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Abstract— The active growth of social networking worldwide has encouraged the emergence of malware that threatens such devices. 

Continuously researching according to malware threats has been accomplished to prevent the malware spread. Yet, malware attack 

continues to change and occur in very large numbers that requiring better solutions. In this paper, we proposed a Multilayer perceptron, 

a type of deep learning approach to tackle malware attacks focused on permission features. The study conducted eight experiments 

with 15, 20, 25, and 30 selected features for both algorithms, utilizing a dataset of 10,000 applications—5,000 benign (Androzoo) and 

5,000 malicious (Drebin). The detection process involved three phases: data gathering, preprocessing, and classification, employing 10-

fold cross-validation. The validation through all the experiments performed in this study achieved the highest accuracy of 98.2% 

accuracy, though other feature sets exhibited minimal variation in performance. Further dataset analysis revealed that the INTERNET 

permission was prevalent in 99% of malware samples and 81% of benign applications, highlighting its widespread use. This study 

underscores the importance of feature selection in Android malware detection and suggests that future research integrate risk 

assessment to classify and prioritize permission requests. Risk-based analysis could enhance malware detection by systematically 

evaluating potential security threats, addressing the rapid proliferation of malware. The findings contribute to the ongoing development 

of robust Android security mechanisms and encourage further research in permission-based threat mitigation strategies. 
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I. INTRODUCTION

Individuals utilize mobile devices for a variety of purposes, 

similar to how they use desktop computers for activities such 

as web surfing, online banking, e-commerce, and social 

networking. These devices have become an essential aspect 

of human life, gradually replacing personal computers both at 

home and in professional settings. The global popularity and 

high demand for mobile devices, coupled with their diverse 

functionalities, have provided an opportunity for hackers to 

develop and distribute malicious code targeting mobile 
devices. These hackers are incentivized to exploit 

vulnerabilities and spread threats through various means, 

potentially causing harm to mobile devices and pilfering 

sensitive information. They can employ tactics such as 

damaging the device itself and exfiltrating confidential data 

[1], [2]. The hackers' gain access to mobile device data is often 
accomplished through techniques like synchronization, buffer 

overflows, spamming, and phishing, particularly in the 

context of Android devices [3]. 

From the statistics, the risk tool (41.24%) was most 

threatening in 2019, followed by adware (18.71%) and trojan 

(11.83%). It is stated that the majority of Android malware 

falls under the category of Trojans. This type of Android 

malware unintentionally lures users into subscribing to 

unnecessary services, resulting in significant harm to their 

mobile devices [4]. Android malware applications are 

responsible for surreptitiously gathering user account 
information, subscribing to premium SMS services, and even 

exploiting hardware vulnerabilities [5].  

Mobile devices offer distinct functionalities compared to 

desktop computers, including SMS messaging, frequent 

location updates, and widespread accessibility. Additionally, 
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mobile users tend to centralize their information storage on 

phones due to their convenience and swift accessibility. Given 

their popularity and impressive capabilities, mobile devices 

have become a primary target for malicious activities. For 

instance, around 21 million Android devices fell victim to 

infection during installation from the Google Play Store [6]. 

In response to this threat, Google has outlined protective 

measures to help Android users avoid malware attacks. 

Google has implemented permission-based features as a 

central security mechanism for Android users [7]. These 
permission features are a component of Google's Android 

malware detection strategy, designed to strengthen the 

defense against malware infections in the Android ecosystem. 

Users are empowered to scrutinize the permissions requested 

and halt the installation process if the permissions appear 

suspicious or overly permissive. While Android automatically 

grants some permissions without user confirmation [8], others 

require explicit user approval depending on the nature of the 

requested permission, which is classified as either standard or 

potentially hazardous [9]. Consequently, a thorough 

evaluation of the malware-related aspects within the 
application code is imperative to counter and diminish 

instances of malware breaches effectively. 

Static analysis and pattern recognition are used in deep 

learning malware detection to find complex attack methods. 

Deep learning models that extract discriminative features 

from permissions, API calls, and opcode sequences, including 

Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Multi-Layer Perceptrons (MLPs), 

have been successfully utilized to detect malicious 

applications. Recent research has demonstrated the efficacy 

of deep learning in detecting malware in desktop and mobile 
platforms [10], [11]. Deep learning has improved malware 

detection accuracy, response times in real-time environments, 

and achieved better classification results for malware variants, 

while also reducing computation time [12]-[16]. The 

implementation of intelligent visualization [17] and the 

automation model architecture [18]. These developments 

underscore the growing reliance on deep learning as a vital 

technique in combating evolving malware threats. 

