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Abstract— The effect of feedback control on the onset of double-diffusive convection in a horizontal binary fluid layer is studied 
analytically subjected to cross diffusion coefficients which are the Soret and Dufour parameters. The confined boundaries of the 
binary fluid layer are considered to be free-free, rigid-free and rigid-rigid which described the lower and upper surfaces respectively. 
The linear stability theory is applied, and the eigenvalue solution is obtained numerically using Galerkin technique. Focusing on the 
stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-
diffusive convection in binary fluid mixture. 
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I. INTRODUCTION 

In the past few decades, great observations of double-
diffusive convection have been rapidly investigated by many 
scientists because of their applications in various physical 
phenomena, such as oceanography, crystal production, 
metallurgy, and astrophysics. Double-diffusive convection is 
a process of interaction of two fluid components that diffuse 
at imbalance rates. In thermosolutal convection, buoyancy 
forces can arise not only from density differences due to 
variation in temperature gradient but also from those due to 
variation cross diffusive coefficients viz., Soret and Dufour 
effects. In [1] studied oceanographical phenomena where 
they found that the ascending (or descending) water in the 
tube would exchange heat but not salinity with the ambient 
ocean and would be accelerated due to its deficit in salt and 
density relative to fluid at the same level outside the tube. In 
[2] investigated the thermohaline convection and discussed 
the stability characteristics in laminar flow. In [3] analyzed 
the effect of the thermal and solutal gradient in thermosolutal 
convective instability in a double-diffusive fluid layer where 
both effects either can stabilize or destabilize the stationary 
and oscillatory mode. In [4] demonstrated the soret-driven 

thermosolutal convection both theoretically and 
experimentally using a water-methanol mixture. Then, in [5] 
continue previous investigation using water-ethanol mixture 
while [6] extended the investigation using salt solution. In 
[7] reviewed the study on double-diffusive convection. In [8] 
studied the convection in liquids. The linear stability of 
experimental Soret convection in water-ethanol mixture with 
various boundary conditions has been investigated by [9] 
with an emphasized on Biot number. The onset of 
convection in binary mixtures with Dufour effect was 
investigated by [10]. It is shown that Dufour parameter can 
have a significant influence on the stability boundaries of the 
quiescent state depending on the strength of the Dufour 
coupling. The thermocapillary instability in the binary fluid 
on the onset of convection by considering the Soret effect 
with other physical influences has been studied by [11], [12] 
followed by [13]. In 2011, in [14] use the linear instability 
theory to study the onset of double-diffusive convection in a 
horizontal layer of nanofluids heated and salted from below. 
Double diffusive convection of fluid with Soret and Dufour 
effects are studied by [15]. The expressions for both 
stationary and oscillatory Rayleigh numbers which 
characterized the stability of the system are obtained. They 
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found that in the presence of cross-diffusive in system heated 
and salted from above, the oscillatory convection has been 
delayed at the marginal state. The scientists and researchers 
have started the investigation on delaying the onset of 
convective heat transfer through the use the controller 
strategy. In [16], [17] worked on actively controlled 
convection in the Rayleigh-Benard system and concluded 
that the controller gain stabilized a non-stable state. In [18], 
[19] used a controller that consists of sensors that detect 
deviations in the temperature of the fluid and showed the 
similar control strategy could be used to control the flow 
patterns of the system. These series of papers by [20]-[22] 
analyzed the active control through the uses of shadow 
graphic measurement on the onset of Rayleigh-Benard 
convection and found that the simple linear control stabilized 
the unstable no-motion state. In [23], [24] experimented the 
use of feedback control and pointed out that without correct 
temperature, power control, saturation of actuators, 
conduction through the side wall and an insufficient number 
of actuators can lead the controller to achieve bad 
performance. In [25] demonstrated the critical Marangoni 
number could be increased through the use of feedback 
control. In [26] found the onset of Marangoni-Benard 
convection with internal heat generation can be delayed 
through the use of feedback control. In [27], [28] found that 
an active control strategy significantly effective in 
suppressing the onset of Marangoni convection. In [29] 
demonstrated the critical Marangoni number could be 
drastically increased with the combination effects of 
feedback control and rotation. In [30] found the onset of 
surface tension instability can be delayed through the use of 
feedback control in Eringen fluid. In [31] applied the effect 
of feedback control on the onset of Rayleigh-Benard 
convection in micropolar fluid and found that it has a 
stabilizing factor to the system. 

