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Abstract—The development and maintenance of RESTful APIs have become increasingly critical with the widespread adoption of the 

OpenAPI Specification, a de facto standard for API description. However, manual authoring of these API definitions remains laborious 

and prone to human error. The primary objective of this study is to enhance the efficiency and accuracy of API code completion through 

an automated framework that leverages advanced transformation techniques. Our investigation employs a newly proposed semantics-

aware benchmark that offers a robust dataset for evaluating code completion performance. Our method integrates adaptive 

transformation rates, positional boundary biases, multi-segment transformations, and hierarchical permutations to address the 

intrinsic challenges of API specification generation. Specifically, adaptive transformation rates enable dynamic adjustments during 

code generation, while positional boundary biases and multi-segment transformations improve context preservation and structural 

coherence. Hierarchical permutations further facilitate the accurate mapping of complex API constructs. Experimental results 

demonstrate significant improvements in both accuracy and efficiency compared to traditional manual and automated methods. These 

findings indicate that the proposed approach not only reduces development time but also minimizes specification errors. Implications 

for further research include exploring the integration of our method with existing development environments and extending its 

applicability to a broader range of code generation tasks, ultimately contributing to more reliable and maintainable API development 

practices. The proposed framework sets a promising direction for future research in automated API specification generation.  
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I. INTRODUCTION

In today’s interconnected digital landscape, Application 

Programming Interfaces (APIs) play a pivotal role in enabling 

seamless interoperability among diverse software systems [1]. 

The widespread adoption of microservices architectures and 

web services has underscored the importance of standardized 

API protocols to support scalable and modular development 

[2], [3]. As organizations increasingly rely on APIs to 

integrate complex systems, well-designed and robust APIs are 

essential for fostering innovation and operational efficiency 

[4]. The shift toward digital transformation further amplifies 

the need for effective communication between software 
components, making API documentation a cornerstone of 

modern software engineering [5]. 

The OpenAPI Specification has become the de facto standard 

for documenting RESTful APIs, offering a structured framework 

to define endpoints, parameters, and responses [6]. Despite its 

advantages, such as enhanced interoperability and simplified API 

design, manually crafting OpenAPI definitions is labor-intensive 

and error-prone due to their nested and verbose nature [7], [8]. 

This challenge has driven the development of intelligent tools to 
automate the creation and maintenance of API documentation [9]. 

Modern Integrated Development Environments (IDEs) 

incorporate code completion features that boost developer 

productivity by generating context-aware code snippets [10]. 

Fill-in-the-Middle (FIM) techniques, which infer missing code 

segments based on surrounding context, have shown promise 

[11]. However, applying FIM to OpenAPI specifications reveals 

limitations in handling their hierarchical and multi-level 

structures [12], [13]. 

Recent advancements in Large Language Models (LLMs) 

have opened up new avenues for automated code generation, 
with potential applications in specialized domains, such as 

OpenAPI [14]. Yet, traditional FIM approaches often fail to 

address the semantic and structural complexities of API 
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documentation, leading to incomplete or inaccurate 

completions [15]. This paper proposes a novel framework that 

overcomes these shortcomings by introducing Adaptive 

Transformation Rates to balance segment complexity, 

Positional Boundary Biases to ensure semantically 

meaningful splits, Multi-Segment Transformations to process 

nested structures, and Hierarchical Permutations to capture 

relational dependencies. Experimental results on a semantics-

aware OpenAPI benchmark demonstrate significant 

improvements over conventional methods, advancing the 
state of the art in API code generation.  

II. MATERIALS AND METHOD 

A. Literature Review 

This review synthesizes foundational and recent 

advancements in code generation, language modeling, and 

API documentation, with a focus on addressing the challenges 

of OpenAPI code completion. The discussion covers 

transformer architecture, code infilling techniques, prompt 
engineering, domain adaptation, and evaluation metrics, 

providing a comprehensive backdrop for the proposed 

framework as shown in Figure 1. 

 

Fig 1  This diagram shows the working architecture of our system 

 

1)  Foundations of Code Generation and Language Models: 

The transformer architecture has revolutionized both natural 

language processing and code generation [16]. Bidirectional 

models like BERT [17] and RoBERTa [18] HEPH 

demonstrated the power of pre-training on large corpora. 
Sequence-to-sequence models, such as T5 [19] and BART 

[20], extended these capabilities to generative tasks, while 

autoregressive models like GPT-3 [21] showcased few-shot 

learning potential. Code-specific models, such as CodeGen 

[22], have advanced domain-specific pre-training, enabling 

robust code generation for programming tasks [23]. These 

developments provide the foundation for applying LLMs to 

API-related code generation [24]. 