In the field of malware analysis, features, particularly 

permissions, play a crucial role in classifying malware [19]. 

Malware analysis involves identifying features within 

applications that span multiple lines of code. Static analysis 
extracts these features from numerous lines of code. The 

comprehensive evaluation of all features and the subsequent 

selection of pertinent ones from these lines is a stringent task, 

as security analysts are obligated to initially assess all 

malware and benign applications to pinpoint relevant features 

before identifying distinctive attributes or components of 

malware or benign applications [20]. This highlights the need 

to reduce machine learning duration by removing noisy and 

irrelevant data [21], which in turn leads to an effective 

detection method [22].  

An additional security mechanism designed to address 
malware infections involves the use of an intrusion detection 

system (IDS). This can take the form of hardware, software, 

or a hybrid solution, and its purpose is to monitor the activity 

within a network or system, aiming to identify indicators of 

malicious intent. This technology is dedicated to assessing the 

activities within networks and systems, aiming to uncover 

potential vulnerabilities that could be exploited against a 

computer system. Furthermore, security analysts employ two 

static and dynamic analyses. Nonetheless, these approaches 

prove inadequate in cases where attackers employ techniques 

to evade detection, such as polymorphism and obfuscation, 

which complicates the process of risk assessment and Android 

malware identification. As a result, a thorough examination of 

permission features and the implementation of an IDS in 

Android malware identification are undertaken through the 

utilization of a static analysis methodology. 
The key contributions of the study are as follows: 

 The experiment was practiced on 96,074 datasets 

respectively. The samples were retrieved from Drebin 

for malware and Androozo for benign.  

 The experiment applied the permission features 

extracted from AndroidManifest.xml in malware 

detection.  

 The malware detection applied the Information Gain 

algorithm for feature optimizations.  

The remainder of this paper is organized as follows. 

Section 2 discusses the approach and flow of malware 
detection, the general model, and malware detection for 

feature selection. Section 3 describes the evaluation process 

and findings of the experiment. Section 4 highlights the 

paper's challenges and emerging trends, as well as 

recommendations for future research.  

II. MATERIALS AND METHODS 

The model of the primary system is visually shown in 

Figure 1. The model is divided into three phases: dataset 

collecting, pre-processing, and detection. These phases are 
intricately interconnected. The initial step involves obtaining 

permissions from both benign and malicious applications. 

This entails the decompilation of the .apk files, followed by 

the extraction and filtration of permissions. These gathered 

permissions are then compiled and saved in a readable .arff 

format. This file contains a comprehensive set of attributes 

about functionality, thoughtfully refined to enhance 

efficiency by eliminating extraneous noise and irrelevant 

elements. To definitively identify malware, a Bayesian 

classifier is employed, facilitating the classification of both 

malware and benign instances. 

 
Fig. 1  General model for a Bayesian classifier 

 

Dataset collection, pre-processing (data extraction), feature 

refinement, and detection are the steps in the Android 

malware identification process, as depicted in the above 
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figure. The datasets used in this research comprised a total of 

96,074 samples. The subsequent phase in the Android 

malware detection procedure involved using a deep-learning 

classifier. 

A. Dataset Collection Phase 

Initially, the samples underwent manual categorization, 

resulting in the classification of each as either benign or 
malicious. This classification process for both malware and 

benign instances occurred alongside the assessment of the 

Android application's status on VirusTotal. VirusTotal serves 

as an online platform tailored for virus detection via uploaded 

files and URLs. The verification of Android malware samples 

was conducted using VirusTotal, a tool widely adopted within 

the research community. The dataset samples were used for 

the feature selection procedure that followed this validation. 

Table III provides a summary of the top 20 Android malware 

families found in the 96,074-sample dataset. 

