
Vol.15 (2025) No. 3

ISSN: 2088-5334

A Deep Learning Approach to Malware Detection: Leveraging

Multilayer Perceptron for Permission-Based

Ameerah Muhsinah Jamil a, Mohd Faizal Ab Razak a,1, Sharfah Ratibah Tuan Mat b, Mahir Pradana c,

Deden Witarsyah d,2
a Faculty of Computing, University Malaysia Pahang, Gambang, Kuantan, Pahang, Malaysia

b Department of Mathematics and Computer Science, Politeknik Sultan Haji Ahmad Shah, Malaysia
c Department of Business Administration, Telkom University, Bandung, Indonesia

d Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia

Corresponding authors: 1faizalrazak@umpsa.edu.my; 2deden@uthm.edu.my

Abstract— The active growth of social networking worldwide has encouraged the emergence of malware that threatens such devices.

Continuously researching according to malware threats has been accomplished to prevent the malware spread. Yet, malware attack

continues to change and occur in very large numbers that requiring better solutions. In this paper, we proposed a Multilayer perceptron,

a type of deep learning approach to tackle malware attacks focused on permission features. The study conducted eight experiments

with 15, 20, 25, and 30 selected features for both algorithms, utilizing a dataset of 10,000 applications—5,000 benign (Androzoo) and

5,000 malicious (Drebin). The detection process involved three phases: data gathering, preprocessing, and classification, employing 10-

fold cross-validation. The validation through all the experiments performed in this study achieved the highest accuracy of 98.2%

accuracy, though other feature sets exhibited minimal variation in performance. Further dataset analysis revealed that the INTERNET

permission was prevalent in 99% of malware samples and 81% of benign applications, highlighting its widespread use. This study

underscores the importance of feature selection in Android malware detection and suggests that future research integrate risk

assessment to classify and prioritize permission requests. Risk-based analysis could enhance malware detection by systematically

evaluating potential security threats, addressing the rapid proliferation of malware. The findings contribute to the ongoing development

of robust Android security mechanisms and encourage further research in permission-based threat mitigation strategies.

Keywords—Feature selection; risk assessment; Android malware; permission-based analysis; deep learning.

Manuscript received 12 Oct. 2024; revised 8 Jan. 2025; accepted 26 Feb. 2025. Date of publication 30 Jun. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Individuals utilize mobile devices for a variety of purposes,

similar to how they use desktop computers for activities such

as web surfing, online banking, e-commerce, and social

networking. These devices have become an essential aspect

of human life, gradually replacing personal computers both at

home and in professional settings. The global popularity and

high demand for mobile devices, coupled with their diverse

functionalities, have provided an opportunity for hackers to

develop and distribute malicious code targeting mobile
devices. These hackers are incentivized to exploit

vulnerabilities and spread threats through various means,

potentially causing harm to mobile devices and pilfering

sensitive information. They can employ tactics such as

damaging the device itself and exfiltrating confidential data

[1], [2]. The hackers' gain access to mobile device data is often
accomplished through techniques like synchronization, buffer

overflows, spamming, and phishing, particularly in the

context of Android devices [3].

From the statistics, the risk tool (41.24%) was most

threatening in 2019, followed by adware (18.71%) and trojan

(11.83%). It is stated that the majority of Android malware

falls under the category of Trojans. This type of Android

malware unintentionally lures users into subscribing to

unnecessary services, resulting in significant harm to their

mobile devices [4]. Android malware applications are

responsible for surreptitiously gathering user account
information, subscribing to premium SMS services, and even

exploiting hardware vulnerabilities [5].

Mobile devices offer distinct functionalities compared to

desktop computers, including SMS messaging, frequent

location updates, and widespread accessibility. Additionally,

960

mobile users tend to centralize their information storage on

phones due to their convenience and swift accessibility. Given

their popularity and impressive capabilities, mobile devices

have become a primary target for malicious activities. For

instance, around 21 million Android devices fell victim to

infection during installation from the Google Play Store [6].

In response to this threat, Google has outlined protective

measures to help Android users avoid malware attacks.

Google has implemented permission-based features as a

central security mechanism for Android users [7]. These
permission features are a component of Google's Android

malware detection strategy, designed to strengthen the

defense against malware infections in the Android ecosystem.

