
Vol.15 (2025) No. 3

ISSN: 2088-5334

Enhancing OpenAPI Code Completion with Adaptive and Hierarchical

Fill-in-the-Middle Transformations

Muhammad Irtaza Malik a, Sookyun Kim a, Jaechoon Jo b,1, YeoChan Yoon c,2
a Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea

b Department of Computer Education, Jeju National University, Jeju, Republic of Korea
c Department of Artificial Intelligence, Jeju National University, Jeju, Republic of Korea

Corresponding author: 1jjo@jejunu.ac.kr; 2ycyoon@jejunu.ac.kr

Abstract—The development and maintenance of RESTful APIs have become increasingly critical with the widespread adoption of the

OpenAPI Specification, a de facto standard for API description. However, manual authoring of these API definitions remains laborious

and prone to human error. The primary objective of this study is to enhance the efficiency and accuracy of API code completion through

an automated framework that leverages advanced transformation techniques. Our investigation employs a newly proposed semantics-

aware benchmark that offers a robust dataset for evaluating code completion performance. Our method integrates adaptive

transformation rates, positional boundary biases, multi-segment transformations, and hierarchical permutations to address the

intrinsic challenges of API specification generation. Specifically, adaptive transformation rates enable dynamic adjustments during

code generation, while positional boundary biases and multi-segment transformations improve context preservation and structural

coherence. Hierarchical permutations further facilitate the accurate mapping of complex API constructs. Experimental results

demonstrate significant improvements in both accuracy and efficiency compared to traditional manual and automated methods. These

findings indicate that the proposed approach not only reduces development time but also minimizes specification errors. Implications

for further research include exploring the integration of our method with existing development environments and extending its

applicability to a broader range of code generation tasks, ultimately contributing to more reliable and maintainable API development

practices. The proposed framework sets a promising direction for future research in automated API specification generation.

Keywords—OpenAPI; RESTful APIs; code completion; adaptive transformation; semantics-aware benchmark.

Manuscript received 12 Oct. 2024; revised 29 Dec. 2024; accepted 19 Feb. 2025. Date of publication 30 Jun. 2025.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In today’s interconnected digital landscape, Application

Programming Interfaces (APIs) play a pivotal role in enabling

seamless interoperability among diverse software systems [1].

The widespread adoption of microservices architectures and

web services has underscored the importance of standardized

API protocols to support scalable and modular development

[2], [3]. As organizations increasingly rely on APIs to

integrate complex systems, well-designed and robust APIs are

essential for fostering innovation and operational efficiency

[4]. The shift toward digital transformation further amplifies

the need for effective communication between software
components, making API documentation a cornerstone of

modern software engineering [5].

The OpenAPI Specification has become the de facto standard

for documenting RESTful APIs, offering a structured framework

to define endpoints, parameters, and responses [6]. Despite its

advantages, such as enhanced interoperability and simplified API

design, manually crafting OpenAPI definitions is labor-intensive

and error-prone due to their nested and verbose nature [7], [8].

This challenge has driven the development of intelligent tools to
automate the creation and maintenance of API documentation [9].

Modern Integrated Development Environments (IDEs)

incorporate code completion features that boost developer

productivity by generating context-aware code snippets [10].

Fill-in-the-Middle (FIM) techniques, which infer missing code

segments based on surrounding context, have shown promise

[11]. However, applying FIM to OpenAPI specifications reveals

limitations in handling their hierarchical and multi-level

structures [12], [13].

Recent advancements in Large Language Models (LLMs)

have opened up new avenues for automated code generation,
with potential applications in specialized domains, such as

OpenAPI [14]. Yet, traditional FIM approaches often fail to

address the semantic and structural complexities of API

814

documentation, leading to incomplete or inaccurate

completions [15]. This paper proposes a novel framework that

overcomes these shortcomings by introducing Adaptive

Transformation Rates to balance segment complexity,

Positional Boundary Biases to ensure semantically

meaningful splits, Multi-Segment Transformations to process

nested structures, and Hierarchical Permutations to capture

relational dependencies. Experimental results on a semantics-

aware OpenAPI benchmark demonstrate significant

improvements over conventional methods, advancing the
state of the art in API code generation.

II. MATERIALS AND METHOD

A. Literature Review

This review synthesizes foundational and recent

advancements in code generation, language modeling, and

API documentation, with a focus on addressing the challenges

of OpenAPI code completion. The discussion covers

transformer architecture, code infilling techniques, prompt
engineering, domain adaptation, and evaluation metrics,

providing a comprehensive backdrop for the proposed

framework as shown in Figure 1.