TABLE I 

DATASET (96,074 SAMPLES) 

Samples Source Number of datasets 

Benign Androzoo 48820 
Malware Drebin 47254 

TABLE II 

THE TOP 20 FAMILIES OF ANDROID MALWARE  (96,074 SAMPLES) 

Features (SHA256) Virus Total Family  Total permission 
86d3f5efb290a6b06756c3c8c04907b2c137434c8e28a6e6146e0949426cf976 26 Adrd 63 

877b1e8455d444a3e422f8926bc957d77bddfcb0b700ee53e438be2dd6bdbd67 24 Generic 63 

8b8bb30a8a1f5c2c214dbfc6809027e869479a7aa918fa90f2e29927d8b43991 10 Domob 48 

2ac93b967118e65a8bbfdd47191eff63278e2f453c3e336ead40ed19c7fc621d 13 Commplat 46 

24909850e15123ea216c0c40819883b6e704fa31d841a752e2b97a92f2677593 15 Skymobi 44 

bf328a4fefb6c503b1412f2fa0cf0322f43757385f7cbd051b9ca832b97b630d 16 Skymobi  44 

05045fc2b74f8e40a1a27263639c6e81da36071220bb0f56b7d524eeeca5c0fd 13 DroidRooter 43 

73d7cc2075e20cd17733b9ded2d6572863c4d2c4a80adf583b046429667bcdb4 10 Dowgin 43 

ad2d0fe6cd6dc8a8ff489ffdeb88a8d2ecdc8a8dff82e75c08e2e2770cab93d8 24 Dowgin 43 

0c6fe11473ada6ecf8fae9ab2a394385a3ca88838e9ab54ed3bebfce6353a4d6 8 DroidRooter 43 

1aa3ac89ae5958c35bb4a9740a8a310867228f2f80a35a6e092b950e6e17f9be 21 Skymobi 42 

1ef66d29669d25f22a42a7a5a208f14970ee27da829acbe9ef8d847b6b80f2f9 18 Dowgin 42 

a004fac82b918c26b81aec6b6481d0208cc5cbf9734a229dd1024fce91c83068 22 Cooee 40 

25ef6c69b2fa60cd024bc2c08a4410caa59f8dad75397a7a7f84e74a825932ac 24 FakeInstall 39 

5f87b65bc1c1e07606b1fe3558096d1e1ceb56b262fa57ee328208e2b6ad4470 24 Dowgin 39 

7600c278eadfb92ef25145e76132159cc31fc52de7956d28577a96a7b8ad2cec 22 Riskware  39 

2e3eb2c85779d85ccbdf6856e22b06fd7eea0d4a3fcd972f6ff0f9605fe453b1 27 Tekwon 38 

83e4db70dc9d846a4a0205930196a636c043d6f3c0ee1bfd35bf8148f9134a87 23 Tekwon 38 

91d62e582949782f8edf0f7fd685846ca0073be53159d6a2d953344c8c92d2ee 29 Dowgin  38 

d17f1f561368ac9f7e46678f7a83590d9dcd5b33c166e1e22a8a1b6e257a2f89 19 Cooee  38 

 

The top 20 Android malware families examined in this 

study are presented in Table III. The SHA-256, VirusTotal, 

family, and total permissions are the four columns that 

compose the table. The secure cryptographic hash function 

represented by the SHA-256 column creates a distinct 256-bit 

value for every sample; the values are taken from the 

VirusTotal platform. The VirusTotal column provides a 

comparative analysis of malware and benign datasets. 

Additionally, to supplement the information in the VirusTotal 

column, the Android malware families found in this 

investigation are listed in the family column.  

 
Fig. 2  Dataset collection phase 

 

B.  Feature Selection 

The feature extraction phase is predominantly centered on 

permissions, a critical component in the analysis of Android 

applications. This process involves decompiling the APK file 

to access the AndroidManifest.xml, which contains 

permission details, and compiling the classes.dex file, which 

incorporates Dalvik bytecodes and API calls through static 

analysis. Advanced tools such as Androguard and ApkTool 

are employed to extract features from the 
AndroidManifest.xml and classes.dex files, which 

collectively provide insights into permissions, system calls, 
intents, and native code. The AndroidManifest.xml serves as 

a pivotal resource, encapsulating the application's metadata, 

including the permissions requested by the application under 

the <uses-permission/> tag. During this phase, the APK is 

decompressed, and its binary manifest file is translated into a 

human-readable XML format. The Androguard tool, in 

particular, is utilized to precisely extract and analyze 

permission tags, enabling a thorough investigation of the 

application’s permission structure. 
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Feature selection, a prevalent pre-processing technique, 

