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Abstract—This study presents an intelligent peach pest prediction and control system that fuses deep-learning image diagnostics with 

real-time IoT agro-climatic sensing. A CNN trained on a large, expert-labeled dataset automatically detects key pests and diseases—

brown rot, bacterial spot, aphids, and peach moth—achieving 92% classification accuracy. Concurrently, multi-point sensors stream 

temperature, humidity, soil-moisture, and sunlight data to an LSTM forecasting model that learns environment-driven outbreak 

patterns. The two outputs are merged through a rule-based data-fusion algorithm that grades risk and triggers alerts. Field trials in 

Suncheon and Gwangyang orchards confirmed that the integrated approach increases early-detection rates by 10% over image-only 

baselines, issues a warning an average of three days before visible symptoms appear, and enables targeted interventions that reduce 

chemical usage and damage. Certification testing by the Korea Institute of Lighting Technology further validated key performance 

targets, including≥87% predictive accuracy (achieved at 94.2 %), image analysis within 20 seconds, and sensor data processing within 

1 minute. The modular edge-to-cloud architecture runs on cost-effective hardware, supports real-time dashboards and mobile 

notifications, and is readily extensible to other crops through transfer learning. By combining computer vision, time-series analytics, 

and IoT, the proposed system offers a practical, scalable template for proactive, data-driven crop protection that advances sustainable, 

precision agriculture. Future work will extend deployment through drone imagery, lighter edge models, and explainable-AI modules 

to widen crop coverage and strengthen farmer trust. 
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I. INTRODUCTION

The Fourth Industrial Revolution is steering agriculture 

toward data-driven, automated practices powered by IoT, big-

data analytics, and AI [1]. Peaches—one of Korea's most 

valuable orchard crops—suffer significant losses every 

season from bacterial spot, brown rot, and peach moth [2]. 

Climate-induced shifts in outbreak timing exacerbate damage 

and often trigger excessive pesticide use, inflating costs and 

raising environmental risk [3]. Conventional visual scouting 

cannot react quickly enough, prompting research into early-
warning systems that integrate deep-learning image analysis 

with real-time micro-climate sensing of temperature, 

humidity, rainfall, and sunlight [4], [5].  

Specifically, this study designs an integrated smart-farm 

platform that unites a CNN-based pest detector with an 

LSTM-driven environmental forecaster, validates the system 

throughout an entire growing season in Suncheon and 

Gwangyang while quantifying pesticide reduction and yield 

protection, and demonstrates that the multimodal engine 

delivers roughly 10 % higher early-detection accuracy and 

about a three-day longer lead time than image-only or 
climate-only baselines, all within a sub-minute end-to-end 

latency. In doing so, it offers a modular edge-to-cloud 

template that can be readily adapted to other crops and regions, 

thereby advancing sustainable precision agriculture [6]. 

Traditional control relies on manual patrols or light-trap 

counts, which are labor-intensive, slow, and often miss the 

optimum intervention window [6]. Because pest dynamics 

closely follow temperature, humidity, and rainfall, continuous 

environmental monitoring offers a predictive edge [7]. IoT 

networks now collect such data seamlessly, and sensor-driven 

models can anticipate pest population surges more reliably 
than human scouting alone [8]. 

The advancement of deep learning, especially 

convolutional neural networks (CNNs), has revolutionized 

the diagnosis of crop diseases and pest infestations. For 

example, a CNN model developed to diagnose crop diseases 

997



from simple leaf images was trained on a vast image dataset 

(87,848 images) that included 58 different diseases occurring 

in 25 types of crops, achieving a classification accuracy of 

99.53% and thereby demonstrating the potential of deep 

learning to exceed traditional methods far [9]. In this way, 

CNN-based deep learning techniques have shown the ability 

to automatically learn complex visual patterns and classify 

plant diseases with high accuracy. Subsequent studies have 

introduced models that automatically determine pest types or 

the presence of diseases from images of crop leaves [10], [11]. 
These models typically report classification accuracies of 

over 90%, and some studies have demonstrated stable 

performance even in complex backgrounds of field 

environments. For example, the application of deep learning-

based pest and disease classification models has reached the 

level where real-time diagnosis and prescription can be 

provided through smartphone images in the field, enabling 

accurate and rapid decision-making support in agriculture [9]. 

Recent domestic studies have also reported improvements 

in pest and disease diagnostic efficiency by developing deep 

learning models specifically tailored to the Korean crop 
environment [12], [13]. It is noteworthy that transfer learning 

and data augmentation techniques are being utilized to 

maximize the performance of deep learning models. To 

achieve high performance with small training datasets, 

models pre-trained on large datasets such as ImageNet are 

fine-tuned for agricultural data, or various pest and disease 

images that are difficult to collect in reality are augmented 

through transformation techniques to increase the amount of 

data. For example, pre-trained deep learning models have 

been utilized to enhance the classification accuracy of tomato 

pest detection [14]. Research has also demonstrated that the 
generalization performance of models can be improved by 

generating composite images from various angles and 

backgrounds through augmentation techniques [15], [16]. 