Fig 1 This diagram shows the working architecture of our system

1) Foundations of Code Generation and Language Models:

The transformer architecture has revolutionized both natural

language processing and code generation [16]. Bidirectional

models like BERT [17] and RoBERTa [18] HEPH

demonstrated the power of pre-training on large corpora.
Sequence-to-sequence models, such as T5 [19] and BART

[20], extended these capabilities to generative tasks, while

autoregressive models like GPT-3 [21] showcased few-shot

learning potential. Code-specific models, such as CodeGen

[22], have advanced domain-specific pre-training, enabling

robust code generation for programming tasks [23]. These

developments provide the foundation for applying LLMs to

API-related code generation [24].

2) Code Infilling Techniques: Traditional code generation

relies on left-to-right decoding, which overlooks bidirectional

context critical for infilling tasks [11]. Fill-in-the-Middle

(FIM) techniques address this by conditioning on both
preceding and following tokens, as demonstrated by InCoder

[25]. However, FIM methods often assume uniform segment

treatment, which is suboptimal for OpenAPI’s nested

structures [12]. Recent studies propose structure-aware

infilling to handle hierarchical data, but challenges remain in

addressing semantic boundaries [26], [27].

3) Prompt Engineering and Fine-Tuning Strategies:

Prompt engineering significantly enhances LLM performance

in code generation. Few-shot prompting [21] and chain-of-

thought prompting [28] improve reasoning and context

utilization. Domain-specific prompts further refining outputs
for specialized tasks [29]. Fine-tuning strategies, such as

parameter-efficient methods like AdapterFusion [30], BitFit

[31], and LoRA [32], enable adaptation to niche domains like

OpenAPI without extensive retraining. These approaches are

critical for optimizing models for API documentation tasks [33].

4) Evaluation Metrics and Domain-Specific Benchmarks:

Evaluating code generation requires metrics beyond

traditional NLP standards like BLEU or ROUGE.

Benchmarks like HumanEval and MultiPL-E focus on

functional correctness across programming languages [34],

[35]. For OpenAPI, semantic-aware evaluation is essential,

with tools like diff detecting meaningful changes in API

definitions [6]. Datasets such as The Stack [36] provide real-
world samples for training and benchmarking domain-

specific solutions, enabling robust validation of code

completion frameworks [37].

5) Domain Adaptive Code Completion and Related

Approaches: General-purpose tools like GitHub Copilot and

AWS CodeWhisperer excel in mainstream programming but

struggle with OpenAPI’s structural complexity [2], [38].

Domain-adaptive approaches, such as those by [39], leverage

decoupled databases to enhance specificity. A semantics-

aware OpenAPI benchmark by [15] revealed that fine-tuned

models, such as Code Llama, outperform commercial
solutions, emphasizing the need for specialized methods [40].

Hierarchical transformers, as explored by [41], offer promise

for multilevel API completion.

6) Proposed Enhancements: Building on adaptive

computation [42] and hierarchical modeling [43], the proposed

framework integrates Adaptive Transformation Rates,

Positional Boundary Biases, Multi-Segment Transformations,

and Hierarchical Permutations. These address the nested

815

relationships in OpenAPI definitions, drawing inspiration from

sparsely-gated mixture-of-experts models [44] and hierarchical

permutation learning [45]. This cohesive approach overcomes

the limitations of legacy FIM methods, offering a robust

solution for OpenAPI code completion.

B. Method

To resolve the shortcomings of legacy FIM techniques in
generating accurate and structurally coherent OpenAPI

definitions, we propose a multifaceted approach that directly

addresses the hierarchy, complexity, and verbosity inherent to

API specifications. By integrating context-aware

transformations, targeted boundary identification, and dynamic

adaptation to content size, our methods collectively deliver

more reliable and semantically aligned OpenAPI completions.

Below, we detail each core component of our framework.

1) Adaptive Transformation Rates:

As discussed in the Introduction, existing Fill-in-the

Middle (FIM) solutions often underperform when faced with

the hierarchical complexity and verbosity of OpenAPI

definitions [6], [9]. While basic FIM strategies can work well

for linear or uniformly structured code, the nested segments

and variable sizes found in OpenAPI documents demand a

more context-aware approach [12].

Conventional FIM approaches, as highlighted in the
Related Works, typically employ a uniform transformation

rate across all segments, leading to two key challenges. Short

segments, such as simple parameter definitions, risk being

over-transformed, which may introduce unnecessary changes

or errors that distort the intended meaning, while longer and

more complex segments—like endpoints with nested objects

and parameters—might be under-transformed, resulting in

omissions that fail to capture the document’s intricate

relationships and dependencies. To address these issues, we

introduce a dynamic formula that defines a base

transformation rate, r, which specifies the fraction of a
segment subject to transformation; moreover, when a

segment’s length L falls below a user-defined threshold

Lthreshold, a scaling factor α(<1) is applied to reduce r

accordingly, ensuring that each segment is transformed

proportionally to its complexity and significance.