The study of feedback control on the onset of convection 
in the binary fluid mixture has not been given any attention 
in spite of its importance in controlling the stability. To fill 
the void, this present analysis attempts to study the effect of 
feedback control in the presence of Dufour and Soret effects 
on the onset of the double-diffusive binary fluid layer. Three 
types of bounding surfaces (lower boundary-upper 
boundary) are considered in this investigation: free-free, 
rigid-free and rigid-rigid.  We assume that the upper surface 
to be non-deformable and employed the stability analysis 
theory. The resulting eigenvalue problem is solved using the 
Galerkin method. 

II. MATERIAL AND METHOD 

Consider an infinite horizontal layer of binary fluid of 
depth, d confined between the planes z = 0 and z = d 
subjected to the feedback control, K is heated from below. 
The stability of a horizontal layer of binary fluid in the 
presence of feedback control is examined. We select a 
Cartesian coordinate system with z pointing upward, 
opposite to the gravity vector, and (x, y) in the horizontal 
direction at the rigid bottom boundary. The onset of double-
diffusive convection is studied under the Boussinesq 
approximation where the density (ρ) is assumed to be 
linearly dependent upon the temperature (T) and the solute 
concentration (C) which is given by 

( ) ( )[ ]0 0 01 cT T C Cρ ρ α α= − − + −                   (1) 

 
Here, 1

0 Tα ρ ρ−= − ∂ ∂  and 1

0c Cα ρ ρ−= − ∂ ∂ . Assuming 

lower boundary at a higher temperature than the upper 
boundary and these boundaries are maintained at a constant 
temperature. Let the solute concentrations to be taken as C0 
+ ΔC and C0. Following analysis by [4] for Soret parameter 
and [10] for Dufour effect, the governing equations for the 
Rayleigh-Benard convection under the Oberbeck-Boussinesq 
approximation are given as 
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The basic state of the fluid is quiescent and is given by 

 
(u, v, w) = (0, 0, 0), T = Tb(z), p = pb(z), ρ = ρb(z) and 

C = Cb(z)         (6) 
 

On the basic state, we superpose perturbations in the form 
 

(u, v, w, T, p, ρ, C) = [0, 0, 0, Tb(z), pb(z), ρb(z), Cb(z)] 
       [u΄, v΄, w΄, T΄, p΄, ρ΄, C΄]               (7) 

 
where the primes quantities indicate the perturbed variables. 

The Equation (2)-(5) are non-dimensionalized using the 
following definitions 
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and using Equation (6) and Equation (7), we obtain the non-
dimensional variables 
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Operating on Equation (10) by eliminating the pressure 

term by using curl identity together with Equation (9), 
Equation (10) can be written as 
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A normal mode representation is introduced in the form 
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Substituting Equation (15) into Equation (14) and 

Equation (11)-(12) we obtain 
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Following the proportional feedback control in [25], the 
continuously distributed actuators and sensors are arranged 
in a way that for every sensor, there is an actuator positioned 
directly beneath it. The determination of control, q(t) can be 
accomplished using the proportional-integral-differential 
(PID) controller of the form: 
 

q(t) = r + K[e(t)] where ˆ( ) ( ) ( )e t m t m t= +           (19) 
 

where 
0

t

p D l

d
K K K K dt

dt
= + + ∫ . Based on Equation (19), for 

one sensor plane and proportional feedback control, the 
actuator modifies the heated surface temperature using a 
proportional relationship between the upper, z = 1 and the 
lower, z = 0 thermal boundaries for perturbation field:   
 

( ) ( ), ,0, , ,1, .T x y t KT x y t′ ′= −           (20) 

 

Equations (16)-(18) are solved subject to the appropriate 
boundary conditions that are: 
 

W = DW = θ(0) + Kθ(1) = ξ = 0   at z = 0        (21) 
 

For upper free boundary which is at z = 1, we have  
 

W = Dθ = ξ = D2W = 0 at z = 1            (22) 
 

For upper rigid boundary which is at z = 1, we have  
 

W = Dθ = ξ = DW = 0 at z = 1           (23) 
 

The Galerkin-type weighted residuals method is applied 
to find an approximate solution to the system. The variables 
are written in a series of basis function as: 
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where the trial functions and will be chosen respective to the 
boundary conditions and are constants. Substitute Equation 
(24) into Equation (16)-(18) and make the expressions on the 
left-hand sides of those equations (the residuals) orthogonal 
to the trial functions, thereby obtaining a system of 3N linear 
algebraic equations in the 3N unknowns. The vanishing of 
the determinant of coefficients produces the eigenvalue 
equation for the system. One can regard Ra as the 
eigenvalue, and thus Ra is found in terms of the other 
parameters.  