2)  Code Infilling Techniques: Traditional code generation 

relies on left-to-right decoding, which overlooks bidirectional 

context critical for infilling tasks [11]. Fill-in-the-Middle 

(FIM) techniques address this by conditioning on both 
preceding and following tokens, as demonstrated by InCoder 

[25]. However, FIM methods often assume uniform segment 

treatment, which is suboptimal for OpenAPI’s nested 

structures [12]. Recent studies propose structure-aware 

infilling to handle hierarchical data, but challenges remain in 

addressing semantic boundaries [26], [27]. 

3)  Prompt Engineering and Fine-Tuning Strategies: 

Prompt engineering significantly enhances LLM performance 

in code generation. Few-shot prompting [21] and chain-of-

thought prompting [28] improve reasoning and context 

utilization. Domain-specific prompts further refining outputs 
for specialized tasks [29]. Fine-tuning strategies, such as 

parameter-efficient methods like AdapterFusion [30], BitFit 

[31], and LoRA [32], enable adaptation to niche domains like 

OpenAPI without extensive retraining. These approaches are 

critical for optimizing models for API documentation tasks [33]. 

4)  Evaluation Metrics and Domain-Specific Benchmarks: 

Evaluating code generation requires metrics beyond 

traditional NLP standards like BLEU or ROUGE. 

Benchmarks like HumanEval and MultiPL-E focus on 

functional correctness across programming languages [34], 

[35]. For OpenAPI, semantic-aware evaluation is essential, 

with tools like diff detecting meaningful changes in API 

definitions [6]. Datasets such as The Stack [36] provide real-
world samples for training and benchmarking domain-

specific solutions, enabling robust validation of code 

completion frameworks [37]. 

5)  Domain Adaptive Code Completion and Related 

Approaches: General-purpose tools like GitHub Copilot and 

AWS CodeWhisperer excel in mainstream programming but 

struggle with OpenAPI’s structural complexity [2], [38]. 

Domain-adaptive approaches, such as those by [39], leverage 

decoupled databases to enhance specificity. A semantics-

aware OpenAPI benchmark by [15] revealed that fine-tuned 

models, such as Code Llama, outperform commercial 
solutions, emphasizing the need for specialized methods [40]. 

Hierarchical transformers, as explored by [41], offer promise 

for multilevel API completion. 

6)  Proposed Enhancements: Building on adaptive 

computation [42] and hierarchical modeling [43], the proposed 

framework integrates Adaptive Transformation Rates, 

Positional Boundary Biases, Multi-Segment Transformations, 

and Hierarchical Permutations. These address the nested 
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relationships in OpenAPI definitions, drawing inspiration from 

sparsely-gated mixture-of-experts models [44] and hierarchical 

permutation learning [45]. This cohesive approach overcomes 

the limitations of legacy FIM methods, offering a robust 

solution for OpenAPI code completion. 

B. Method 

To resolve the shortcomings of legacy FIM techniques in 
generating accurate and structurally coherent OpenAPI 

definitions, we propose a multifaceted approach that directly 

addresses the hierarchy, complexity, and verbosity inherent to 

API specifications. By integrating context-aware 

transformations, targeted boundary identification, and dynamic 

adaptation to content size, our methods collectively deliver 

more reliable and semantically aligned OpenAPI completions. 

Below, we detail each core component of our framework.  

1)  Adaptive Transformation Rates: 

As discussed in the Introduction, existing Fill-in-the 

Middle (FIM) solutions often underperform when faced with 

the hierarchical complexity and verbosity of OpenAPI 

definitions [6], [9]. While basic FIM strategies can work well 

for linear or uniformly structured code, the nested segments 

and variable sizes found in OpenAPI documents demand a 

more context-aware approach [12].  