These approaches have been proven effective in mitigating 

the common issue of data scarcity in agriculture and 

preventing model overfitting. Comprehensive reviews of crop 

pest and disease research using deep learning highlight that 

data augmentation and transfer learning play a crucial role in 

enhancing the performance of agricultural image recognition 

models [17]. 

Wireless sensor networks and LPWAN gateways stream 

temperature, humidity, soil moisture, and light at minute-level 
resolution. Early irrigation pilots demonstrated substantial 

productivity gains [18]; modern LoRa smart-greenhouses 

aggregate multizone data for climate optimization [19]. 

Similar meshes broadcast pest-pressure alerts that prompt 

earlier intervention across Southeast Asian orchards [20], and 

some link directly to ozone sprayers or attractant lights for 

closed-loop control [21]. 

Fusion pipelines that pair CNN or YOLO detections with 

LSTM/GRU climate trends regularly surpass single-source 

models: a YOLOv5 detector reached mAP ≈ 99.5 %, and a 

seven-day LSTM forecast posted RMSE ≈ 1.30 [22], [23]. 
Using identical metrics—accuracy, precision, recall, F1, 

RMSE, and MAPE—our study records an approximately 10% 

boost in early-warning accuracy and maintains sub-minute 

decision latency, illustrating systematic outperformance over 

those baselines [9]. 

Despite expert-level CNN accuracy and rich IoT data [24], 

most existing systems are siloed: vision models degrade 

outside their training domain [25], and environmental 

analytics seldom exploit image cues [26], [27]. We bridge this 

gap by fusing real-time CNN outputs with temperature-

humidity streams inside a cooperative LSTM engine [28], [29] 

and deploying it on an edge-to-cloud stack for immediate field 

action [30]–[32]. The result is earlier, more precise alerts that 

translate advanced research into practical smart-farm 

management. Most recently, exploited diffusion probabilistic 
models to generate high-fidelity synthetic lesions, raising 

segmentation F1-score by up to 6 % on scarce datasets and 

highlighting the value of advanced augmentation techniques 

[33]. And these hardware advances integrated distributed 

sensor nodes with an embedded CNN to realise an 

autonomous, cloud-connected pest-management platform that 

achieved 93 % field accuracy and cut manual scouting time 

by 40 % [34]. 

In a related study, CNN spatial features fused with an 

LSTM temporal module to predict cucumber downy-mildew, 

reporting a 10 % accuracy gain over single-modal baselines 
and further validating multimodal fusion strategies [35]. 

II. MATERIALS AND METHOD 

A. Research Procedure and Framework 

This study developed a comprehensive peach pest and 

disease monitoring system through a systematic four-stage 

approach. The framework prioritized practical field 

application at every step to ensure real-world usability. The 

research process began with problem identification, where we 

defined the core requirements for effective pest and disease 
monitoring in peach orchards. Next, during the data collection 

phase, we gathered both visual evidence (pest/disease images) 

and environmental data (temperature, humidity, soil 

conditions) from actual cultivation sites. The model 

development phase focused on creating two complementary 

AI models: a CNN for image analysis and an LSTM for 

environmental pattern recognition. Finally, the system 

integration phase combined these models into a unified 

monitoring platform and validated its performance through 

field testing. 

B. Data Collection and Management 

1) Collection and preprocessing of peach pest and disease 

image data: Since high-quality image data forms the 

foundation of effective model training, we implemented a 
systematic approach to acquire comprehensive imagery of 

pests and diseases from diverse peach cultivation 

environments. The primary data source consisted of high-

resolution photographs captured directly in operational peach 

orchards, supplemented by additional images obtained from 

publicly available agricultural datasets and materials provided 

by established agricultural research institutions. To ensure 

comprehensive coverage, we focused on capturing images 

that documented all major peach pests and diseases, including 

brown rot, bacterial spot, leaf curl, and damage patterns 

caused by common pests such as aphids and moths as shown 

in Fig. 1. 
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Fig. 1  Data Gathering Devices 

 

Each collected image underwent careful labeling and 

validation through consultation with agricultural experts to 

ensure accurate identification and classification. This expert 

validation process was critical for establishing reliable ground 

truth data for model training. Following initial collection, we 

applied systematic preprocessing techniques to enhance data 

quality and consistency. The preprocessing pipeline included 

the removal of images with insufficient resolution, poor focus, 

or duplicate content to reduce noise in the training dataset. All 

remaining images were resized to uniform dimensions 
suitable for model input requirements, and pixel values were 

normalized to minimize the effects of varying lighting 

conditions and color differences across different capture 

environments. 

To address the challenge of limited training data and 

improve model robustness, we implemented comprehensive 

data augmentation techniques. These augmentation methods 

included random rotations, horizontal flips, brightness 

adjustments, and slight scaling transformations, which 

effectively increased dataset diversity and helped train models 

that could perform reliably under various field conditions. 