 ��������� =
� × �, �� � < ���������� ,
�, ��ℎ�� �!� (1)

Here, r is the default degree of transformation, and α

ensures smaller segments remain relatively intact. For larger,

more complex sections, radjusted remains at r, guaranteeing that

crucial nested relationships are adequately restructured.

Practical benefits include balanced editing, where smaller

segments receive milder edits that avoid the over-

transformation pitfalls identified in the Introduction; reduced

errors, since large, nested blocks common in OpenAPI

definitions retain higher transformation rates to preserve their

hierarchical integrity; and context sensitivity, as the approach

aligns with domain-adaptive methods highlighted in related
works [12], ensuring that each segment’s transformation is

proportional to its complexity and significance within the API

specification. In essence, Adaptive Transformation Rates

provide a measured, context-sensitive editing mechanism that

addresses the FIM limitations detailed in both the Introduction

and Related Works, and by dynamically calibrating

transformation rates, our solution mitigates over and under-

transformation issues, paving the way for more reliable

OpenAPI code completions.

2) Positional Boundary Biases:

Fill-in-the-Middle (FIM) techniques often split code based

on arbitrary lines or tokens, overlooking semantically

meaningful regions. In OpenAPI definitions, these regions

include paths, components, and parameter blocks—all of

which are critical to preserving coherent structure.

Algorithm 1 Positional Boundary Selection

Require: Content C, number of boundaries n

 Identify semantic boundaries Bsemantic in C

 Assign higher selection probabilities to Bsemantic

 Select n boundaries based on the biased probabilities

The process begins by identifying semantic boundaries,
which involves locating crucial markers such as paths: and

components: that clearly delineate major API elements. These

markers are then assigned higher probabilities, ensuring that

they are favored over purely syntactic boundaries when

making selections. With these enhanced probabilities, a

predetermined number of splits are randomly chosen, but each

split is weighted according to the likelihood of being a

semantic boundary. This method ensures that the splits align

closely with the inherent domain-specific structure of

OpenAPI, thereby reducing the fragmentation of important

elements. By emphasizing semantic boundaries, the approach

not only preserves the integrity of the API but also enhances
the relevance and accuracy of any subsequent transformations.

3) Multi-Segment Transformations:

Traditional Fill-in-the-Middle methods often rely on a

three‐segment (prefix, middle, suffix) model. However,

OpenAPI definitions can contain multiple semantic blocks
such as endpoints, components, and parameter set that exceed

this simplistic partitioning.

Algorithm 2 Multi-Segment Transformation

Require: Content C, boundaries B, tokenizer T

 Split C into segments S = {s1, s2, . . . , sk}

 for each segment si in S do

 Tokenize si using T

 end for

 Permute segments based on a transformation

strategy

Content C is divided into multiple segments S using clearly

identified boundaries, ensuring that each portion is treated

appropriately—whether it is a simple parameter or an
extensive path—before moving on to further processing. Each

segment is then tokenized to enable granular editing, and a

carefully chosen transformation strategy is applied to permute

these segments, thereby exposing the model to varied yet

structurally coherent inputs.

This approach offers significant benefits, including finer

granularity that aligns well with the nested nature of OpenAPI

specifications and the preservation of context by addressing

each segment’s unique requirements without falling into the

816

pitfalls of over or under-segmentation. Moreover, this flexible

method facilitates subsequent steps, such as Hierarchical

Permutations, by enabling operations to be conducted on

logically discrete pieces of the overall specification,

ultimately enhancing the robustness and accuracy of the

transformation process.

4) Hierarchical Permutations:

OpenAPI specifications frequently contain deeply nested

structures, such as embedded schemas, parameters, and sub-

components, that are arranged in intricate hierarchical

relationships. This complexity demands a transformation

approach capable of addressing each level of the specification

with both precision and sensitivity to context. While multi-

segment transformations enhance granularity by breaking the

document into manageable pieces for individual editing,
Hierarchical Permutations extend this idea further by

recursively applying transformations to sub-segments. This

recursive process ensures that not only the primary segments

but also every nested level—ranging from overarching

schemas to the smallest parameters—receives adjustments

that are finely tuned to its specific context and structural role.

By meticulously refining each layer of the hierarchy, this

method preserves the integrity of the original document,

maintains semantic relationships, and mitigates the risk of

over- or under-transformation. Ultimately, this

comprehensive approach yields more robust and reliable code

completions, ensuring that even the most complex and nested
components of an OpenAPI specification are accurately and

effectively transformed.