Conventional FIM approaches, as highlighted in the 
Related Works, typically employ a uniform transformation 

rate across all segments, leading to two key challenges. Short 

segments, such as simple parameter definitions, risk being 

over-transformed, which may introduce unnecessary changes 

or errors that distort the intended meaning, while longer and 

more complex segments—like endpoints with nested objects 

and parameters—might be under-transformed, resulting in 

omissions that fail to capture the document’s intricate 

relationships and dependencies. To address these issues, we 

introduce a dynamic formula that defines a base 

transformation rate, r, which specifies the fraction of a 
segment subject to transformation; moreover, when a 

segment’s length L falls below a user-defined threshold 

Lthreshold, a scaling factor α(<1) is applied to reduce r 

accordingly, ensuring that each segment is transformed 

proportionally to its complexity and significance.  

 ��������� = 
� × �, �� � < ���������� ,
�, ��ℎ�� �!�  (1) 

Here, r is the default degree of transformation, and α 

ensures smaller segments remain relatively intact. For larger, 

more complex sections, radjusted remains at r, guaranteeing that 

crucial nested relationships are adequately restructured.  

Practical benefits include balanced editing, where smaller 

segments receive milder edits that avoid the over-

transformation pitfalls identified in the Introduction; reduced 

errors, since large, nested blocks common in OpenAPI 

definitions retain higher transformation rates to preserve their 

hierarchical integrity; and context sensitivity, as the approach 

aligns with domain-adaptive methods highlighted in related 
works [12], ensuring that each segment’s transformation is 

proportional to its complexity and significance within the API 

specification. In essence, Adaptive Transformation Rates 

provide a measured, context-sensitive editing mechanism that 

addresses the FIM limitations detailed in both the Introduction 

and Related Works, and by dynamically calibrating 

transformation rates, our solution mitigates over and under-

transformation issues, paving the way for more reliable 

OpenAPI code completions.  

2)  Positional Boundary Biases:  

Fill-in-the-Middle (FIM) techniques often split code based 

on arbitrary lines or tokens, overlooking semantically 

meaningful regions. In OpenAPI definitions, these regions 

include paths, components, and parameter blocks—all of 

which are critical to preserving coherent structure.  

 

Algorithm 1 Positional Boundary Selection  

Require: Content C, number of boundaries n  

 Identify semantic boundaries Bsemantic in C  

 Assign higher selection probabilities to Bsemantic  

 Select n boundaries based on the biased probabilities  

 

The process begins by identifying semantic boundaries, 
which involves locating crucial markers such as paths: and 

components: that clearly delineate major API elements. These 

markers are then assigned higher probabilities, ensuring that 

they are favored over purely syntactic boundaries when 

making selections. With these enhanced probabilities, a 

predetermined number of splits are randomly chosen, but each 

split is weighted according to the likelihood of being a 

semantic boundary. This method ensures that the splits align 

closely with the inherent domain-specific structure of 

OpenAPI, thereby reducing the fragmentation of important 

elements. By emphasizing semantic boundaries, the approach 

not only preserves the integrity of the API but also enhances 
the relevance and accuracy of any subsequent transformations. 

3)  Multi-Segment Transformations: 

Traditional Fill-in-the-Middle methods often rely on a 

three‐segment (prefix, middle, suffix) model. However, 

OpenAPI definitions can contain multiple semantic blocks 
such as endpoints, components, and parameter set that exceed 

this simplistic partitioning.  

 

Algorithm 2 Multi-Segment Transformation 

Require: Content C, boundaries B, tokenizer T  

 Split C into segments S = {s1, s2, . . . , sk}  

 for each segment si in S do  

 Tokenize si using T  

 end for  

 Permute segments based on a transformation 

strategy  

 

Content C is divided into multiple segments S using clearly 

identified boundaries, ensuring that each portion is treated 

appropriately—whether it is a simple parameter or an 
extensive path—before moving on to further processing. Each 

segment is then tokenized to enable granular editing, and a 

carefully chosen transformation strategy is applied to permute 

these segments, thereby exposing the model to varied yet 

structurally coherent inputs.  

This approach offers significant benefits, including finer 

granularity that aligns well with the nested nature of OpenAPI 

specifications and the preservation of context by addressing 

each segment’s unique requirements without falling into the 
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pitfalls of over or under-segmentation. Moreover, this flexible 

method facilitates subsequent steps, such as Hierarchical 

Permutations, by enabling operations to be conducted on 

logically discrete pieces of the overall specification, 

ultimately enhancing the robustness and accuracy of the 

transformation process. 