The final processed image dataset was systematically 
organized into training, validation, and test sets, with all 

images stored in a structured database along with 

comprehensive metadata including capture dates, location 

information, and expert-validated labels. 

2) Collection and organization of IoT-based data: 

Recognizing that environmental conditions significantly 

influence pest and disease occurrence patterns in peach 

cultivation, we deployed comprehensive IoT sensor networks 

to collect real-time environmental data throughout target 

orchards. The sensor deployment strategy involved installing 

various types of monitoring equipment at strategic locations 
within the orchard, including temperature and humidity 

sensors, soil moisture monitors, and light intensity sensors. 

These sensors were configured to automatically measure and 

record environmental parameters at regular intervals ranging 

from 10 to 30 minutes, depending on the specific location and 

monitoring requirements. 

All sensor data were transmitted wirelessly to a central 

server through edge computing devices such as the Jetson 
AGX, ensuring reliable data collection and storage. The 

collected environmental data were automatically timestamped 

and stored cumulatively in a structured database, enabling 

correlation analysis with pest and disease occurrence patterns 

across different periods. To ensure data reliability and 

consistency, we implemented comprehensive preprocessing 

procedures for the environmental datasets. Missing values 

resulting from sensor malfunctions or communication 

disruptions were addressed through interpolation techniques, 

utilizing data from adjacent periods or replacement with 

calculated average values. 
Sensor readings that exhibited extreme fluctuations or 

unrealistic changes were identified as outliers and either 

removed or corrected through statistical methods. When 

necessary, we performed calibration procedures to reduce 

measurement deviations and ensure accuracy across different 

sensor units. Environmental data with varying units or 

measurement ranges were normalized and standardized to 

enable meaningful comparison and analysis. The organized 

environmental dataset was chronologically sorted and 

prepared for subsequent time-series model training and 

prediction applications. To facilitate comprehensive 

multimodal analysis, we established systematic linkages 
between image data and environmental data based on 

common temporal information, enabling the correlation of 

pest and disease occurrence with preceding environmental 

conditions. 

C. Deep Learning Model Design 

1) CNN-based pest and disease image classification model: 

This research developed a sophisticated CNN-based image 

classification model designed to automatically identify and 

classify pest and disease symptoms on peach tree leaves and 

fruits. The model architecture follows established CNN 

design principles for image classification, incorporating 

multiple convolutional layers for effective feature extraction, 

pooling layers for dimensionality reduction, and fully 

connected layers for final classification decisions. To leverage 
existing knowledge and improve training efficiency, we 

implemented transfer learning techniques utilizing well-

established pre-trained models such as VGG16 and ResNet-

50, adapting the final output layers to accommodate the 

specific requirements of peach pest and disease classification. 

The model optimization process involved systematic 
hyperparameter tuning to determine the optimal network 

structure, including experiments with different numbers of 

convolutional layers, filter sizes, and activation functions. We 

employed the ReLU activation function throughout the 

network and used a SoftMax function in the output layer to 

generate probability distributions across multiple pest and 

disease categories. The model training process utilized the 

preprocessed image dataset with careful attention to prevent 

overfitting through data augmentation techniques and 

regularization methods. 

Training was conducted using the Adam optimizer with 
experimentally determined learning rates, and categorical 
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cross-entropy served as the loss function for multi-class 

classification. The training process spanned over 100 epochs, 

with early stopping mechanisms implemented to halt training 

when the validation loss began to increase, thereby preventing 

overfitting while ensuring optimal model performance. The 

final CNN classification model demonstrated strong capability 

in accurately determining various types of diseases affecting 

peach leaves as well as identifying different patterns of pest 

damage. An experimental evaluation of the test dataset revealed 

that the model achieved approximately 92% accuracy, with an 
average precision of 0.90 and recall of 0.91, confirming the 

effectiveness of the proposed CNN approach for image-based 

pest and disease diagnosis in peach cultivation. 

2) LSTM/GRU-based time-series prediction model for pest 

occurrence: To enable predictive capabilities based on 

environmental patterns, we implemented a sophisticated time-

series analysis model using a recurrent neural network 

architecture. The model was specifically designed to learn 

temporal patterns in environmental variables, such as 

temperature, humidity, and soil moisture, in peach orchards 

and establish correlations with trends in pest and disease 
occurrence. We implemented and compared both LSTM and 

GRU models, which are advanced variants of RNNs, 

particularly well-suited for learning long-term dependencies 

in sequential data. 

The input data structure consisted of time-series sequences 

of environmental indicators collected over recent periods. For 
example, the model processed continuous daily averages of 

temperature, humidity, and rainfall data over 14-day windows 

to predict future risk levels for pest and disease occurrence. 

Rather than formulating this as a simple categorical prediction 

problem, we designed the model to output continuous risk 

indices that represent the likelihood of future pest and disease 

occurrence. This regression approach enables more nuanced 

risk assessment and provides greater flexibility in decision-

making processes. 