aims to identify the most relevant attributes by extending and 

filtering out irrelevant or negatively impactful features on 

classification outcomes. The benefits include enhancing 

efficiency and accuracy. While [23] and [24] employed 

permission-based features and API call sequence features, 

respectively, [23] and [25] used intent features. The 

optimization process for permission features is time-intensive 

during training and testing, but mitigates overfitting, 

streamlining Android malware detection. Furthermore, 
optimization can enhance the experiment's accuracy. This 

process commences with dataset cleansing to eliminate 

artifacts and superfluous features. Missing data points are 

filled with zeros before randomization to account for the 

randomness of the filtering process and eradicate potential 

biases. The dataset optimization employed the Chi-square 

algorithm in WEKA, a comprehensive software providing 

machine learning algorithms [26].  

C. Detection phase:  

Leveraging deep learning techniques, the proposed system 

offers a promising approach to enhancing protection against 

Android malware. Due to their ability to extract relevant, 

higher-level conceptual features from data, they may provide 

an effective, broad, and scalable framework for detecting 

current and unknown Android malware [27]-[31]. Compared 

to unsupervised learning, a deep learning Multilayer 

perceptron has a higher detection rate because it is based on 

supervised learning. The proposed method is described by 

using two phases: a static analysis phase and a deep learning 

classifier phase. Figure 3 presents the model of the Android 
mobile malware detection system, which utilizes deep 

learning for predictive analysis. 
 

 
Fig. 3  Deep Learning Malware Detection System 

 

Feature selection is a frequent approach in data pre-

processing for machine learning and, to a lesser extent, deep 

learning. Neural networks inherently function as a black box, 

often assigning lower weights to features with lesser 
discriminatory power when generating non-linear 

combinations. However, this study opted to proceed with 

feature selection for each of the ten groups containing 96,074 

samples. This selection was performed to facilitate a 

comparison of detection rates with split samples. Chi-square 

was adopted as the tool for optimizing feature selection. This 

algorithm was selected for its ability to measure dissimilarity 

and attain the highest accuracy through feature selection. The 

study involved the examination of 96,074 Android 

applications, including 48,820 benign samples and 47,254 

malware instances. Feature selection was executed using the 
Waikato Environment for Knowledge Analysis (WEKA), a 

sophisticated and adaptable software suite that supports a 

wide range of machine learning algorithms [8]. 

To address the binary classification challenge posed by the 

dataset's binary nature, a multilayer perceptron was developed 

in this study. During this phase, all required permissions were 

identified, and features with little potential to distinguish the 

target class were eliminated. During the learning phase, the 

dataset was separated into two sections to evaluate the deep 

learning classifier's detection ability, with 70% training and 

30% testing sets. The training set was instrumental in refining 

the model for precise detection. The dataset was segmented 

into ten classes, with sample sizes of 10,000, 20,000, 30,000, 
40,000, 50,000, 60,000, 70,000, 80,000, 90,000, and 96,074. 

These samples, encompassing both benign and malware 

instances, were employed for training. Each iteration was 

completed within 1 second. 

D. Evaluation Measure 

The performance of the Android malware detection system 

was assessed using accuracy and loss metrics. The study 

employed fundamental metrics to identify Android malware, 
with accuracy representing the correct identification of 

malicious content and a higher true positive rate indicating 

improved performance. 

Loss refers to the cost function value during the training 

phase, while value loss indicates the cost function value 

during cross-validation, with value accuracy calculated on the 

validation set.t. Throughout the experiments, various epochs 

were examined to assess the relationship between accuracy 

and loss rates. The primary goal was to enhance the detection 

rate of the deep learning model. 

To achieve this, a thorough analysis of the parameters 

influencing detection performance was carried out. Key 
parameters, including nodes, epochs, batch size, hidden 

layers, optimizer, and dropout, were initially set to their 

default values. These parameters were then incrementally 

adjusted from their minimum to maximum values to identify 

optimal configurations. Once the optimal node value was 

determined, further experiments were conducted to fine-tune 

the next parameter. To ensure model consistency, random 

weights, activation functions (RELU and SoftMax), and 

cross-entropy were applied, but the cost function was 

maintained. This iterative parameter adjustment process 

sought to determine the most effective configurations for 
enhancing malware detection. The experiment encompassed 