Users are empowered to scrutinize the permissions requested

and halt the installation process if the permissions appear

suspicious or overly permissive. While Android automatically

grants some permissions without user confirmation [8], others

require explicit user approval depending on the nature of the

requested permission, which is classified as either standard or

potentially hazardous [9]. Consequently, a thorough

evaluation of the malware-related aspects within the
application code is imperative to counter and diminish

instances of malware breaches effectively.

Static analysis and pattern recognition are used in deep

learning malware detection to find complex attack methods.

Deep learning models that extract discriminative features

from permissions, API calls, and opcode sequences, including

Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), and Multi-Layer Perceptrons (MLPs),

have been successfully utilized to detect malicious

applications. Recent research has demonstrated the efficacy

of deep learning in detecting malware in desktop and mobile
platforms [10], [11]. Deep learning has improved malware

detection accuracy, response times in real-time environments,

and achieved better classification results for malware variants,

while also reducing computation time [12]-[16]. The

implementation of intelligent visualization [17] and the

automation model architecture [18]. These developments

underscore the growing reliance on deep learning as a vital

technique in combating evolving malware threats.

In the field of malware analysis, features, particularly

permissions, play a crucial role in classifying malware [19].

Malware analysis involves identifying features within

applications that span multiple lines of code. Static analysis
extracts these features from numerous lines of code. The

comprehensive evaluation of all features and the subsequent

selection of pertinent ones from these lines is a stringent task,

as security analysts are obligated to initially assess all

malware and benign applications to pinpoint relevant features

before identifying distinctive attributes or components of

malware or benign applications [20]. This highlights the need

to reduce machine learning duration by removing noisy and

irrelevant data [21], which in turn leads to an effective

detection method [22].

An additional security mechanism designed to address
malware infections involves the use of an intrusion detection

system (IDS). This can take the form of hardware, software,

or a hybrid solution, and its purpose is to monitor the activity

within a network or system, aiming to identify indicators of

malicious intent. This technology is dedicated to assessing the

activities within networks and systems, aiming to uncover

potential vulnerabilities that could be exploited against a

computer system. Furthermore, security analysts employ two

static and dynamic analyses. Nonetheless, these approaches

prove inadequate in cases where attackers employ techniques

to evade detection, such as polymorphism and obfuscation,

which complicates the process of risk assessment and Android

malware identification. As a result, a thorough examination of

permission features and the implementation of an IDS in

Android malware identification are undertaken through the

utilization of a static analysis methodology.
The key contributions of the study are as follows:

 The experiment was practiced on 96,074 datasets

respectively. The samples were retrieved from Drebin

for malware and Androozo for benign.

 The experiment applied the permission features

extracted from AndroidManifest.xml in malware

detection.

 The malware detection applied the Information Gain

algorithm for feature optimizations.

The remainder of this paper is organized as follows.

Section 2 discusses the approach and flow of malware
detection, the general model, and malware detection for

feature selection. Section 3 describes the evaluation process

and findings of the experiment. Section 4 highlights the

paper's challenges and emerging trends, as well as

recommendations for future research.

II. MATERIALS AND METHODS

The model of the primary system is visually shown in

Figure 1. The model is divided into three phases: dataset

collecting, pre-processing, and detection. These phases are
intricately interconnected. The initial step involves obtaining

permissions from both benign and malicious applications.

This entails the decompilation of the .apk files, followed by

the extraction and filtration of permissions. These gathered

permissions are then compiled and saved in a readable .arff

format. This file contains a comprehensive set of attributes

about functionality, thoughtfully refined to enhance

efficiency by eliminating extraneous noise and irrelevant

elements. To definitively identify malware, a Bayesian

classifier is employed, facilitating the classification of both

malware and benign instances.

Fig. 1 General model for a Bayesian classifier

Dataset collection, pre-processing (data extraction), feature

refinement, and detection are the steps in the Android

malware identification process, as depicted in the above

961

figure. The datasets used in this research comprised a total of

96,074 samples. The subsequent phase in the Android

malware detection procedure involved using a deep-learning

classifier.