The model architecture employed stacked LSTM and GRU 

layers with carefully tuned hidden state sizes, typically 
ranging from 64 to 128 units per layer. We conducted 

systematic experiments with varying input window sizes and 

feature selections to optimize the model's ability to capture 

temporal patterns in the environmental data. Dropout 

regularization was applied when necessary to address the 

overfitting tendencies commonly associated with RNN 

architectures. A comparative evaluation of LSTM and GRU 

models revealed that LSTM architecture produced slightly 

lower prediction errors, leading to its selection as the primary 

model. Although the GRU model demonstrated similar 

performance levels, it could serve as a viable alternative. 

The training process utilized a mean squared error loss 
function to minimize the differences between predicted and 

actual values, with the Adam optimizer employed for 

parameter optimization. The trained LSTM model 

successfully learned to predict pest and disease occurrence 

trends based solely on environmental data patterns, providing 

a reliable foundation for issuing early warnings of potential 

outbreaks under specific environmental conditions. 

3) Fusion predictive algorithm combining image analysis 

and environmental data: To maximize prediction accuracy 

and reliability, we developed an integrated algorithm that 

combines results from both image-based detection and 

environmental-based prediction systems. This fusion 

approach leverages the complementary strengths of each 

model to achieve more comprehensive and accurate pest and 

disease monitoring capabilities. The integration strategy 

initially employed a rule-based approach, where real-time 

detection results from the CNN classification model serve as 

immediate alert indicators when pest or disease presence is 

visually confirmed. Meanwhile, predictions from the LSTM 

time-series model provide early warning signals based on 

environmental risk assessments. 

The fusion algorithm combines outputs from both models 

to generate comprehensive risk assessments with multiple 

alert levels. When both image analysis detects the presence of 

a current pest or disease and environmental conditions 
indicate a high outbreak risk, the system assigns the highest 

risk grade and issues emergency alerts. Conversely, when 

image analysis reveals no current abnormalities, but the 

LSTM model predicts an increasing future risk based on 

environmental trends, the system issues preliminary warnings 

to enable preventive measures. 

We also experimented with a more sophisticated integrated 

model that processes both image and environmental data 

simultaneously to produce unified predictions. This approach 

involved designing a deep learning architecture that processes 

CNN-extracted image features and LSTM-generated 

environmental time-series features in parallel. The integrated 
model utilizes confidence scores from the CNN classifier and 

risk values from the LSTM predictor as input features, 

processing them through fully connected layers to generate 

final integrated predictions such as outbreak probability 

estimates. 

This comprehensive data fusion approach effectively 

combines immediate status identification through image 

analysis with future risk prediction based on environmental 

patterns, providing a robust and reliable system for pest and 

disease management decision-making in practical agricultural 

applications. The integrated algorithm demonstrated superior 
accuracy and reliability compared to single-source prediction 

methods, offering comprehensive monitoring capabilities that 

support both immediate response and preventive management 

strategies. 

D. System Implementation and Software Environment 

1) Prototype architecture of the pest and disease prediction 

and management system: Based on the developed deep 

learning models, we implemented a comprehensive prototype 

system for predicting and managing pests and diseases in 

peach cultivation. The system architecture is organized into 

three distinct functional layers designed to ensure scalability, 

reliability, and ease of use. The data collection layer manages 

real-time data acquisition from IoT sensors and camera 

modules deployed throughout the orchard environment. 
Environmental data collected from various sensors and 

periodic field images are transmitted via wireless networks to 

a central server system, where they are systematically stored 

in structured databases. 

The data processing layer forms the computational core of 

the system, where deployed deep learning models analyze 
incoming data streams in real-time. When new images are 
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received, the CNN classification model immediately 

processes them to determine the presence and type of any pest 

or disease symptoms, while continuously updated 

environmental sensor data are fed into the LSTM prediction 

model at regular intervals to generate future risk assessments. 

These individual analysis results are then processed by the 

integrated fusion algorithm module, which conducts 

comprehensive risk evaluations and generates appropriate 

decision support recommendations. 

The user interface layer provides accessible and intuitive 
access to system outputs through both web-based dashboards 

and mobile applications, enabling agricultural stakeholders to 

understand and utilize the generated information efficiently. 

The dashboard presents real-time monitoring charts 

displaying current sensor data, recently captured images with 

analysis results, and predicted risk levels for various pests and 

diseases. The overall system design emphasizes modularity 

and extensibility, facilitating future enhancements such as the 

addition of new sensor types, model upgrades, or expanded 

functionality. 

2) Development environment and libraries used: The 
software development environment for the prototype system 

was carefully selected to ensure optimal performance and 

maintainability. Server-side development primarily utilizes 

the Python programming language due to its extensive 

ecosystem of scientific computing and machine learning 

libraries. The implementation of the deep learning model 

relied on the TensorFlow and Keras frameworks, which 

provided robust tools for model development, training, and 

deployment. Image processing and augmentation tasks were 

handled using OpenCV, while data analysis and manipulation 

were performed using established Python scientific 

computing packages, including NumPy and Pandas. 