4)  Hierarchical Permutations:  

OpenAPI specifications frequently contain deeply nested 

structures, such as embedded schemas, parameters, and sub-

components, that are arranged in intricate hierarchical 

relationships. This complexity demands a transformation 

approach capable of addressing each level of the specification 

with both precision and sensitivity to context. While multi-

segment transformations enhance granularity by breaking the 

document into manageable pieces for individual editing, 
Hierarchical Permutations extend this idea further by 

recursively applying transformations to sub-segments. This 

recursive process ensures that not only the primary segments 

but also every nested level—ranging from overarching 

schemas to the smallest parameters—receives adjustments 

that are finely tuned to its specific context and structural role. 

By meticulously refining each layer of the hierarchy, this 

method preserves the integrity of the original document, 

maintains semantic relationships, and mitigates the risk of 

over- or under-transformation. Ultimately, this 

comprehensive approach yields more robust and reliable code 

completions, ensuring that even the most complex and nested 
components of an OpenAPI specification are accurately and 

effectively transformed. 

 

Algorithm 3 Hierarchical Permutation 

Require: Segments S, max depth Dmax, current depth I 
 if d < Dmax then  

 for each segment si  in S do   

 Apply transformation to si iv.         

  Recursively call Algorithm 3 on sub-segments of si 

with d + 1  

 end for  

 end if  

 

Starting at the top-level segments, the method applies 

transformations—such as fill-in or token-level edits—to 

establish a foundation. For segments with deeper layers, like 

complex YAML objects or references, it recursively descends 

until the maximum allowed depth is reached. This recursive 

process ensures that each nested tier retains the structural 

context of its parent, thereby reducing the risk of flattening 

relationships or losing critical schema references. Moreover, 

because the segments have already been partitioned and 

possibly permuted, hierarchical recursion ensures that all 
relevant sub-segments are appropriately refined, thereby 

maintaining the semantic integrity of the entire OpenAPI 

definition. Overall, this layer-by-layer refinement process 

accommodates the multi-level constructs inherent in 

OpenAPI, producing code completions that remain coherent, 

accurate, and faithful to the nested structure of the 

specification while enhancing adaptability and precision in 

handling complex nested structures. 

5)  Datasets:  

We employed two distinct datasets for our evaluation to 

rigorously test our model's performance across different aspects 

of code generation. The first dataset, OpenAPI Completion 

Refined, was collected from the APIs.guru directory and 

comprises 990 OpenAPI definitions spanning diverse domains 

and complexity levels. This dataset was specifically designed 

for fine-tuning Code Llama on the OpenAPI completion task, 

capturing the real-world intricacies and hierarchical structures 

unique to API specifications. Its diversity and detailed structure 

provide a robust foundation for evaluating domain-specific 
performance. 

The second dataset, Human Eval Reference, is built upon 

the code generation tasks discussed in MultiPL-E and expands 

upon the well-known HumanEval benchmark. This dataset 

measures functional correctness by synthesizing programs 

from docstrings, effectively testing language comprehension, 

simple algorithms, and mathematical reasoning. It serves as a 

complementary, general code generation benchmark that 

allows us to assess broader adaptability and correctness 

beyond the OpenAPI domain. By combining OpenAPI 

Completion Refined for domain-specific performance with 
Human Eval Reference for general functional correctness, we 

ensure a balanced and comprehensive evaluation of our 

model’s code generation capabilities, addressing both 

specialized and universal coding challenges. 

6)  Model Training:  

We fine-tuned Code Llama 7B [36] and Code Llama 13B 
[37] using a batch size of 32, with gradient accumulation (4 

steps) to achieve an effective batch size of 128. A cosine 

learning rate schedule peaked at 2×10−4, with a 10% warm-up 

ratio. Optimization followed AdamW (β1=0.9, β2=0.999, 

weight decay =0.01= 0.01=0.01) over three epochs (or until 

convergence). We set the context length to 4096 tokens and 

applied mixed-precision (FP16) training on two NVIDIA 

RTX A6000 GPUs. These parameters align with standard 

fine-tuning practices [2], ensuring consistency with prior 

baselines while facilitating our novel adaptive strategies (e.g., 

Adaptive Transformation Rates and Positional Boundary 
Biases) for OpenAPI code completion.  

7)  Evaluation Metrics:  

We evaluate model performance on two key metrics: 

Correctness and Validity. Correctness measures the 

percentage of completions that are semantically identical to 

the ground truth— factoring in structural equivalence and 
ignoring minor stylistic differences (e.g., key ordering or 

optional quotes).  