A. Dataset Collection Phase

Initially, the samples underwent manual categorization,

resulting in the classification of each as either benign or
malicious. This classification process for both malware and

benign instances occurred alongside the assessment of the

Android application's status on VirusTotal. VirusTotal serves

as an online platform tailored for virus detection via uploaded

files and URLs. The verification of Android malware samples

was conducted using VirusTotal, a tool widely adopted within

the research community. The dataset samples were used for

the feature selection procedure that followed this validation.

Table III provides a summary of the top 20 Android malware

families found in the 96,074-sample dataset.

TABLE I

DATASET (96,074 SAMPLES)

Samples Source Number of datasets

Benign Androzoo 48820
Malware Drebin 47254

TABLE II

THE TOP 20 FAMILIES OF ANDROID MALWARE (96,074 SAMPLES)

Features (SHA256) Virus Total Family Total permission
86d3f5efb290a6b06756c3c8c04907b2c137434c8e28a6e6146e0949426cf976 26 Adrd 63

877b1e8455d444a3e422f8926bc957d77bddfcb0b700ee53e438be2dd6bdbd67 24 Generic 63

8b8bb30a8a1f5c2c214dbfc6809027e869479a7aa918fa90f2e29927d8b43991 10 Domob 48

2ac93b967118e65a8bbfdd47191eff63278e2f453c3e336ead40ed19c7fc621d 13 Commplat 46

24909850e15123ea216c0c40819883b6e704fa31d841a752e2b97a92f2677593 15 Skymobi 44

bf328a4fefb6c503b1412f2fa0cf0322f43757385f7cbd051b9ca832b97b630d 16 Skymobi 44

05045fc2b74f8e40a1a27263639c6e81da36071220bb0f56b7d524eeeca5c0fd 13 DroidRooter 43

73d7cc2075e20cd17733b9ded2d6572863c4d2c4a80adf583b046429667bcdb4 10 Dowgin 43

ad2d0fe6cd6dc8a8ff489ffdeb88a8d2ecdc8a8dff82e75c08e2e2770cab93d8 24 Dowgin 43

0c6fe11473ada6ecf8fae9ab2a394385a3ca88838e9ab54ed3bebfce6353a4d6 8 DroidRooter 43

1aa3ac89ae5958c35bb4a9740a8a310867228f2f80a35a6e092b950e6e17f9be 21 Skymobi 42

1ef66d29669d25f22a42a7a5a208f14970ee27da829acbe9ef8d847b6b80f2f9 18 Dowgin 42

a004fac82b918c26b81aec6b6481d0208cc5cbf9734a229dd1024fce91c83068 22 Cooee 40

25ef6c69b2fa60cd024bc2c08a4410caa59f8dad75397a7a7f84e74a825932ac 24 FakeInstall 39

5f87b65bc1c1e07606b1fe3558096d1e1ceb56b262fa57ee328208e2b6ad4470 24 Dowgin 39

7600c278eadfb92ef25145e76132159cc31fc52de7956d28577a96a7b8ad2cec 22 Riskware 39

2e3eb2c85779d85ccbdf6856e22b06fd7eea0d4a3fcd972f6ff0f9605fe453b1 27 Tekwon 38

83e4db70dc9d846a4a0205930196a636c043d6f3c0ee1bfd35bf8148f9134a87 23 Tekwon 38

91d62e582949782f8edf0f7fd685846ca0073be53159d6a2d953344c8c92d2ee 29 Dowgin 38

d17f1f561368ac9f7e46678f7a83590d9dcd5b33c166e1e22a8a1b6e257a2f89 19 Cooee 38

The top 20 Android malware families examined in this

study are presented in Table III. The SHA-256, VirusTotal,

family, and total permissions are the four columns that

compose the table. The secure cryptographic hash function

represented by the SHA-256 column creates a distinct 256-bit

value for every sample; the values are taken from the

VirusTotal platform. The VirusTotal column provides a

comparative analysis of malware and benign datasets.

Additionally, to supplement the information in the VirusTotal

column, the Android malware families found in this

investigation are listed in the family column.