For time-series data processing and system communication, 

we utilized specialized Python libraries such as schedule for 

automated data collection timing and MQTT for message 

queuing when required. The database infrastructure 

comprised InfluxDB for efficient time-series data storage and 
MySQL for relational data management. The system was 

configured to operate on Ubuntu Linux-based servers, with 

GPU acceleration through CUDA implementation to ensure 

real-time performance for computationally intensive deep 

learning inference tasks. The IoT device software was 

developed in Python to facilitate reading and transmission of 

sensor data to the central server via Wi-Fi connections using 

REST API protocols. 

3) Implementation of real-time monitoring and warning 

alert functions: One of the most critical components of the 

system is its real-time monitoring capability and automatic 

warning alert functionality. To achieve this, we developed a 
comprehensive streaming data processing and event detection 

module that operates continuously on the server infrastructure. 

As environmental sensor data are collected, they are 

immediately recorded in the database and automatically 

checked against predefined threshold conditions that indicate 

potential pest or disease outbreak risks. For example, the 

system includes triggers that activate when temperature and 

humidity levels exceed established thresholds associated with 

specific patterns of pest or disease occurrence. 

Simultaneously, the system regularly processes the most 

recent environmental data through the LSTM prediction 

model to generate short-term forecasts, while the CNN model 

analyzes newly captured camera images to assess current pest 

and disease presence. When these analysis results exceed 

predetermined risk thresholds, the system automatically 

generates and distributes warning alerts through multiple 

communication channels. These alerts are delivered to users 

via smartphone application push notifications, SMS messages, 

and dashboard notifications, providing comprehensive 
information including the type of pest or disease most likely 

to occur, current risk level classifications, and recommended 

countermeasures. 

To ensure optimal system responsiveness, we implemented 

asynchronous processing techniques and optimized model 

inference procedures to minimize data processing delays. The 

system maintains an end-to-end latency of less than five 

seconds from initial sensor data collection to final warning 

alert delivery. Users can continuously monitor orchard 

environmental conditions and model prediction results 

through the real-time dashboard interface, enabling them to 
receive timely early warnings and implement appropriate 

control measures promptly. This comprehensive monitoring 

and alert system provides agricultural managers with the 

information and timing necessary to make informed decisions 

about pest and disease management interventions. 

E. Performance Evaluation and Analysis Methods 

1) Evaluation of metrics and results for the classification 

model: To comprehensively evaluate the performance of the 

developed CNN-based image classification model, we 

employed established quantitative evaluation metrics 

appropriate for multi-class classification problems. The 

evaluation framework included calculations of accuracy, 

precision, recall, and F1-score to thoroughly assess the 

model's predictive capabilities and reliability across all pest 
and disease categories. Evaluation was conducted using a 

separate test dataset consisting of validation images that were 

not used during the training process, ensuring unbiased 

performance assessment. 

TABLE I 

PER-CLASS EVALUATION OF PEST AND DISEASE CLASSIFICATION 

Class Name Precision Recall F1-Score Support 

LeafCurl 0.95 0.93 0.94 300 

BrownRot 0.94 0.95 0.95 280 

Bacterial Spot 0.87 0.89 0.88 320 

Aphid 0.91 0.88 0.89 250 

Moth 0.88 0.92 0.9 270 

Avg/Total 0.91 0.91 0.91 1420 

 

The results demonstrated that the model achieved an 

overall accuracy of approximately 92%, indicating strong 

discriminative capability across all pest and disease classes. 

The average precision and recall values were approximately 

0.90 and 0.91, respectively, indicating that the model 

successfully detected about 91% of actual pest and disease 
cases while maintaining an accuracy of about 90% in its 

positive predictions. The F1-score of 0.91 demonstrated 
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balanced performance between precision and recall, 

confirming the model's reliability for practical applications. 

Detailed class-specific analysis revealed that diseases with 

distinctive visual symptoms, such as leaf curl, achieved nearly 

perfect recognition rates, while some cases involving early-

stage or mild infection symptoms showed slightly lower 

detection rates. Despite these minor variations, the proposed 

CNN classification model consistently demonstrated accurate 

classification performance across images captured in various 

environmental conditions, confirming its suitability for real-
world agricultural applications. 

2) Evaluation of the time-series prediction model: The 

performance of the LSTM-based time-series prediction model 

was thoroughly analyzed using appropriate regression 

evaluation metrics. To quantify prediction accuracy, we 

calculated Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) values by comparing predicted pest and 

disease risk indices with actual observed values. RMSE 

provides sensitivity to large prediction errors by calculating the 

square root of averaged squared errors, while MAE represents 

the average absolute error across all prediction points. 