Algorithm 3 Hierarchical Permutation

Require: Segments S, max depth Dmax, current depth I
 if d < Dmax then

 for each segment si in S do

 Apply transformation to si iv.

 Recursively call Algorithm 3 on sub-segments of si

with d + 1

 end for

 end if

Starting at the top-level segments, the method applies

transformations—such as fill-in or token-level edits—to

establish a foundation. For segments with deeper layers, like

complex YAML objects or references, it recursively descends

until the maximum allowed depth is reached. This recursive

process ensures that each nested tier retains the structural

context of its parent, thereby reducing the risk of flattening

relationships or losing critical schema references. Moreover,

because the segments have already been partitioned and

possibly permuted, hierarchical recursion ensures that all
relevant sub-segments are appropriately refined, thereby

maintaining the semantic integrity of the entire OpenAPI

definition. Overall, this layer-by-layer refinement process

accommodates the multi-level constructs inherent in

OpenAPI, producing code completions that remain coherent,

accurate, and faithful to the nested structure of the

specification while enhancing adaptability and precision in

handling complex nested structures.

5) Datasets:

We employed two distinct datasets for our evaluation to

rigorously test our model's performance across different aspects

of code generation. The first dataset, OpenAPI Completion

Refined, was collected from the APIs.guru directory and

comprises 990 OpenAPI definitions spanning diverse domains

and complexity levels. This dataset was specifically designed

for fine-tuning Code Llama on the OpenAPI completion task,

capturing the real-world intricacies and hierarchical structures

unique to API specifications. Its diversity and detailed structure

provide a robust foundation for evaluating domain-specific
performance.

The second dataset, Human Eval Reference, is built upon

the code generation tasks discussed in MultiPL-E and expands

upon the well-known HumanEval benchmark. This dataset

measures functional correctness by synthesizing programs

from docstrings, effectively testing language comprehension,

simple algorithms, and mathematical reasoning. It serves as a

complementary, general code generation benchmark that

allows us to assess broader adaptability and correctness

beyond the OpenAPI domain. By combining OpenAPI

Completion Refined for domain-specific performance with
Human Eval Reference for general functional correctness, we

ensure a balanced and comprehensive evaluation of our

model’s code generation capabilities, addressing both

specialized and universal coding challenges.

6) Model Training:

We fine-tuned Code Llama 7B [36] and Code Llama 13B
[37] using a batch size of 32, with gradient accumulation (4

steps) to achieve an effective batch size of 128. A cosine

learning rate schedule peaked at 2×10−4, with a 10% warm-up

ratio. Optimization followed AdamW (β1=0.9, β2=0.999,

weight decay =0.01= 0.01=0.01) over three epochs (or until

convergence). We set the context length to 4096 tokens and

applied mixed-precision (FP16) training on two NVIDIA

RTX A6000 GPUs. These parameters align with standard

fine-tuning practices [2], ensuring consistency with prior

baselines while facilitating our novel adaptive strategies (e.g.,

Adaptive Transformation Rates and Positional Boundary
Biases) for OpenAPI code completion.

7) Evaluation Metrics:

We evaluate model performance on two key metrics:

Correctness and Validity. Correctness measures the

percentage of completions that are semantically identical to

the ground truth— factoring in structural equivalence and
ignoring minor stylistic differences (e.g., key ordering or

optional quotes).

Validity gauges the percentage of completions yielding

syntactically valid OpenAPI definitions, ensuring each

suggestion adheres to the specification's formal requirements.

Taken together, these metrics provide a balanced view of both

functional accuracy and structural compliance in generated

OpenAPI completions.

III. RESULTS AND DISCUSSION

This section presents a detailed comparison of our fill-in-

the-middle (FIM) enhancements against baseline FIM

approaches, highlighting improvements in correctness,

validity, and training efficiency across varying dataset

complexities and error profiles. All experiments focus on

817

Llama7B and Llama13B, leveraging our Adaptive

Transformation Rates, Positional Boundary Biases, Multi-

Segment Transformations, and Hierarchical Permutations for

OpenAPI code generation.

A. Results

The following is the observed behavior of our system

across different evaluation matrices.

1) Performance vs. Dataset Complexity:

Figure 2 plots correctness percentages for Baseline FIM

Llama7B (blue) and Our FIM Llama7B (green) across four

complexity bins (C1: Low, C2: Moderate, C3: High, C4:

Extreme). Although both models experience a natural decline
in correctness as definitions become more complex (e.g.,

deeper nesting, extensive references), our method consistently

outperforms the baseline in every bin. Notably, we retain a

higher correctness margin even under Extreme complexity

(C4), indicating that Adaptive Transformation Rates and

Hierarchical Permutations effectively maintain structural

fidelity in challenging OpenAPI scenarios.