Fig. 2 Dataset collection phase

B. Feature Selection

The feature extraction phase is predominantly centered on

permissions, a critical component in the analysis of Android

applications. This process involves decompiling the APK file

to access the AndroidManifest.xml, which contains

permission details, and compiling the classes.dex file, which

incorporates Dalvik bytecodes and API calls through static

analysis. Advanced tools such as Androguard and ApkTool

are employed to extract features from the
AndroidManifest.xml and classes.dex files, which

collectively provide insights into permissions, system calls,
intents, and native code. The AndroidManifest.xml serves as

a pivotal resource, encapsulating the application's metadata,

including the permissions requested by the application under

the <uses-permission/> tag. During this phase, the APK is

decompressed, and its binary manifest file is translated into a

human-readable XML format. The Androguard tool, in

particular, is utilized to precisely extract and analyze

permission tags, enabling a thorough investigation of the

application’s permission structure.

962

Feature selection, a prevalent pre-processing technique,

aims to identify the most relevant attributes by extending and

filtering out irrelevant or negatively impactful features on

classification outcomes. The benefits include enhancing

efficiency and accuracy. While [23] and [24] employed

permission-based features and API call sequence features,

respectively, [23] and [25] used intent features. The

optimization process for permission features is time-intensive

during training and testing, but mitigates overfitting,

streamlining Android malware detection. Furthermore,
optimization can enhance the experiment's accuracy. This

process commences with dataset cleansing to eliminate

artifacts and superfluous features. Missing data points are

filled with zeros before randomization to account for the

randomness of the filtering process and eradicate potential

biases. The dataset optimization employed the Chi-square

algorithm in WEKA, a comprehensive software providing

machine learning algorithms [26].

C. Detection phase:

Leveraging deep learning techniques, the proposed system

offers a promising approach to enhancing protection against

Android malware. Due to their ability to extract relevant,

higher-level conceptual features from data, they may provide

an effective, broad, and scalable framework for detecting

current and unknown Android malware [27]-[31]. Compared

to unsupervised learning, a deep learning Multilayer

perceptron has a higher detection rate because it is based on

supervised learning. The proposed method is described by

using two phases: a static analysis phase and a deep learning

classifier phase. Figure 3 presents the model of the Android
mobile malware detection system, which utilizes deep

learning for predictive analysis.

Fig. 3 Deep Learning Malware Detection System

Feature selection is a frequent approach in data pre-

processing for machine learning and, to a lesser extent, deep

learning. Neural networks inherently function as a black box,

often assigning lower weights to features with lesser
discriminatory power when generating non-linear

combinations. However, this study opted to proceed with

feature selection for each of the ten groups containing 96,074

samples. This selection was performed to facilitate a

comparison of detection rates with split samples. Chi-square

was adopted as the tool for optimizing feature selection. This

algorithm was selected for its ability to measure dissimilarity

and attain the highest accuracy through feature selection. The

study involved the examination of 96,074 Android

applications, including 48,820 benign samples and 47,254

malware instances. Feature selection was executed using the
Waikato Environment for Knowledge Analysis (WEKA), a

sophisticated and adaptable software suite that supports a

wide range of machine learning algorithms [8].

To address the binary classification challenge posed by the

dataset's binary nature, a multilayer perceptron was developed

in this study. During this phase, all required permissions were

identified, and features with little potential to distinguish the

target class were eliminated. During the learning phase, the

dataset was separated into two sections to evaluate the deep

learning classifier's detection ability, with 70% training and

30% testing sets. The training set was instrumental in refining

the model for precise detection. The dataset was segmented

into ten classes, with sample sizes of 10,000, 20,000, 30,000,
40,000, 50,000, 60,000, 70,000, 80,000, 90,000, and 96,074.

These samples, encompassing both benign and malware

instances, were employed for training. Each iteration was

completed within 1 second.

D. Evaluation Measure

The performance of the Android malware detection system

was assessed using accuracy and loss metrics. The study

employed fundamental metrics to identify Android malware,
with accuracy representing the correct identification of

malicious content and a higher true positive rate indicating

improved performance.

Loss refers to the cost function value during the training

phase, while value loss indicates the cost function value

during cross-validation, with value accuracy calculated on the

validation set.t. Throughout the experiments, various epochs

were examined to assess the relationship between accuracy

and loss rates. The primary goal was to enhance the detection

rate of the deep learning model.