Evaluation using test datasets that compared environmental 

conditions with actual pest and disease occurrence rates 

revealed that the LSTM model achieved RMSE values below 

0.15 and MAE values around 0.10, indicating relatively low 

prediction errors. These results demonstrate that predicted 

risk indices closely matched actual observed values and that 
the model effectively captured temporal trends in pest and 

disease occurrence patterns. For comparison, baseline models 

using simple recent-value predictions and traditional 

statistical methods such as ARIMA produced RMSE values 

exceeding 0.20 on the same datasets, confirming that the 

proposed LSTM model significantly improved prediction 

accuracy compared to conventional approaches as shown in 

Fig. 2. 
 

 

 
Fig. 2  Model’s MSE, PSNR 

 

The GRU model was evaluated using the same metrics and 

showed slightly higher RMSE and MAE values compared to 

LSTM, although the performance difference was not 

substantial. Based on these comparative results, LSTM was 

selected as the primary model due to its superior accuracy and 

demonstrated effectiveness in learning complex temporal 

patterns associated with pest and disease occurrence in peach 

cultivation environments. 

3) Pilot field testing and system effectiveness analysis: To 

evaluate practical applicability and real-world performance, 

we conducted comprehensive pilot field testing in operational 

peach orchards over several months during active cultivation 

periods. The prototype system was fully deployed and 

operated under actual farming conditions, allowing direct 

comparison between model-generated predictions and 
observed pest and disease occurrences. This field validation 

provided crucial insights into system effectiveness and 

practical utility for agricultural management. 

The results demonstrated that the system successfully 

issued risk warnings an average of three days prior to actual 
pest and disease occurrences, confirming its early warning 

capabilities. During the pilot testing period, the system 

generated ten high-risk alerts, eight of which were followed 

by preventive pest control measures implemented by farm 

managers, effectively preventing or minimizing pest and 

disease spread. Of the remaining two alerts, one was later 

confirmed as a mild occurrence that did not require 

intervention, while the other did not result in significant crop 

damage, suggesting opportunities for further model 

refinement to improve alert specificity. 

Overall alert precision reached approximately 80% with a 

recall of about 90%, demonstrating that the system 
successfully detected most pest and disease occurrences while 

maintaining reasonable accuracy in its predictions. Field 

validation confirmed the system's practical value for 

agricultural decision-making. Feedback collected from farm 

managers during the testing period indicated that the real-time 

dashboard enabled quick assessment of environmental 

conditions and risk predictions, while smartphone alerts 

during nighttime hours or when managers were away from the 

orchard significantly improved management convenience and 

responsiveness. 

As a result of implementing preventive measures based on 
early warnings, there was a noticeable trend toward reduced 

pest and disease damage compared to previous cultivation 

seasons, though additional long-term observation will be 

needed for quantitative confirmation. The pilot testing also 

identified practical implementation challenges including 

occasional communication instability and sensor maintenance 

requirements, which will be addressed in future system 

improvements. Overall, the field testing successfully 

demonstrated that the developed pest and disease prediction 

and management system operates effectively in real 

cultivation environments, providing meaningful contributions 

to early intervention and damage mitigation in agricultural 
pest and disease management. 

III. RESULTS AND DISCUSSION 

A. Dataset Construction Results 

A large-scale dataset was constructed by collecting images 

of peach pests and diseases. The image data includes 

photographs taken at farms as well as images extracted from 

publicly available agricultural materials to cover a wide range 

of diseases and pest cases. A total of approximately 100,000 
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images were collected from various sources, including pest 

and disease encyclopedias from domestic research institutions, 

agricultural websites, and photos taken in actual orchards. 

Experts carefully labeled each image to ensure the reliability 

and consistency of the data regarding which disease or pest it 

represented. Augmentation (rotation, flip, brightness shift, 

and mild scaling) expanded the minority classes, ensuring 

balanced input for model training, as presented in Fig. 3. 
 

 

  
  

  
  

  
Fig. 3  Image Dataset 

 

IoT nodes simultaneously logged temperature, humidity, 

rainfall, soil-moisture, and solar radiation. Each image was 

matched to the closest sensor snapshot; when external images 

lacked on-site data, regional weather observations were 

substituted or, if unavailable, the image was omitted. After 

outlier filtering and interpolation of rare drop-outs, the 

environmental dataset comprised a timestamped series of 

hourly temperature (°C), relative humidity (%), rainfall (mm), 

and sunshine duration (hr). This paired, quality-controlled 
repository formed the basis for both the CNN and LSTM 

models. 

B. Deep Learning Model Training Results 

Among several backbones, a fine-tuned ResNet-50 

delivered the best trade-off between speed and accuracy. On 

the independent test set, the model achieved 92% overall 

accuracy, with a mean precision ≈ of approximately 90 % and 

a recall ≈ of roughly 91%. Clear signature classes, such as 
Leaf curl and Brown rot, exceeded 95% precision; aphid 

damage, with more variable symptoms, still achieved ~90% 

recall, as shown in Fig. 4. 

