detect 

all types of harmful drift 
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Fig. 6  Challenges of Drift Management 

D. Drift Prevention Challenges for IoT Device Classification 

Preventing drift in IoT device data presents several 

challenges, which include: 

a. Proactive Adaptation Timing: Preventing drift 

necessitates predicting when changes might occur and 

implementing preventive measures ahead of time. 

Timing these adaptations proactively without 

overreacting is a challenge. 

b. Balancing Flexibility and Stability: Drift prevention 

strategies should maintain model stability while 
allowing for adaptation to changing circumstances. 

Striking the right balance between flexibility and 

stability is a complex task. 

c. Balancing Flexibility and Stability: Ensuring that 

incoming data is of high quality and free from anomalies 

is essential for effective drift prevention. Quality control 

mechanisms must be in place to handle noisy or 

incomplete data. 

d. Resource Efficiency: Drift prevention should be 

resource-efficient, especially in resource-constrained 

IoT environments. Ensuring that preventive measures do 

not overly tax device resources is a challenge. 
e. Ethical Considerations: Implementing preventive 

measures might involve monitoring user behavior and 

device data. Balancing the need for drift prevention with 

user privacy and ethical considerations is a crucial 

challenge. 

f. Security Against Manipulation: Drift prevention 

strategies must safeguard against potential manipulation 

by malicious actors who may attempt to induce drift or 

circumvent preventive measures. Ensuring robust 

security against such threats is a significant challenge. 

These challenges in drift prevention are critical in the 
context of IoT device classification to maintain model 

stability and reliability while proactively addressing the 

risk of concept drift. 

E. Drift Detection Challenges for IoT Device Classification 

Detecting drift in IoT device data presents several 

challenges, which include: 

a. Real-time Detection: IoT systems often require real-time 
or near-real-time detection of drift for prompt responses. 

Developing drift detection methods that can operate in 

time-sensitive environments is a challenging task. 

b. Scalability: With the increasing number of IoT devices, 

scalable drift detection solutions are essential to handle 

large volumes of streaming data efficiently. 

c. Privacy and Ethics: Drift detection may involve 

monitoring user behavior and device data. Balancing the 

need for drift detection with user privacy and ethical 

considerations is crucial. 

d. Adversarial Attacks: Malicious actors can manipulate 
IoT data to trigger false alarms or evade detection. Drift 

detection methods must be resilient to such adversarial 

attacks. 

e. Data Quality: Noisy or incomplete data can make it 

challenging to distinguish genuine drift from data 

anomalies. Robust drift detection mechanisms are 

needed to handle data quality issues. 

F. Drift Adaptation Challenges for IoT Device Classification 

Drift adaptation in IoT device classification encounters 
specific challenges, which include: 

a. Timeliness: Adaptations must occur promptly to 

maintain model accuracy. Delayed adaptations may lead 

to incorrect classifications. 

b. Resource Constraints: IoT devices often have limited 

computational resources. Adapting complex models 

with minimal resources is a challenge. 

c. Noise Handling: Drift adaptation methods must 

distinguish between genuine drift and random noise or 

anomalies in data. 

d. Robustness Against Adversarial Attacks: Adversaries 
can exploit adaptations to deceive models. Drift 

adaptation strategies must be resilient against such 

attacks. 

e. Interpretability: Ensuring that adapted models remain 

interpretable and explainable is important for 

transparency and trust. 

G. Drift Mitigation Challenges for IoT Device Classification 

Mitigating drift in IoT device classification presents 

specific challenges, which include: 
a. Long-term Effectiveness: Mitigation strategies must 

address the long-term consequences of concept drift to 

ensure sustained model accuracy over time. 

b. Data Retention: Maintaining a historical record of data 

becomes crucial to assessing and mitigating the impact 

of concept drift accurately. 

c. Resource Allocation: Allocating sufficient resources for 

continuous model improvement and mitigation 

strategies can be challenging within resource-

constrained IoT environments. 

d. Real-time Decision-making: Swift and accurate 
decisions are required to adapt to drift and mitigating the 

effects in real time can be complex. 
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e. Model Complexity: Balancing the complexity of 

mitigation models with the resource limitations of IoT 

devices is an ongoing challenge. 

f. Security Concerns: Ensuring that mitigation measures 

do not inadvertently introduce vulnerabilities or expose 

the system to security risks is a critical consideration. 