Fig. 2 Line chart comparing the performance of FIM

2) Error/Failure Types Comparison:

Figure 3 compares error counts for three major failure modes

syntax errors (blue), broken references (orange), and missing

fields (green)—between Baseline FIM Llama7B and Our FIM

Llama7B, with the stacked bars revealing several key trends

that highlight the advantages of our approach. Our model not

only exhibits a lower overall error volume, but it also shows a

significant reduction in errors within each category, particularly

in syntax errors and missing fields. This performance

improvement suggests that the implementation of Positional
Boundary Biases and Multi-Segment Transformations

substantially enhances the model’s capacity to preserve crucial

references and manage nested elements more effectively.

By accurately maintaining the hierarchical structure and

semantic integrity of complex API specifications, our

approach minimizes common pitfalls associated with

OpenAPI generation. These improvements indicate that the

enhanced model is better equipped to handle both micro-level

editing issues and macro-level structural complexities,

resulting in more reliable and robust OpenAPI code

completions that can ultimately simplify debugging and
maintenance in practical, real-world applications.

Fig. 3 Bar chart comparing error/failure types for FIM

3) Training Steps vs. Accuracy:

Figure 4 provides a side-by-side view of correctness (blue)

and validity (green) for four distinct configurations: Baseline

FIM Llama7B, Baseline FIM Llama13B, Our FIM Llama7B,

and Our FIM Llama13B. The data confirm that both

correctness and validity improve with our approach relative

to the baseline FIM methods, with the Llama7B variant

showing particularly large gains—reaching up to 48%

correctness and 87% validity in some subsets.

Fig. 4 Bar chart comparing correctness and validity for different models

This finding aligns with observations in prior studies [12],

suggesting that models with smaller parameter counts can

benefit substantially from carefully tuned, domain-specific
enhancements. Such targeted modifications not only improve

performance metrics but also underscore the potential of

optimized configurations to achieve higher reliability and

efficiency without the need for larger, more complex models.

4) Training Steps vs. Accuracy:

Figure 5 illustrates the training efficiency by plotting
accuracy against training steps for both Baseline FIM

Llama7B and Our FIM Llama7B. As the number of training

steps increases, both models show a clear performance

improvement, yet our approach consistently maintains a

higher accuracy at every checkpoint from 10k to 50k steps.

This steady lead suggests that our method is more effective in

capturing OpenAPI-specific patterns, resulting in a more

robust learning process.

By the final epoch, Our FIM Llama7B converges at an

accuracy of 47.5% compared to the baseline’s 45%,

highlighting not only the accelerated convergence but also the
enhanced reliability of our training strategy. These results

underscore the significant benefits of our approach in

efficiently and accurately understanding the complexities

inherent in the data.

818

Fig. 5 The line plot of training steps vs. accuracy for FIM Llama7B and

Our Llama7B

B. Summary of Results

Overall, these findings validate our novel fill-in-the-middle

enhancements by demonstrating higher correctness across

various dataset complexities, as shown in Figure 2, and by

achieving lower error rates in syntax, references, and missing
fields according to Figure 3. In addition, our approach yields

improved validity and consistency for both 7B and 13B Llama

models, as indicated in Figure 4, and it facilitates faster and

higher convergence during training, as demonstrated in Figure 5.

By incorporating Adaptive Transformation Rates, Positional

Boundary Biases, Multi-Segment Transformations, and

Hierarchical Permutations, we effectively address the inherent

hierarchical complexity of OpenAPI definitions, resulting in

consistent performance gains over baseline FIM solutions,

particularly for smaller model architectures. These

comprehensive improvements not only enhance accuracy and

reliability across diverse conditions but also pave the way for
more robust and scalable API specification processing.

C. Discussion

Table 1 illustrates the correctness and validity metrics for

GitHub Copilot, two Baseline FIM Llama models,

TABLE I

PERFORMANCE COMPARISON BETWEEN MODELS

Model Correctness Validity
Correctness

Avg

Validity

Avg

GitHub Copilot 29.0 68.0 29.0 68.0

Legacy FIM

Llama7B Model
45.0 84.0 32.0 63.1

Legacy FIM

Llama13B Model
34.0 68.0 30.2 64.0

Our FIM Llama7B

Model
48.0 87.0 33.4 64.9

Our FIM Llama13B

Model
37.0 71.0 31.5 66.0

Our FIM‐enhanced Llama models reveal a clear trend in

performance differences that underscores the utility of fill-in-

the-middle strategies for OpenAPI. Although GitHub Copilot

attains 29.0% correctness and 68.0% validity, the Baseline
FIM Llama7B model surpasses these figures with 45.0%