To achieve this, a thorough analysis of the parameters

influencing detection performance was carried out. Key
parameters, including nodes, epochs, batch size, hidden

layers, optimizer, and dropout, were initially set to their

default values. These parameters were then incrementally

adjusted from their minimum to maximum values to identify

optimal configurations. Once the optimal node value was

determined, further experiments were conducted to fine-tune

the next parameter. To ensure model consistency, random

weights, activation functions (RELU and SoftMax), and

cross-entropy were applied, but the cost function was

maintained. This iterative parameter adjustment process

sought to determine the most effective configurations for
enhancing malware detection. The experiment encompassed

variations in epoch types, batch sizes, and sample sizes. A

dataset comprising 96,074 samples was used, which was

subsequently divided into ten groups. The experimentation

was conducted by increasing the sample sizes. These groups

were comprised of 10,000, 20,000, 30,000, 40,000, 50,000,

60,000, 70,000, 80,000, 90,000, and 96,074 samples. To

assess result precision and comprehend factors impacting the

experiment's accuracy, adjustments were made to both epoch

size and batch size. The experiments were conducted under

two conditions: one involving feature selection and the other
without. This approach aimed to validate the detection

capabilities of deep learning with substantial data samples,

highlighting its capacity to achieve high accuracy even

without feature selection. The experiments were executed

with a validation split set at 0.3, a batch size of 500, and four

distinct epoch variations. Each epoch iteration was completed

in a duration of 1 second.

963

III. RESULTS AND DISCUSSION

The second evaluation discussed in this section was

conducted on a dataset comprising 96,074 entries. Within this

dataset, there were a total of one hundred sixty (160)

permissions considered as features. However, after the

optimization procedure, only 20 features were utilized.
Section 3 describes the detection framework and discusses the

mechanics of the optimization procedure.

A. Evaluation of Accuracy without Feature Selection

Figures 4 to 11 represent the accuracy and loss for two

different sample sizes: 10,000 and 20,000 samples. The

accuracy of each test validation improved as the number of

epochs rose, with accuracy rising and loss decreasing in

proportion. Looking at these figures, batch consistency refers
to how well a batch of testing data aligns with the training data

in terms of accuracy. Loss, on the other hand, represents the

degree of error in the data. When accuracy is high and loss is

low, it indicates minimal errors in a subset of the data. Loss is

calculated during the training process, and its value is

determined using the testing data. The validation set was

implemented to assess the model's effectiveness, while the

training set was used to train the model.

As the number of epochs increased, each test's accuracy

improved while the loss reduced. For handling large data

samples, a batch size of 500 proved to be the optimal choice,

resulting in a reduction of one second in iteration time. We
executed 84 iterations, with 30% of the total samples used for

validation. Figure 7 depicts the accuracy and loss graphs for

10,000 samples, while Figures 8 to 11 show the corresponding

graphs for 20,000 samples. Each graph depicts performance

over four (4) separate epochs for each sample size.

Fig. 4 The 10-EpochsAccuracy and Loss Graph (10,000 Datasets)

Fig. 5 The 25-Epochs Accuracy and Loss Graph (10,000 Datasets)

Fig. 6 The 50-Epochs Accuracy and Loss Graph (10,000 Datasets)

Fig. 7 The 100-EpochsAccuracy and Loss Graph (10,000 Datasets)

Fig. 8 The 10-Epochs Accuracy and Loss Graph (20,000 Datasets)

Fig. 9 The 25-Epochs Accuracy and Loss Graph (20,000 Datasets)

964

Fig. 10 The 50-Epochs Accuracy and Loss Graph (20,000 Datasets)

Fig. 11 The 100-Epochs Accuracy and Loss Graph (20,000 Datasets)

TABLE III

ACCURACY OF USING 20 FEATURE SELECTION OF CHI-SQUARE

Samples Epochs (accuracy) Epoch (loss)

10 25 50 100 10 25 50 100

10,000 0.9673 0.9777 0.9788 0.9802 0.1139 0.0774 0.0775 0.0911
20,000 0.9663 0.9783 0.9786 0.9779 0.1146 0.0744 0.0795 0.0944

30,000 0.9685 0.9773 0.9776 0.9776 0.1091 0.0792 0.0785 0.9500
40,000 0.9685 0.9758 0.9798 0.9787 0.1082 0.0801 0.0738 0.0930