H. Critical Gap Analysis 

This critical analysis focuses on the specific challenges and 

research gaps concerning the issue of drift in IoT device 

classification. Drawing insights from the comprehensive 

evaluation, we shed light on the critical concerns related to 

drift prevention, drift detection, drift adaptability and drift 

mitigation based on their specific challenges in the context of 

machine learning (ML) classification for IoT devices. In our 

in-depth analysis of research gaps for IoT device 

classification, particularly concerning the pervasive challenge 

of drift. It is observed that: 

1) For Drift Challenges in IoT Device Classification: 
There are 21 distinct challenges identified across these areas. 

A total of 21 distinct challenges are identified, which include 

(6 Prevention +5 Detection +5 Adaptability +5 Mitigation) 

challenges are discussed here, and several critical lessons 

have emerged to shape future endeavors in this domain. 

2) For Scalability and Resource Efficiency: With the 

growth of IoT deployments, scalable solutions 

accommodating device proliferation and drift complexities 

are essential. Resource-efficient solutions are necessary for 

resource-constrained environments. 

3) For Data-Driven Approaches: Developing techniques 

leveraging unlabeled data for drift detection can enhance 

classification accuracy. 

4) For Security and Privacy Measures: Drift detection 

and adaptation mechanisms must withstand potential attacks 

and protect sensitive IoT data integrity. 

5) For Critical Insights for Future Research 

a. Swift prevention and detection of drift are crucial for 

maintaining classification model accuracy. 

b. Real-time detection and proactive adaptation are 

necessary, supported by suitable ML algorithms. 

c. Standardization of ML models and algorithms is 

essential for compatibility and interoperability in 

diverse IoT setups. 

d. Model generalization is vital for long-term accuracy 

improvement and resilience against drifting. 

e. Adaptive strategies balancing stability and adaptability 

are imperative. 

Bridging these research gaps is vital for ensuring the 
resilience and accuracy of ML classification systems in the 

dynamic IoT environment Addressing these drift issues in IoT 

device classification demands research efforts that span 

generalization, efficient drift detection, adaptive strategies, 

scalability, standardization, resource-efficient solutions, data-

driven approaches, and robust security and privacy measures. 

Bridging these research gaps is essential to ensure the 

resilience and accuracy of ML classification systems in the 

dynamic IoT environment. 

 

I. Discussion and Suggestions  

In this section, we provide our discussion on addressing 

drift challenges in IoT device classification: (Insights and 

Strategies). Our comprehensive analysis of research gaps 
(Section 8) in IoT device classification has unearthed a series 

of valuable lessons that can serve as guiding principles for 

future endeavors in this field. These lessons encapsulate the 

essence of efficient drift prevention, detection, adaptation, 

and mitigation, as well as the broader landscape of IoT device 

classification. 

1) Efficient Drift Prevention and Detection: The crux of 

maintaining the accuracy and reliability of IoT device 

classification models lies in the timely prevention and 

detection of drift. Real-time drift detection and proactive 

adaptation are instrumental in preserving model performance. 
To achieve this, researchers should explore efficient ML 

algorithms, such as Random Forest and LSTM, combined 

with strategies like algorithmic stability and online learning. 

2) Standardization for Drift Adaptation: The lack of 

standardization in ML models and algorithms for drift 

handling compounds the drift issue. Establishing standardized 

approaches to drift detection and adaptation is vital to ensure 

compatibility and interoperability across different IoT setups. 

The adoption of ensemble methods and other standardized 

practices can significantly enhance the adaptability of IoT 

systems. 

3) Model Generalization for Drift Mitigation: Drift, a 

recurring challenge in IoT device classification, can 

potentially undermine model accuracy over time. Robust 

model generalization stands out as a primary strategy in 

effectively countering drift. Therefore, researchers should 

explore techniques and strategies that fortify model 

generalization and reduce vulnerability to drift. Machine 

learning algorithms such as Neural Networks and SVM can 

help in this regard. 