correctness and 84.0% validity, while our FIM Llama7B

further improves correctness to 48.0% and validity to 87.0%,

representing a notable 19% improvement in correctness over

Copilot and a 3% enhancement over the baseline model. This

trend, as also depicted in the line plot of training steps versus

accuracy in Figure 5, persists when comparing the Baseline

FIM Llama13B to our FIM Llama13B, although the gains are

more modest with the larger model. Such differences suggest

that our adaptive fill-in-the-middle approach—which

incorporates adaptive transformation rates, positional

boundary biases, multi-segment transformations, and

hierarchical permutations—provides disproportionately

larger benefits in smaller model configurations, as evidenced

by the error analysis in Figure 3 and complexity-based
performance in Figure 2. These evaluations demonstrate the

potential of our method to yield completions that are both

structurally valid and semantically accurate, even under the

challenging constraints of OpenAPI definitions, and they

further corroborate our observations from training efficiency

and error-type comparisons by underscoring the consistent

advantage of our FIM enhancements over both a commercial

tool like GitHub Copilot and baseline FIM solutions.

IV. CONCLUSION

In this work, we presented a novel approach to OpenAPI

code completion that transcends traditional fill-in-the-middle

techniques. By incorporating Adaptive Transformation Rates,

Positional Boundary Biases, Multi-Segment Transformations,

and Hierarchical Permutations, our method effectively

addresses the challenges posed by the nested and complex

nature of OpenAPI specifications. Our approach dynamically

adjusts transformations based on content length and

complexity, ensures semantic coherence by selecting

meaningful boundaries, and leverages multi-level
segmentation to preserve hierarchical relationships.

Experimental results demonstrate that our enhanced FIM

Llama models consistently outperform both baseline FIM

approaches and commercial tools such as GitHub Copilot in

terms of correctness and validity. Notably, the improvements

are most pronounced in the 7B model, indicating that our

technique can optimize smaller architectures and reduce

computational overhead while maintaining robust

performance. This underscores the potential of our method to

offer both efficiency and accuracy in practical API

development scenarios.
Overall, our study not only contributes a robust framework

for OpenAPI code completion but also lays the groundwork

for further research into domain-specific adaptations of large

language models. Future work will focus on refining these

adaptive strategies and exploring their application to other

complex, structured domains.

ACKNOWLEDGMENT

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea

(NRF), funded by the Ministry of Education (No. RS-2023-

00245316).

REFERENCES

[1] F. Di Lauro, S. Serbout, and C. Pautasso, "Towards large-scale

empirical assessment of web APIs evolution," in Proc. Int. Conf. Web

Eng. (ICWE), M. Brambilla, R. Chbeir, F. Frasincar, and I. Manolescu,

Eds. Cham, Switzerland: Springer, 2021, pp. 128-143,

doi:10.1007/978-3-030-74296-6_10.

819

[2] M. Kim, T. Stennett, D. Shah, S. Sinha, and A. Orso, "Leveraging large

language models to improve REST API testing," in Proc. 44th Int.

Conf. Softw. Eng.: New Ideas Emerging Results (ICSE-NIER), 2024,

pp. 37–41, doi: 10.1145/3639476.3639769.

[3] T. Espinha, A. Zaidman, and H.-G. Gross, "Web API growing pains:

Loosely coupled yet strongly tied," J. Syst. Softw., vol. 100, pp. 27-43,

Feb. 2015, doi: 10.1016/j.jss.2014.10.014.

[4] J. M. Rojas and G. Fraser, "Code defenders: A mutation testing game,"

in Proc. 9th Int. Conf. Softw. Testing, Verification Validation

Workshops (ICSTW), Apr. 2016, doi: 10.1109/icstw.2016.43.

[5] A. Neumann, N. Laranjeiro, and J. Bernardino, "An analysis of public

REST web service APIs," IEEE Trans. Serv. Comput., vol. 14, no. 4,

pp. 957-970, Jul. 2021, doi: 10.1109/TSC.2018.2847344.

[6] OpenAPI Initiative, “OpenAPI Specification,” 2023. [Online].

Available: https://swagger.io/specification/.

[7] S. Gao, X. Jiang, Q. Wu, X. Wang, C. Lyu, and L. Lyu, "GT-SimNet:

Improving code automatic summarization via multi-modal similarity

networks," J. Syst. Softw., vol. 194, Dec. 2022,

doi:10.1016/j.jss.2022.111495.