Performing the integration by parts with respect to z 
between z = 0 and 1. By using the boundary conditions (21)-
(23), we obtain the system of linear homogeneous algebraic 
equations: 
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where the angle bracket L  denotes the integration with 

respect to z from 0 to 1. The vanishing of coefficients 
produces the eigenvalue equation for the system.  

III.  RESULTS AND DISCUSSION 

The linear stability analysis is carried out to investigate 
the influence of feedback control on the double-diffusive 
binary fluid layer. Therefore, Fig. 1-14 have been plotted for 
such objective. Various boundary conditions have been used 
for instant free-free, rigid-free and rigid-rigid referring to 
upper-lower boundaries. The sensitiveness of the critical 
Rayleigh number, Rac to the changes of the difference 
physical parameters K, Rs, Df, and Sr are also studied.  

To validate our analysis [34], we have compared our 
results with [14] in the absence of feedback control, K as can 
be seen in Table I. We recover the critical Rayleigh number 
for all types of boundaries as previously obtained by [14] 
and we extend the results by scrutinizing the effects of K in 
the presence of Dufour, Df, and Soret, Sr parameter. From 
the table, we found that the increasing of the feedback 
control, K in the binary fluid mixture increases the critical 
Rayleigh number spontaneously in all types of boundaries 
considered. It is well understood that the onset of convection 
occurs when the Rayleigh number reaches some critical 
value. The higher the critical number, the slower the onset of 
convection occurs in one heated system. This finding agrees 
well with [25]-[31] that reported the use of feedback control 
strategy is capable of delaying the onset of convection in one 
system. Observing the critical Rayleigh values of different 
types of boundaries, it is interesting to take note that the 
critical value of rigid-rigid boundary is the highest compared 
to the other types of boundaries of all K considered. This 
could suggest the use of rigid-rigid boundary as it can hold 
stability in the system. 
 

TABLE I 
COMPARISON OF CRITICAL RAYLEIGH NUMBERS WITH VARIOUS TYPE OF 

BOUNDARIES AND FEEDBACK CONTROL, K 
 

Lower- 
Upper 

K = 0 K = 3 K = 5 
Nield (2011) Present 

Free-free 657.50 657.73 1358.82 1751.00 
Rigid-free 1140.0 1138.7 1710.88 2134.02 
Rigid-rigid 1750.0 1749.9 2932.44 3551.81 

 
The variation of Rayleigh number (Ra) with wavenumber 

(a) and various values of feedback control (K) is shown in 
Fig. 1. We interested to check the respond of  Ra  in  the  
presence  of  K, and  we  choose K = 3, 6, 9 and set other 
parameters to be constant. Obviously, from the graph, the 
curves shifted upwards as the values of K increase. The 
patterns appear consistently in all types of boundaries as can 
be seen clearly in the graph. This indicates that the use of 
feedback controller in the doubly diffusive system elevates 
the thermal convection values which are Ra numbers and 
thus leads to a more stable system. Scrutinizing the 
difference impact on lower boundaries, we found that the 
free-free system has low critical values making this type of 
boundary is the most unstable boundary of one system. Since 
in this type of system, the particles of the liquids carry the 
heat without any obstacles, which consequently results in the 

transfer of heat easily. As illustrated in the figure, the rigid-
rigid boundary is the most stable boundary condition 
compared to rigid-free and free-free boundaries. 

Fig. 2 is a variation of Rayleigh number versus 
wavenumber (a) with a different effect of Solutal Rayleigh 
number. According to [15], the effective thermal 
conductivity is reduced through the influences of thermo-
solutal Rayleigh number, Rs on the system and thus 
stabilizes it. To describe this, we have chosen the values of 
solutal Rayleigh number, Rs = 500, 1000, 1500 and we 
observed a positive increment of Rayleigh number, Ra as we 
increase the values of solutal Rayleigh number in all type of 
boundaries considered.   

The trends of stability curves for the effect of Soret and 
Dufour parameters within the system have been plotted in 
Fig. 3 and Fig. 4 respectively. Soret effect is the occurrence 
of a diffusion flux due to a temperature gradient. Since the 
system is heated from below, the increase in the temperature 
flux contributes to the initiation of natural convection in the 
binary fluid mixture. As can be seen clearly in the graph, an 
increase of the Soret parameter, decrease the values of 
Rayleigh number and thus enhance convection in the system. 
Contrast to the Soret effect, an increasing of Dufour 
parameter; Df increases the critical Rayleigh number as 
illustrated in Fig. 4. This behavior is manifest due to the 
energy flux from lower to higher solute concentration driven 
by the mass gradient in the binary system. It is worth to take 
note that the influence of Df significantly alters the Ra 
values in all lower-upper boundary considered. These 
findings agree well with those reported by [15]. The graphs 
also reveal that the rigid-rigid boundary is still the most 
stable condition where the Rayleigh number recorded in both 
figures is the highest.  
 