4) Adaptive Strategies: The dynamic nature of IoT data 

necessitates models that can adapt to drift without 

compromising their stability. Investigating and designing 
adaptive strategies that dynamically update models when drift 

is detected is crucial. Balancing the need for model stability 

with the necessity for adaptation becomes the cornerstone for 

successful implementation. 

5) Scalability Challenges: With the increasing 

deployment of IoT devices, scalability has emerged as a 

pressing concern. Drift introduces additional complexity, 

impacting accuracy and computational costs. Research must 

focus on scalable solutions that can accommodate the growing 

number of devices and the challenges posed by drift. This 

entails examining machine learning models such as k-means 

Clustering and employing IoT network metrics to assess 

scalability. 

6) Resource-Effective Solutions: IoT devices often 

operate in resource-constrained environments. Drift 

mitigation in these settings requires resource-efficient 

solutions. Researchers should explore methods that minimize 

computational demands while effectively mitigating drift. 

Resource allocation algorithms and resource usage metrics 

can play a vital role in ensuring efficiency. 
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7) Data-Driven Drift Detection: IoT devices generate 

vast amounts of unlabeled data, complicating drift detection. 

Developing data-driven drift detection techniques is 

imperative to enhance classification accuracy. By employing 

data-driven detection techniques, model accuracy can be 

improved, even in situations where labelled training data is 

scarce. 

8) Security and Privacy in Drift Mitigation: Security and 

privacy concerns remain paramount in the context of drift 

mitigation. Drift detection and adaptation mechanisms must 
be robust against potential attacks and safeguard sensitive IoT 

data. Employing secure machine learning models and 

conducting security vulnerability scans are essential 

components of this effort. 

The multifaceted domain of IoT device classification 
presents unique challenges and opportunities. Our analysis 

has highlighted critical lessons that underscore the importance 

of proactive drift prevention, standardized approaches, model 

generalization, adaptive strategies, scalable solutions, 

resource-efficient methods, data-driven detection, and 

security measures. These lessons serve as guiding principles 

for researchers and practitioners in the realm of IoT device 

classification, ensuring that classification systems remain 

resilient and effective in dynamic and ever-evolving 

environments. 

IV. CONCLUSION 

IoT device classification is crucial for device management, 

security, and network management. However, drift challenges 

may arise, necessitating the retraining of ML models, leading 

to increased costs and complexity. This research paper 

presents a comprehensive investigation into the various 

aspects of machine learning techniques in the context of IoT 

device classification, particularly under concept of drift. The 

study encompasses various facts of IoT classification process, 
starting from prevention, detection, adaptation to mitigation. 

Additionally, this paper offers a comprehensive overview of 

the current landscape, highlighting the strengths and 

limitations along with future directions. 

The future of drift detection in IoT device classification 

holds exciting potential across several key areas. First, 

advanced machine learning models are being developed to 

autonomously adapt to various types of drift, ensuring the 

continued accuracy of models in dynamic environments. 

Second, interdisciplinary collaboration is becoming 

increasingly crucial, with experts in ethics, law, and sociology 

contributing to addressing the ethical and privacy concerns 
surrounding drift detection. Third, edge-native drift detection 

models are emerging, capable of efficiently operating on IoT 

devices themselves, reducing the need for centralized 

processing. Finally, blockchain integration is being explored 

to enhance the security and auditability of drift detection 

processes. 

Moreover, the future of drift management in IoT device 

classification, encompassing both drift adaptation and 

mitigation, holds immense promise. Strategies are being 

developed to create edge-native models and 

adaptation/mitigation approaches that can efficiently operate 
on resource-constrained IoT devices. Explainable techniques 

are being emphasized to ensure that adaptations and 

mitigation strategies remain transparent and interpretable, 

building trust in their functionality. Furthermore, federated 

learning approaches are being explored to distribute both 

adaptation and mitigation processes across networks of IoT 

devices, enabling collaborative and efficient management. 

These efforts also encompass ethical and privacy 

considerations, addressing issues like data usage, model 

transparency, and the responsible handling of sensitive 

information. 
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