Validity gauges the percentage of completions yielding 

syntactically valid OpenAPI definitions, ensuring each 

suggestion adheres to the specification's formal requirements. 

Taken together, these metrics provide a balanced view of both 

functional accuracy and structural compliance in generated 

OpenAPI completions.  

III.  RESULTS AND DISCUSSION   

This section presents a detailed comparison of our fill-in-

the-middle (FIM) enhancements against baseline FIM 

approaches, highlighting improvements in correctness, 

validity, and training efficiency across varying dataset 

complexities and error profiles. All experiments focus on 
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Llama7B and Llama13B, leveraging our Adaptive 

Transformation Rates, Positional Boundary Biases, Multi-

Segment Transformations, and Hierarchical Permutations for 

OpenAPI code generation.  

A. Results 

The following is the observed behavior of our system 

across different evaluation matrices. 

1) Performance vs. Dataset Complexity: 

Figure 2 plots correctness percentages for Baseline FIM 

Llama7B (blue) and Our FIM Llama7B (green) across four 

complexity bins (C1: Low, C2: Moderate, C3: High, C4: 

Extreme). Although both models experience a natural decline 
in correctness as definitions become more complex (e.g., 

deeper nesting, extensive references), our method consistently 

outperforms the baseline in every bin. Notably, we retain a 

higher correctness margin even under Extreme complexity 

(C4), indicating that Adaptive Transformation Rates and 

Hierarchical Permutations effectively maintain structural 

fidelity in challenging OpenAPI scenarios.  
 

 

Fig. 2  Line chart comparing the performance of FIM 

2) Error/Failure Types Comparison: 

Figure 3 compares error counts for three major failure modes 

syntax errors (blue), broken references (orange), and missing 

fields (green)—between Baseline FIM Llama7B and Our FIM 

Llama7B, with the stacked bars revealing several key trends 

that highlight the advantages of our approach. Our model not 

only exhibits a lower overall error volume, but it also shows a 

significant reduction in errors within each category, particularly 

in syntax errors and missing fields. This performance 

improvement suggests that the implementation of Positional 
Boundary Biases and Multi-Segment Transformations 

substantially enhances the model’s capacity to preserve crucial 

references and manage nested elements more effectively.  

By accurately maintaining the hierarchical structure and 

semantic integrity of complex API specifications, our 

approach minimizes common pitfalls associated with 

OpenAPI generation. These improvements indicate that the 

enhanced model is better equipped to handle both micro-level 

editing issues and macro-level structural complexities, 

resulting in more reliable and robust OpenAPI code 

completions that can ultimately simplify debugging and 
maintenance in practical, real-world applications. 

 

 
Fig. 3  Bar chart comparing error/failure types for FIM 

3) Training Steps vs. Accuracy: 

Figure 4 provides a side-by-side view of correctness (blue) 

and validity (green) for four distinct configurations: Baseline 

FIM Llama7B, Baseline FIM Llama13B, Our FIM Llama7B, 

and Our FIM Llama13B. The data confirm that both 

correctness and validity improve with our approach relative 

to the baseline FIM methods, with the Llama7B variant 

showing particularly large gains—reaching up to 48% 

correctness and 87% validity in some subsets.  
 

 

Fig. 4  Bar chart comparing correctness and validity for different models 

 

This finding aligns with observations in prior studies [12], 

suggesting that models with smaller parameter counts can 

benefit substantially from carefully tuned, domain-specific 
enhancements. Such targeted modifications not only improve 

performance metrics but also underscore the potential of 

optimized configurations to achieve higher reliability and 

efficiency without the need for larger, more complex models. 

4) Training Steps vs. Accuracy:  

Figure 5 illustrates the training efficiency by plotting 
accuracy against training steps for both Baseline FIM 

Llama7B and Our FIM Llama7B. As the number of training 

steps increases, both models show a clear performance 

improvement, yet our approach consistently maintains a 

higher accuracy at every checkpoint from 10k to 50k steps. 

This steady lead suggests that our method is more effective in 

capturing OpenAPI-specific patterns, resulting in a more 

robust learning process.  