50,000 0.9669 0.9763 0.9771 0.9799 0.1133 0.0800 0.0796 0.0931

60,000 0.9674 0.9764 0.9774 0.9797 0.1122 0.0801 0.0782 0.0914
70,000 0.9672 0.9746 0.9793 0.9784 0.1118 0.0824 0.0713 0.0875

80,000 0.9674 0.9773 0.9770 0.9785 0.1109 0.0775 0.0751 0.0927
90,000 0.9682 0.9773 0.9804 0.9781 0.1088 0.0773 0.0760 0.0979

96,074 0.9660 0.9743 0.9786 0.9784 0.1142 0.0821 0.0775 0.0916

B. Evaluation of Accuracy Using Chi-square Feature

Selection

Table III presents the results of malware detection using the

deep learning method with Chi-squared feature selection.

Table III displays the accuracy and loss results obtained

from the Chi-square algorithm's top 20 feature selection

process across different sample sizes and epochs. Increasing

the number of epochs led to improved test accuracy and

decreased loss. For handling large data samples, the optimal

batch size was found to be 500, which added one second to

each iteration. A total of 84 batch sizes were produced, with

30% of the total sample set aside for the validation process to
complete a single loop. From Figures 12 to 15 show the

accuracy and loss trends for 10,000 samples over four distinct

epochs, whereas from Figures 16 to 19 show the similar

accuracy and loss patterns for 20,000 samples across four

different epochs for each sample size.

Fig. 12 The 10-Epochs Accuracy and Loss (10,000 Datasets)

Fig. 13 The 25-Epochs Accuracy and Loss (10,000 Datasets)

965

Fig. 14 The 50-Epochs Accuracy and Loss (10,000 Datasets)

Fig. 15 The 100-Epochs Accuracy and Loss (10,000 Datasets)

Fig. 16 The 10-Epochs Accuracy and Loss (20,000 Datasets)

Fig. 17 The 25-Epochs Accuracy and Loss (20,000 Datasets)

Fig. 18 The 50-Epoch Accuracy and Loss (20,000 Datasets)

Fig. 19 The 100-Epoch Accuracy and Loss (20,000 Datasets)

The graphs in Figures 12 to 15, as well as Figures 16 to 19,

show the accuracy and loss metrics using the Chi-square

approach for feature selection, applied to sample sizes of

10,000–20,000, respectively. These results were based on the

top 20 permission group features. As the number of epochs

increased, test validation accuracy improved, and loss
decreased. The consistency of the training data batch, as

shown in the figures, reflects the accuracy achieved during

testing. Loss represents the error within the data. A higher

accuracy with lower loss indicates minimal errors on a

relatively small dataset. The loss values for the training and

testing datasets were derived. The model was improved using

the training set, and its effectiveness and performance were

evaluated using the validation set.

IV. CONCLUSION

The study presented an analysis that utilized a Bayesian

classifier to detect mobile malware efficiently. In this work,

permission-based features have been selected for malware

analysis. The permissions have been extracted from the

AndroidManifest.xml file. The best features were identified

through optimization using the Information Gain and Chi-

Square algorithms. The reason for using two algorithms is to

compare the performance and get a higher accuracy rate.

Specifically, the study implemented eight experiments, each

consisting of 15, 20, 25, and 30 features for both algorithms.
The 10,000 samples utilized in the experiments were obtained

from Drebin for malware and Androzoo for benign

applications. The samples comprised 5,000 benign applications

and 5,000 malicious applications. Detection was divided into

966

three phases: data gathering, pre-processing, and detection. The

experiment was implemented with 10-fold cross-validation

using WEKA tools. As a result, the Chi-Square algorithm with

15 features outperformed the other features, achieving a 91%

accuracy rate. However, there was not much difference in the

accuracy rate for the other features in this work. Additionally,

analysis of the dataset indicated that the INTERNET

permission was the top permission, with 99% of malware and

81% of benign samples. Based on the analysis, the Internet has

been used by most people around the world. This study focused
on the feature selection of two algorithms in malware detection.

Future research could benefit from incorporating risk

assessment for each feature, as it is considered a crucial aspect

of malware detection. Risk assessment facilitates the

classification, prioritization, and zoning of permission requests,

helping to identify and mitigate the potential damage posed by

malware. This strategy aims to encourage additional research,

particularly in overcoming the rapid proliferation of malware.