variations in epoch types, batch sizes, and sample sizes. A 

dataset comprising 96,074 samples was used, which was 

subsequently divided into ten groups. The experimentation 

was conducted by increasing the sample sizes. These groups 

were comprised of 10,000, 20,000, 30,000, 40,000, 50,000, 

60,000, 70,000, 80,000, 90,000, and 96,074 samples. To 

assess result precision and comprehend factors impacting the 

experiment's accuracy, adjustments were made to both epoch 

size and batch size. The experiments were conducted under 

two conditions: one involving feature selection and the other 
without. This approach aimed to validate the detection 

capabilities of deep learning with substantial data samples, 

highlighting its capacity to achieve high accuracy even 

without feature selection. The experiments were executed 

with a validation split set at 0.3, a batch size of 500, and four 

distinct epoch variations. Each epoch iteration was completed 

in a duration of 1 second. 
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III. RESULTS AND DISCUSSION 

The second evaluation discussed in this section was 

conducted on a dataset comprising 96,074 entries. Within this 

dataset, there were a total of one hundred sixty (160) 

permissions considered as features. However, after the 

optimization procedure, only 20 features were utilized. 
Section 3 describes the detection framework and discusses the 

mechanics of the optimization procedure. 

A. Evaluation of Accuracy without Feature Selection 

Figures 4 to 11 represent the accuracy and loss for two 

different sample sizes: 10,000 and 20,000 samples. The 

accuracy of each test validation improved as the number of 

epochs rose, with accuracy rising and loss decreasing in 

proportion. Looking at these figures, batch consistency refers 
to how well a batch of testing data aligns with the training data 

in terms of accuracy. Loss, on the other hand, represents the 

degree of error in the data. When accuracy is high and loss is 

low, it indicates minimal errors in a subset of the data. Loss is 

calculated during the training process, and its value is 

determined using the testing data. The validation set was 

implemented to assess the model's effectiveness, while the 

training set was used to train the model. 

As the number of epochs increased, each test's accuracy 

improved while the loss reduced. For handling large data 

samples, a batch size of 500 proved to be the optimal choice, 

resulting in a reduction of one second in iteration time. We 
executed 84 iterations, with 30% of the total samples used for 

validation. Figure 7 depicts the accuracy and loss graphs for 

10,000 samples, while Figures 8 to 11 show the corresponding 

graphs for 20,000 samples. Each graph depicts performance 

over four (4) separate epochs for each sample size. 
 

 

Fig. 4  The 10-EpochsAccuracy and Loss Graph (10,000 Datasets) 

 

 

Fig. 5  The 25-Epochs Accuracy and Loss Graph (10,000 Datasets) 

 

Fig. 6  The 50-Epochs Accuracy and Loss Graph (10,000 Datasets) 
 

 

Fig. 7  The 100-EpochsAccuracy and Loss Graph (10,000 Datasets) 
 

 

Fig. 8  The 10-Epochs Accuracy and Loss Graph (20,000 Datasets) 

 

 

Fig. 9  The 25-Epochs Accuracy and Loss Graph (20,000 Datasets) 
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Fig. 10  The 50-Epochs Accuracy and Loss Graph (20,000 Datasets) 

 

Fig. 11  The 100-Epochs Accuracy and Loss Graph (20,000 Datasets) 

 
TABLE III 

ACCURACY OF USING 20 FEATURE SELECTION OF CHI-SQUARE 

Samples Epochs (accuracy) Epoch (loss) 

10 25 50 100 10 25 50 100 

10,000 0.9673 0.9777 0.9788 0.9802 0.1139 0.0774 0.0775 0.0911 
20,000 0.9663 0.9783 0.9786 0.9779 0.1146 0.0744 0.0795 0.0944 

30,000 0.9685 0.9773 0.9776 0.9776 0.1091 0.0792 0.0785 0.9500 
40,000 0.9685 0.9758 0.9798 0.9787 0.1082 0.0801 0.0738 0.0930 

50,000 0.9669 0.9763 0.9771 0.9799 0.1133 0.0800 0.0796 0.0931 

60,000 0.9674 0.9764 0.9774 0.9797 0.1122 0.0801 0.0782 0.0914 
70,000 0.9672 0.9746 0.9793 0.9784 0.1118 0.0824 0.0713 0.0875 

80,000 0.9674 0.9773 0.9770 0.9785 0.1109 0.0775 0.0751 0.0927 
90,000 0.9682 0.9773 0.9804 0.9781 0.1088 0.0773 0.0760 0.0979 

96,074 0.9660 0.9743 0.9786 0.9784 0.1142 0.0821 0.0775 0.0916 

 

B. Evaluation of Accuracy Using Chi-square Feature 

Selection 

Table III presents the results of malware detection using the 

deep learning method with Chi-squared feature selection.  