By the final epoch, Our FIM Llama7B converges at an 

accuracy of 47.5% compared to the baseline’s 45%, 

highlighting not only the accelerated convergence but also the 
enhanced reliability of our training strategy. These results 

underscore the significant benefits of our approach in 

efficiently and accurately understanding the complexities 

inherent in the data. 
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Fig. 5  The line plot of training steps vs. accuracy for FIM Llama7B and 

Our Llama7B 

B. Summary of Results 

Overall, these findings validate our novel fill-in-the-middle 

enhancements by demonstrating higher correctness across 

various dataset complexities, as shown in Figure 2, and by 

achieving lower error rates in syntax, references, and missing 
fields according to Figure 3. In addition, our approach yields 

improved validity and consistency for both 7B and 13B Llama 

models, as indicated in Figure 4, and it facilitates faster and 

higher convergence during training, as demonstrated in Figure 5. 

By incorporating Adaptive Transformation Rates, Positional 

Boundary Biases, Multi-Segment Transformations, and 

Hierarchical Permutations, we effectively address the inherent 

hierarchical complexity of OpenAPI definitions, resulting in 

consistent performance gains over baseline FIM solutions, 

particularly for smaller model architectures. These 

comprehensive improvements not only enhance accuracy and 

reliability across diverse conditions but also pave the way for 
more robust and scalable API specification processing.  

C. Discussion  

Table 1 illustrates the correctness and validity metrics for 

GitHub Copilot, two Baseline FIM Llama models, 

TABLE I 

PERFORMANCE COMPARISON BETWEEN MODELS 

Model Correctness Validity 
Correctness 

Avg 

Validity 

Avg 

GitHub Copilot 29.0 68.0 29.0 68.0 

Legacy FIM 

Llama7B Model 
45.0 84.0 32.0 63.1 

Legacy FIM 

Llama13B Model 
34.0 68.0 30.2 64.0 

Our FIM Llama7B 

Model 
48.0 87.0 33.4 64.9 

Our FIM Llama13B 

Model 
37.0 71.0 31.5 66.0 

Our FIM‐enhanced Llama models reveal a clear trend in 

performance differences that underscores the utility of fill-in-

the-middle strategies for OpenAPI. Although GitHub Copilot 

attains 29.0% correctness and 68.0% validity, the Baseline 
FIM Llama7B model surpasses these figures with 45.0% 

correctness and 84.0% validity, while our FIM Llama7B 

further improves correctness to 48.0% and validity to 87.0%, 

representing a notable 19% improvement in correctness over 

Copilot and a 3% enhancement over the baseline model. This 

trend, as also depicted in the line plot of training steps versus 

accuracy in Figure 5, persists when comparing the Baseline 

FIM Llama13B to our FIM Llama13B, although the gains are 

more modest with the larger model. Such differences suggest 

that our adaptive fill-in-the-middle approach—which 

incorporates adaptive transformation rates, positional 

boundary biases, multi-segment transformations, and 

hierarchical permutations—provides disproportionately 

larger benefits in smaller model configurations, as evidenced 

by the error analysis in Figure 3 and complexity-based 
performance in Figure 2. These evaluations demonstrate the 

potential of our method to yield completions that are both 

structurally valid and semantically accurate, even under the 

challenging constraints of OpenAPI definitions, and they 

further corroborate our observations from training efficiency 

and error-type comparisons by underscoring the consistent 

advantage of our FIM enhancements over both a commercial 

tool like GitHub Copilot and baseline FIM solutions. 

IV. CONCLUSION  

In this work, we presented a novel approach to OpenAPI 

code completion that transcends traditional fill-in-the-middle 

techniques. By incorporating Adaptive Transformation Rates, 

Positional Boundary Biases, Multi-Segment Transformations, 

and Hierarchical Permutations, our method effectively 

addresses the challenges posed by the nested and complex 

nature of OpenAPI specifications. Our approach dynamically 

adjusts transformations based on content length and 

complexity, ensures semantic coherence by selecting 

meaningful boundaries, and leverages multi-level 
segmentation to preserve hierarchical relationships.  

Experimental results demonstrate that our enhanced FIM 

Llama models consistently outperform both baseline FIM 

approaches and commercial tools such as GitHub Copilot in 

terms of correctness and validity. Notably, the improvements 

are most pronounced in the 7B model, indicating that our 

technique can optimize smaller architectures and reduce 

computational overhead while maintaining robust 

performance. This underscores the potential of our method to 

offer both efficiency and accuracy in practical API 

development scenarios.  
Overall, our study not only contributes a robust framework 

for OpenAPI code completion but also lays the groundwork 

for further research into domain-specific adaptations of large 

language models. Future work will focus on refining these 

adaptive strategies and exploring their application to other 

complex, structured domains.  
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