Finally, this paper presents a thorough review of the subject,

emphasizing the significance of continued research in Android

malware detection.

ACKNOWLEDGMENT

The Ministry of Higher Education FRGS funds the work

under Project ID: RDU192613 and RDU192607. The authors

thank anonymous reviewers for their constructive comments

and University Malaysia Pahang for their support.

Communication of this research is made possible through

monetary assistance by Universiti Tun Hussein Onn Malaysia

and the UTHM Publisher's Office via Publication Fund E15216

REFERENCES

[1] N. S. Nordin and M. A. Ismail, "A hybridization of butterfly

optimization algorithm and harmony search for fuzzy modelling in

phishing attack detection," Neural Comput. Appl., vol. 35, no. 7, pp.

5501-5512, Mar. 2023, doi: 10.1007/s00521-022-07957-0.

[2] M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, "The rise of

'malware': Bibliometric analysis of malware study," J. Netw. Comput.

Appl., vol. 75, pp. 58-76, 2016, doi: 10.1016/j.jnca.2016.08.022.

[3] C. Yuan et al., "Android applications categorization using Bayesian

classification," in Proc. Int. Conf. Cyber-Enabled Distrib. Comput.

Knowl. Discov. (CyberC), 2016, pp. 173-176,

doi:10.1109/CyberC.2016.42.

[4] Z. U. Rehman et al., "Machine learning-assisted signature and

heuristic-based detection of malwares in Android devices," Comput.

Electr. Eng., vol. 69, pp. 828-841, Jul. 2018,

doi:10.1016/j.compeleceng.2017.11.028.

[5] O. Koucham, T. Rachidi, and N. Assem, "Host intrusion detection

using system call argument-based clustering combined with Bayesian

classification," in Proc. SAI Intell. Syst. Conf. (IntelliSys), 2015, pp.

1010-1016, doi: 10.1109/IntelliSys.2015.7361267.

[6] C. H. Liu, Z. J. Zhang, and S. D. Wang, "An android malware detection

approach using Bayesian inference," in Proc. IEEE Int. Conf. Comput.

Inf. Technol. (CIT), 2016, pp. 476-483, doi: 10.1109/CIT.2016.76.

[7] N. N. M. Nasri et al., "Android malware detection system using

machine learning," Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no.

1.5, pp. 327-333, 2020, doi: 10.30534/ijatcse/2020/4691.52020.

[8] O. Yildiz and I. A. Doǧru, "Permission-based Android malware

detection system using feature selection with genetic algorithm," Int.

J. Softw. Eng. Knowl. Eng., vol. 29, no. 2, pp. 245-262, 2019,

doi:10.1142/S0218194019500116.

[9] H. Hanif et al., "The rise of software vulnerability: Taxonomy of

software vulnerabilities detection and machine learning

approaches," J. Netw. Comput. Appl., vol. 179, p. 103009, 2021,

doi:10.1016/j.jnca.2021.103009.

[10] P. Sreekumari, "Malware detection techniques based on deep

learning," in Proc. IEEE Int. Conf. Big Data Secur. Cloud, 2020, pp.

65-70, doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00023.

[11] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, "A survey of

recent advances in deep learning models for detecting malware in

desktop and mobile platforms," ACM Comput. Surv., vol. 56, no. 6, pp.

1-41, 2023, doi: 10.1145/3638240.

[12] P. Saraswathi et al., "An artificial intelligence approach for malware

detection using deep learning," in Data Sci. Big Data Anal., 2023, pp.

583-599, doi: 10.1007/978-981-99-9179-2_44.

[13] H. Naeem and A. Batool, "Malware attacks detection in network

security using deep learning approaches," Int. J. Electron. Crime

Investig., vol. 7, no. 3, pp. 31-44, 2023,

doi:10.54692/ijeci.2023.0703160.

[14] V. K. Borate et al., "Analysis of malware detection using various

machine learning approach," Int. J. Adv. Res. Sci. Commun. Technol.,

vol. 4, no. 2, pp. 14-321, 2024.

[15] S. Mohan, S. Babu, and B. Sahoo, "Deep learning-based malware

detection," in Proc. Int. Conf. Comput. Commun. Netw. Technol.