 

Table III displays the accuracy and loss results obtained 

from the Chi-square algorithm's top 20 feature selection 

process across different sample sizes and epochs. Increasing 

the number of epochs led to improved test accuracy and 

decreased loss. For handling large data samples, the optimal 

batch size was found to be 500, which added one second to 

each iteration. A total of 84 batch sizes were produced, with 

30% of the total sample set aside for the validation process to 
complete a single loop. From Figures 12 to 15 show the 

accuracy and loss trends for 10,000 samples over four distinct 

epochs, whereas from Figures 16 to 19 show the similar 

accuracy and loss patterns for 20,000 samples across four 

different epochs for each sample size. 

 

Fig. 12  The 10-Epochs Accuracy and Loss (10,000 Datasets) 

 

Fig. 13  The  25-Epochs Accuracy and Loss (10,000 Datasets) 
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Fig. 14  The 50-Epochs Accuracy and Loss (10,000 Datasets) 

 

Fig. 15  The 100-Epochs Accuracy and Loss (10,000 Datasets) 

 

Fig. 16  The 10-Epochs Accuracy and Loss (20,000 Datasets) 

 

Fig. 17  The 25-Epochs Accuracy and Loss (20,000 Datasets) 

 

Fig. 18  The 50-Epoch Accuracy and Loss (20,000 Datasets) 

 

Fig. 19  The 100-Epoch Accuracy and Loss (20,000 Datasets) 

 

The graphs in Figures 12 to 15, as well as Figures 16 to 19, 

show the accuracy and loss metrics using the Chi-square 

approach for feature selection, applied to sample sizes of 

10,000–20,000, respectively. These results were based on the 

top 20 permission group features. As the number of epochs 

increased, test validation accuracy improved, and loss 
decreased. The consistency of the training data batch, as 

shown in the figures, reflects the accuracy achieved during 

testing. Loss represents the error within the data. A higher 

accuracy with lower loss indicates minimal errors on a 

relatively small dataset. The loss values for the training and 

testing datasets were derived. The model was improved using 

the training set, and its effectiveness and performance were 

evaluated using the validation set. 

IV. CONCLUSION 

The study presented an analysis that utilized a Bayesian 

classifier to detect mobile malware efficiently. In this work, 

permission-based features have been selected for malware 

analysis. The permissions have been extracted from the 

AndroidManifest.xml file. The best features were identified 

through optimization using the Information Gain and Chi-

Square algorithms. The reason for using two algorithms is to 

compare the performance and get a higher accuracy rate. 

Specifically, the study implemented eight experiments, each 

consisting of 15, 20, 25, and 30 features for both algorithms. 
The 10,000 samples utilized in the experiments were obtained 

from Drebin for malware and Androzoo for benign 

applications. The samples comprised 5,000 benign applications 

and 5,000 malicious applications. Detection was divided into 
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three phases: data gathering, pre-processing, and detection. The 

experiment was implemented with 10-fold cross-validation 

using WEKA tools. As a result, the Chi-Square algorithm with 

15 features outperformed the other features, achieving a 91% 

accuracy rate. However, there was not much difference in the 

accuracy rate for the other features in this work. Additionally, 

analysis of the dataset indicated that the INTERNET 

permission was the top permission, with 99% of malware and 

81% of benign samples. Based on the analysis, the Internet has 

been used by most people around the world. This study focused 
on the feature selection of two algorithms in malware detection. 

Future research could benefit from incorporating risk 

assessment for each feature, as it is considered a crucial aspect 

of malware detection. Risk assessment facilitates the 

classification, prioritization, and zoning of permission requests, 

helping to identify and mitigate the potential damage posed by 

malware. This strategy aims to encourage additional research, 

particularly in overcoming the rapid proliferation of malware. 

Finally, this paper presents a thorough review of the subject, 

emphasizing the significance of continued research in Android 

malware detection. 
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