The model's performance was evaluated using metrics such 

as accuracy, precision, recall, and F1-score. On the final test 

dataset, the model's overall accuracy reached approximately 

92%. Additionally, the average precision was about 90% and 

the recall was around 91%, confirming that most pests and 

diseases were consistently identified correctly. Diseases with 

clear patterns exhibited a precision of over 95%, and pest 

classifications, such as for aphids, also showed favorable 

detection performance with a recall of around 90% as shown 

in Fig. 5. 
 

 
Fig. 4  Model Epoch 

 

 
Fig. 5  Model Training Procedure 

 

During the training process, the trends of training and 

validation results were carefully monitored. Initially, the 

model's accuracy on the training data improved rapidly, and 
after about 10 epochs, the validation accuracy also 

approached 90% as presented in Fig. 6. 

 

 
Fig. 6  Model Accuracy 

 

However, after 15–20 epochs, the validation accuracy 

plateaued, and an early stopping technique was applied to 

prevent unnecessary overfitting. The final model was saved at 

the point of highest validation accuracy and later evaluated on 

an independent test set. The results confirmed that training 

proceeded smoothly without overfitting, as the training and 

validation accuracies converged at high levels. Furthermore, k-

fold cross-validation revealed minimal variance in performance 

among folds, indicating that data partitioning had a minimal 
influence on model performance, as shown in Fig. 7. 

Hyperparameter optimization was performed to improve 

model performance further. A grid search for the learning rate 

was conducted over several candidate values, and it was found 

that setting an initial learning rate (followed by gradual 

reduction during training) resulted in the fastest convergence 
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and highest validation accuracy. In comparing batch sizes of 

16, 32, and 64, a batch size of 32 provided the best balance 

between training stability and performance. In addition, 

experiments with dropout rates of 0.3 and 0.5 indicated that a 

dropout rate of 0.5 effectively suppressed overfitting and 

slightly enhanced validation performance. Other experiments 

included adjusting the strength of data augmentation and 

testing alternative CNN architectures such as VGG16 and 

EfficientNet. Ultimately, the fine-tuned ResNet-50 model 

exhibited the highest accuracy relative to the number of 
parameters, and the optimal hyperparameter combination 

achieved approximately 92% final accuracy, an improvement 

of about 3 to 5 percentage points over the initial baseline 

settings. 

 
Fig. 7  Precision and Recall 

C. Application Case of the Integrated Prediction Model 

Coupling CNN with the LSTM noticeably sharpened early 

alerts. Under prolonged rainfall and RH > 80 %, the system 

raised fungal-risk probabilities even when visual symptoms 

were faint; conversely, in cool-dry spells, it downweighed 

identical images. Precision averaged 85% in the early stage 

and exceeded 95% from mid-stage onward, demonstrating 

that environmental context reduces the number of missed 

incipient cases. Because the architecture is task-agnostic, 

preliminary fine-tuning on a small apple dataset transferred 

successfully to brown-rot detection—evidence that the 
pipeline can scale to other fruit crops with modest data 

additions. 

D. Analysis of Results and Discussion 

False positives mainly involved dust spots or water 

droplets misclassified as brown rot, suggesting that more 

background variation is desirable. False negatives arose when 

early Leaf curl lesions were minute; higher-resolution optics 

or targeted patch training are planned remedies. 
The model's limitations include its restricted data range, 

which makes it challenging to respond to new pests and 

diseases; potential performance variability due to differences 

in image quality from various field shooting conditions; and 

reduced reliability in the event of sensor failures. Additionally, 

the lack of XAI (explainable AI) techniques makes it difficult 

for farmers to interpret the prediction results, and the complex 

CNN structure poses a burden on real-time processing in low-

spec devices. To address these issues, future research is 

proposed to incorporate periodic data updates, utilize 

lightweight models based on edge computing, and introduce 

explanation techniques such as Grad-CAM. 

From the perspective of field applicability, reducing 

construction costs and maintenance, as well as improving the 

user interface (UI), is essential. It is proposed that the system 

be lightened so that small-scale farms, which may not be able 

to install expensive cameras and sensors, can utilize 

smartphone cameras or low-cost sensors, and that the UI be 

optimized in a responsive web or mobile app for easy 

operation and diagnosis. Moreover, to cope with network 

issues in rural areas, enabling offline mode or basic inference 

on edge devices would further enhance system stability. 
Certification by the Korea Institute of Lighting Technology 

(Fig. 8, Table II) verified that the integrated platform 

surpassed all benchmarks—94.2 % prediction accuracy, 

19.23 s image analysis, and 50.10 s sensor-data 

processing—validating its readiness for commercial orchard 

deployment and future multi-crop expansion. 