(ICCCNT), 2024, pp. 1-6, doi:10.1109/icccnt61001.2024.10724407.

[16] R. Renugadevi et al., "Malware detection for Android systems using

deep learning," in Proc. Int. Conf. Inventive Syst. Control (ICISC),

2024, pp. 67-72, doi: 10.1109/ICISC62624.2024.00018.

[17] O. J. Falana et al., "Mal-Detect: An intelligent visualization approach

for malware detection," J. King Saud Univ.-Comput. Inf. Sci., vol. 34,

no. 5, pp. 1968-1983, 2022, doi: 10.1016/j.jksuci.2022.02.026.

[18] A. L. Brown, M. Gupta, and M. Abdelsalam, "Automated machine

learning for deep learning based malware detection," Comput. Secur.,

vol. 137, 2024, doi: 10.1016/j.cose.2023.103582.

[19] A. Qamar, A. Karim, and V. Chang, "Mobile malware attacks: Review,

taxonomy & future directions," Future Gener. Comput. Syst., vol. 97,

pp. 887-909, Aug. 2019, doi: 10.1016/j.future.2019.03.007.

[20] H. Eljak et al., "E-learning-based cloud computing environment: A

systematic review, challenges, and opportunities," IEEE Access, vol.

12, pp. 7329-7355, 2024, doi: 10.1109/access.2023.3339250.

[21] F. Wu, L. Xiao, and J. Zhu, "Bayesian model updating method based

android malware detection for IoT services," in Proc. Int. Wireless

Commun. Mobile Comput. Conf. (IWCMC), 2019, pp. 61-66,

doi:10.1109/iwcmc.2019.8766754.

[22] K. Sharma and B. B. Gupta, "Towards privacy risk analysis in android

applications using machine learning approaches," Int. J. E-Services

Mobile Appl., vol. 11, no. 2, pp. 1-21, Apr. 2019,

doi:10.4018/ijesma.2019040101.

[23] A. Feizollah et al., "AndroDialysis: Analysis of Android intent

effectiveness in malware detection," Comput. Secur., vol. 65, pp. 121-

134, Mar. 2017, doi: 10.1016/j.cose.2016.11.007.

[24] M. A. Jerlin and K. Marimuthu, "A new malware detection system

using machine learning techniques for API call sequences," J. Appl.

Secur. Res., vol. 13, no. 1, pp. 45-62, Dec. 2017,

doi:10.1080/19361610.2018.1387734.

[25] R. Taheri et al., "Similarity-based Android malware detection using

Hamming distance of static binary features," Future Gener. Comput.

Syst., vol. 105, pp. 230-247, Apr. 2020,

doi:10.1016/j.future.2019.11.034.

[26] M. F. A. Razak et al., "Bio-inspired for features optimization and

malware detection," Arab. J. Sci. Eng., vol. 43, no. 12, pp. 6963-6979,

Nov. 2017, doi: 10.1007/s13369-017-2951-y.

[27] M. Binjubier et al., "A GPU accelerated parallel genetic algorithm for

the traveling salesman problem," J. Soft Comput. Data Min., vol. 5, no.

2, pp. 137-150, 2024, doi: 10.30880/jscdm.2024.05.02.010.

[28] A. N. Yussuf et al., "Leveraging deep learning techniques for condition

assessment of stormwater pipe network," J. Civ. Struct. Health Monit.,

vol. 15, no. 1, pp. 619-633, Aug. 2024, doi: 10.1007/s13349-024-

00841-6.

[29] J. Purohit and R. Dave, "Leveraging deep learning techniques to obtain

efficacious segmentation results," Arch. Adv. Eng. Sci., vol. 1, no. 1,

pp. 11-26, Jul. 2023, doi: 10.47852/bonviewAAES32021220.

[30] Aswa, "AI-powered cybersecurity: Leveraging deep learning for real-

time threat detection and prevention," Int. J. Eng. Comput. Sci., vol.

14, no. 1, pp. 26758-26772, Jan. 2025.

[31] X. Chen et al., "Leveraging deep learning for automatic literature

screening in intelligent bibliometrics," Int. J. Mach. Learn. Cybern.,

vol. 14, no. 4, pp. 1483-1525, Dec. 2022, doi: 10.1007/s13042-022-

01710-8.

967