[8] T. Zhu, Z. Li, M. Pan, C. Shi, T. Zhang, Y. Pei, and X. Li, "Revisiting

information retrieval and deep learning approaches for code

summarization," in Proc. 45th Int. Conf. Softw. Eng. Companion

(ICSE-Companion), Melbourne, Australia, 2023, pp. 328-329,

doi:10.1109/ICSE-Companion58688.2023.00091.

[9] Z. Zhou, H. Yu, G. Fan, Z. Huang, and K. Yang, "Summarizing source

code with hierarchical code representation," Inf. Softw. Technol., vol.

143, Mar. 2022, doi: 10.1016/j.infsof.2021.106761.

[10] Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo, "AST-

Trans: Code summarization with efficient tree-structured attention,"

in Proc. 44th Int. Conf. Softw. Eng. (ICSE), Pittsburgh, PA, USA,

2022, pp. 150-162, doi: 10.1145/3510003.3510224.

[11] D. Fried et al., "InCoder: A generative model for code infilling and

synthesis," 2022, arXiv:2204.05999. [Online].

Available: https://arxiv.org/abs/2204.05999

[12] Y. Gao, H. Zhang, and C. Lyu, "Encosum: Enhanced semantic features

for multi-scale multi-modal source code summarization," Empir. Softw.

Eng., vol. 28, no. 5, Sep. 2023, doi: 10.1007/s10664-023-10384-x.

[13] M. Geng et al., "Interpretation-based code summarization," in Proc.

31st IEEE/ACM Int. Conf. Program Comprehension (ICPC), May

2023, pp. 113-124, doi: 10.1109/ICPC58990.2023.00026.

[14] B. Petryshyn and M. Lukoševičius, "Optimizing large language

models for OpenAPI code completion," 2024, arXiv:2405.15729.

[Online]. Available: https://arxiv.org/abs/2405.15729

[15] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, "A

transformer-based approach for source code summarization," in Proc.

58th Annu. Meeting Assoc. Comput. Linguistics (ACL), Online, 2020,

pp. 4998-5007, doi: 10.18653/v1/2020.acl-main.449.

[16] A. Vaswani et al., "Attention is all you need," in Proc. 31st Int. Conf.

Neural Inf. Process. Syst. (NIPS), Long Beach, CA, USA, 2017, pp.

6000-6010.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT:

Pretraining of deep bidirectional transformers for language

understanding," in Proc. Conf. North Amer. Chapter Assoc. Comput.

Linguistics: Human Lang. Technol. (NAACL-HLT), Minneapolis, MN,

USA, 2019, pp. 4171-4186.

[18] Y. Liu et al., "RoBERTa: A robustly optimized BERT pretraining

approach," 2019, arXiv:1907.11692. [Online].

Available: https://arxiv.org/abs/1907.11692

[19] C. Raffel, “Exploring the limits of transfer learning with a unified text-

to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67,

2020.

[20] M. Lewis et al., "BART: Denoising sequence-to-sequence pre-training

for natural language generation, translation, and comprehension,"

in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics (ACL),

Online, 2020, pp. 7871-7880, doi: 10.18653/v1/2020.acl-main.703.

[21] T. B. Brown et al., "Language models are few-shot learners," in Proc.

34th Int. Conf. Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC,

Canada, 2020, pp. 1877-1901.

[22] E. Nijkamp et al., "CodeGen: An open large language model for code

with multi-turn program synthesis," 2022, arXiv:2203.13474.

[Online]. Available: https://arxiv.org/abs/2203.13474.

[23] M. Chen et al., "Evaluating large language models trained on code,"

2021, arXiv:2107.03374. [Online].

Available: https://arxiv.org/abs/2107.03374.

[24] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, "A systematic

evaluation of large language models of code," in Proc. 6th ACM

SIGPLAN Int. Symp. Mach. Program. (MAPS@PLDI), San Diego,

CA, USA, 2022, pp. 1-10, doi: 10.1145/3520312.3534862.

[25] C. Koutcheme, S. Sarsa, J. Leinonen, A. Hellas, and P. Denny,

"Automated program repair using generative models for code

infilling," in Proc. 24th Int. Conf. Artif. Intell. Educ. (AIED), vol.

13916, Cham, Switzerland: Springer, 2023, pp. 902-914,

doi:10.1007/978-3-031-36272-9_74.

[26] S. Lu et al., "CodeXGLUE: A machine learning benchmark dataset for

code understanding and generation," 2021, arXiv:2102.04664.

[Online]. Available: https://arxiv.org/abs/2102.04664.

[27] Z. Feng, D. Guo, D. Tang, and N. Duan, "CodeBERT: A pre-trained

model for programming and natural languages," in Proc. Findings

Conf. Empirical Methods Natural Lang. Process. (EMNLP), Online,

2020, pp. 1536-1547, doi: 10.18653/v1/2020.findings-emnlp.139.