 

 

 

 

Fig. 8  Certification Specific Certificates 
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TABLE IIIII 

CERTIFICATION SPECIFICATION 

Test Item 
Test 

Criteria 

Test 

Procedure 
Result 

Prediction 
Accuracy 

≥ 87% 

prediction 
accuracy 

Evaluation 

of model 
classification 
accuracy on 
100 test 
images 

Achieved an 
average accuracy 
of 94.2% 

Image 
Analysis 
Time 

≤ 1 

minute 
per image 

Measured 
time on over 
50 images of 
various sizes 
and formats 

Average analysis 
time within 19.23s 

External Data 
Collection 
and Analysis 
Time 

≤ 1 

minute 
for IoT 
sensor 
data 
collection 
and 
analysis 

Real-time 
collection of 
external data 
via sensors 

Analysis 
completed within 
an average of 
50.10s 

 

This study confirmed that the integrated system, which 

fuses deep learning-based image analysis with IoT 

environmental data for early prediction of peach pest and 

disease occurrences, met the key performance targets (e.g., 

prediction accuracy above 87%, analysis time within 1 minute, 

etc.) through official certification tests conducted by the 

Korea Institute of Lighting Technology. These results 

demonstrate the value and potential of the system as an 

intelligent pest and disease management solution suitable for 

practical farm settings. It is expected to contribute to the 
broader smart agriculture ecosystem by expanding its 

application to other orchards and diverse crops in the future. 

IV. CONCLUSION 

This study developed an intelligent management system 

that integrates deep learning-based image analysis with IoT 

sensor data on environmental conditions to predict and 

manage peach pests and diseases efficiently. It verified the 

system's practical applicability through subsequent 
certification tests. Specifically, by automatically classifying 

peach pest and disease images using a Convolutional Neural 

Network (CNN) and preemptively predicting the impact of 

environmental variables (such as temperature, humidity, and 

soil moisture) on pest and disease occurrences through time-

series models like LSTM, the system enables the 

establishment of more accurate and proactive pest and disease 

control strategies. During the model development and system 

implementation process, key performance indicators such as 

prediction accuracy, image analysis time, and external data 

collection and analysis time were established. The 
certification tests conducted by the Korea Institute of Lighting 

Technology confirmed that these targets were exceeded. This 

is particularly significant because it enables the issuance of 

early warnings before pests and diseases occur in the field, 

allowing for prompt intervention. 

By uniting a transfer-learning CNN that achieves 92% 

diagnostic accuracy with an LSTM microclimate forecaster in 

an edge-to-cloud feedback loop, this work establishes a 

reproducible technical blueprint and performance baseline for 

precision orchard systems. The prototype demonstrates that 

multimodal AI can reduce the detection-to-intervention 

window by three days, decrease pesticide use, and meet 

accredited certification targets, thereby advancing the 

scientific foundation for truly real-time smart farming. 

Nevertheless, current validation is limited to five peach 

pest-and-disease classes, a single growing season, and two 

orchards; multi-year, multi-region trials and an expanded 

disorder set will be required to confirm broad applicability. 
The experimental results further demonstrate that fusing 

real-time environmental monitoring with CNN-based image 

analysis not only enhances prediction accuracy but also 

refines outbreak timing estimates. To enhance scalability, 

future work should expand the dataset across diverse climates 

and cultivars and utilize transfer learning for rapid adaptation. 

High-resolution or drone imaging could detect incipient 

symptoms that ground cameras miss, and pairing the system 

with spraying robots or irrigation controllers could ultimately 

enable fully automated smart farms. Model lightweighting 

and explainable AI techniques (e.g., Grad-CAM) will enable 
on-device diagnosis to be faster and more transparent to 

growers. 

As an additional research direction, we plan to integrate 

state-of-the-art large language models (LLMs). Merging 

video, sensor, and text data—such as cultivation logs and 

expert recommendations—within an LLM would support 

richer knowledge integration and an interactive question-and-

answer interface for farmers. 

Ultimately, the peach pest and disease prediction system 

developed in this study can contribute to reducing pesticide 

usage and labor costs, and securing stable harvests, thereby 
improving farm management efficiency. Moreover, the 

adoption of Fourth Industrial Revolution technologies in 

agriculture is expected to play a crucial role in pursuing 

sustainable and eco-friendly production methods, as well as 

realizing precision agriculture and digital transformation. As 

confirmed by the certification test results of this study 

(prediction accuracy above 87%, image analysis within 1-

minute, external data processing within 1 minute), the system 

has already met the target criteria in terms of speed and 

accuracy for field applications. By further integrating 

advanced AI technologies, including LLMs, the system could 

evolve into a comprehensive smart agriculture solution that 
goes beyond mere pest and disease prediction to enable 

natural communication, knowledge sharing, and automated 

pest control decision-making between farmers and the system, 

thus accelerating the transition from a reactive, post-

occurrence management approach to a proactive, 

scientifically based management paradigm. Ultimately, it is 

anticipated that the deep learning and IoT-based pest 

prediction model presented in this study, when combined with 

cutting-edge AI technologies such as LLMs, will contribute 

to agricultural innovation and further enhance the 

competitiveness of the overall smart agriculture ecosystem. 
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