 
Fig.1  The variation of Ra for different values of K 

 
 

 
Fig. 2  The variation of Ra for different values of Rs 
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Fig. 3  The variation of Ra for different values of Sr 

 

 
Fig. 4  The variation of Ra for different values of Df 

 

 
Fig. 5  The variation of Rac for different values of Sr 

 

 
Fig. 6  The variation of Rac for different values of Df 

 
The onset of convection occurs beyond a critical value of 

the Rayleigh number. It is an interesting and crucial part of 
this investigation to check the effects of feedback control, 
Solutal Rayleigh number, Soret parameter and Dufour 
parameter on the onset of convection in a binary mixture. To 
reveal, we illustrated the findings in Fig. 5-9. 

Fig. 5 and Fig. 6 are plotted in order to analyze the effect 
of feedback control, K for variation values of Sr and Df on 
the onset of natural convection in a binary mixture. In Fig. 5, 
it can be seen clearly that the onset of convection starts at a 
range of critical Rayleigh number from 2500 to 4700 at K = 
2, whereas the Rac recorded in Fig. 6 ranged from 2100 to 
4200 when K = 1. It is well known that the critical Rayleigh 
number in the Newtonian fluid layer is approximately 1700 
for a closed surface and 1100 for a free surface as [32]. As 
observed, the critical Rayleigh number in Binary mixture is 
much larger compare to ordinary fluid layer, and this may be 
attributed to the fact that the Binary mixture of solute 
concentration packed in the system helps to slow down the 
initiation of convection. In the both figures, the critical 
Rayleigh number, Rac for the various values of Sr and Df 
increases slightly with the increase of feedback controller, K. 
This reveals that an increasing of the feedback control, K 
leads to a more stable system. 

The critical Rayleigh number, Rac as a function of 
thermo-solutal Rayleigh number, Rs for different values of 
K, Sr and Df are plotted in Fig. 7-9. In order to analyze the 
stability behavior of the system, we increase the values of 
solutal Rayleigh number, Rs for all bounded boundary 
considered. As expected, a large value of solutal Rayleigh 
number, Rs increases the critical Rayleigh number with 
various feedback control values, Soret and Dufour 
parameters. This implies that Rs yields a reduction in the rate 
of convection and stabilizes the system. As the impact on Sr 
and Df, an increasing of thermodiffusion in all of the figures 
remained the same which is to destabilize the mixture, and 
the reciprocal behavior can be found when increasing the 
energy flux that exhibits in the binary system [33].   

It is noted that a positive trend exists on Fig. 9 when both 
effects of the thermo-solutal Rayleigh number (Rs) and 
feedback control (K) are elevated, the critical Rayleigh 
number is increased. 

 

 
Fig. 7  The variation of Rac for different values of Sr 
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Fig. 8  The variation of Rac for different values of Df 

 

 
Fig. 9  The variation of Rac for different values of K 

 
It is certainly shown that the effect of feedback control, K 

and Rs leads to stabilize the binary mixture system. As the 
effect of lower-upper boundary, the onset of convection 
happens rapidly in the free-free type of system, followed by 
the rigid-free and rigid-rigid system. This observation could 
point out that the use of rigid-rigid boundary can sustain 
stability in one system. 

IV.  CONCLUSION 

In the present paper, it has been demonstrated that the 
onset of double-diffusive convection in a horizontal binary 
fluid layer can be controlled. The problem has been 
investigated analytically using linear stability theory. Three 
types of boundary conditions on the horizontal boundaries 
that are free-free, rigid-free and rigid-rigid are considered in 
this investigation. The system is heated from below by a fix 
and constant heat flux. The influences of various parameters 
and feedback control on the onset of double-diffusive 
convection have been observed. Through the use of 
controller strategy, the performance of feedback control, K 
in binary fluid has elevated the value of critical Rayleigh 
number monotonically. The controller delays loss of stability 
which means helps to reduce the intensity of Rayleigh-
Benard convection and thus sustain the stability of the 
system. For all cases considered in this study, the Dufour 
parameter, Df has a stabilization effect and the Soret 
parameter; Sr drives a destabilization effect within the 
system. It is also noted that the influence of increasing the 

effect of Rs is to cause a delay on the onset of convection.  
Based on the results obtained, for the three types of 
boundary conditions chosen, free-free, rigid-free and rigid-
rigid, it is found that the system with rigid-rigid horizontal 
boundaries is the most stable followed by rigid-free and free-
free horizontal boundaries. 
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