[28] J. Wei et al., "Chain-of-thought prompting elicits reasoning in large

language models," 2022, arXiv:2201.11903. [Online].

Available: https://arxiv.org/abs/2201.11903.

[29] Q. Luo et al., "RepoAgent: An LLM-powered open-source framework

for repository-level code documentation generation,"

2024, arXiv:2402.16667. [Online].

Available: https://arxiv.org/abs/2402.16667.

[30] J. Pfeiffer et al., "AdapterFusion: Non-destructive task composition for

transfer learning," in Proc. 16th Conf. Eur. Chapter Assoc. Comput.

Linguistics (EACL), Online, 2021, pp. 487-503,

doi:10.18653/v1/2021.eacl-main.39.

[31] E. B. Zaken, Y. Goldberg, and S. Ravfogel, "BitFit: Simple parameter-

efficient fine-tuning for transformer-based masked language-models,"

in Proc. 60th Annu. Meeting Assoc. Comput. Linguistics (ACL),

Dublin, Ireland, 2022, pp. 1-9, doi: 10.18653/v1/2022.acl-short.1.

[32] E. J. Hu et al., "LoRA: Low-rank adaptation of large language

models," 2021, arXiv:2106.09685. [Online].

Available: https://arxiv.org/abs/2106.09685.

[33] T. Liu, Y. Hu, W. Wu, Y. Wang, K. Xu, and Q. Yin, "DAP: Domain-

aware prompt learning for vision-and-language navigation,"

2023, arXiv:2311.17812. [Online].

Available: https://arxiv.org/abs/2311.17812.

[34] Z. Zhou, H. Yu, G. Fan, Z. Huang, and X. Yang, "Towards retrieval-

based neural code summarization: A meta-learning approach," IEEE

Trans. Softw. Eng., vol. 49, no. 4, pp. 3008-3031, Apr. 2023,

doi:10.1109/TSE.2023.3238161.

[35] F. Cassano et al., "MultiPL-E: A scalable and polyglot approach to

benchmarking neural code generation," IEEE Trans. Softw. Eng., vol.

49, no. 7, pp. 3675–3691, Jul. 2023, doi: 10.1109/TSE.2023.3267446.

[36] BigScience, “The Stack dataset,” 2023. [Online]. Available:

https://huggingface.co/datasets/bigcode/the-stack.

[37] Z. Tang et al., "Domain adaptive code completion via language models

and decoupled domain databases," in Proc. 38th IEEE/ACM Int. Conf.

Autom. Softw. Eng. (ASE), Sep. 2023, pp. 421-433,

doi:10.1109/ASE56229.2023.00076.

[38] Y. Li, D. Choi, J. Chung, and N. Kushman, "Competition-level code

generation with AlphaCode," Science, vol. 378, no. 6624, pp. 1092-

1097, Dec. 2022, doi: 10.1126/science.abq1158.

[39] J. Liu, L. Liu, J. Park, and W.-P. Chen, "Web API search: Discover web

API and its endpoint with natural language queries," in Proc. IEEE Int.

Conf. Web Services (ICWS), W.-S. Ku, Y. Kanemasa, M. A. Serhani,

and L.-J. Zhang, Eds. Cham, Switzerland: Springer, 2020, pp. 96-113,

doi: 10.1007/978-3-030-59618-7_7.

[40] F. D. Lauro, S. Serbout, and C. Pautasso, "A large-scale empirical

assessment of web API size evolution," J. Web Eng., Nov. 2022,

doi:10.13052/jwe1540-9589.2167.

[41] S. Gao et al., "Code structure-guided transformer for source code

summarization," ACM Trans. Softw. Eng. Methodol., vol. 32, no. 1, pp.

1-32, Jan. 2023, doi: 10.1145/3522674.

[42] M. Dehghani et al., "Universal transformers,"

2018, arXiv:1807.03819. [Online].

Available: https://arxiv.org/abs/1807.03819

[43] Z. Dai et al., "Transformer-XL: Attentive language models beyond a

fixed-length context," in Proc. 57th Annu. Meeting Assoc. Comput.

Linguistics (ACL), Florence, Italy, 2019, pp. 2978-2988,

doi:10.18653/v1/P19-1285.

[44] N. Shazeer et al., "Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer," 2017, arXiv:1701.06538. [Online].

Available: https://arxiv.org/abs/1701.06538.

[45] R. Umagami, Y. Ono, Y. Mukuta, and T. Harada, "HiPerformer:

Hierarchically permutation-equivariant transformer for time series

forecasting," 2023, arXiv:2305.08073. [Online].

Available: https://arxiv.org/abs/2305.08073

820

