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Abstract—Recent advancements in biomedical informatics have opened new avenues for integrating chemical structure data with 

natural language, enabling innovative approaches in de novo molecular design. In this study, we compare two paradigms for text-guided 

molecule generation: an autoregressive model, MolT5, built on a T5 framework employing self-supervised pre-training with corrupted 

span replacement followed by fine-tuning for both molecule captioning and generation, and a diffusion-based model, TGM-DLM, which 

maps textual descriptions into latent embeddings and iteratively refines SMILES sequences via a denoising process. Evaluated on the 

ChEBI-20 dataset—partitioned into simple and complex molecular structures—our analysis using metrics such as BLEU, exact match, 

Levenshtein distance, validity, MACCS, RDK, and Morgan fingerprint similarity reveals that while TGM-DLM exhibits superior 

performance in capturing the overall architecture of complex molecules, MolT5 achieves higher rates of chemical validity. By leveraging 

these complementary approaches, our work provides a nuanced assessment of the trade-offs between structural fidelity and chemical 

correctness in molecular generation. The diffusion-based TGM-DLM model shows particular promise in addressing the complex 

challenges of intricate molecular configurations, as substantiated by quantitative improvements across multiple evaluation criteria. 

Conversely, the autoregressive MolT5 model's robustness in preserving chemical integrity underscores its potential for applications 

where molecular reliability is paramount. These comparative insights not only enhance our understanding of model architectures in 

multi-modal molecular design but also pave the way for future innovations in computational chemistry and drug discovery. 
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I. INTRODUCTION

The design and generation of novel molecular entities 
remain pivotal challenges in drug discovery and materials 

science. Traditional computational chemistry methods, such 

as structure‐based and quantum chemical approaches, have 

long been employed to predict molecular properties; however, 

these methods are often limited by the vastness of chemical 

space and the intricacies of complex molecular architectures 

[1]. To overcome these challenges, recent years have 

witnessed a surge of deep learning–based strategies aimed at 

navigating and exploiting chemical space by leveraging large-

scale data. 

The evolution of Transformer-based models and diffusion-
based generative models has significantly shaped recent 

advancements in deep learning. Transformer-based 

architectures were first introduced in the landmark work 

Attention Is All You Need by Vaswani et al. [1]. By employing 

a self-attention mechanism, Transformers overcame the 

sequential processing limitations inherent in recurrent neural 

networks (RNNs), thereby enabling highly parallelized 

training and improved efficiency in modeling long-range 

dependencies. This innovation catalyzed the development of 

large-scale pretrained language models such as BERT and 
GPT, which have revolutionized natural language processing 

(NLP) [2]. Moreover, the Transformer framework has been 

successfully extended beyond text processing into domains 

such as computer vision (e.g., Vision Transformer) [3], 

demonstrating its versatility across data modalities. 

In parallel, diffusion-based generative models have 

emerged as a powerful alternative to traditional generative 

paradigms such as GANs and VAEs. Diffusion models 

operate by gradually introducing noise into the data and 

learning to reverse this process, thereby reconstructing high-

quality samples from pure noise [4]. Although early diffusion 
models suffered from computational inefficiencies and slow 

977



sampling speeds, subsequent advancements, particularly the 

development of Denoising Diffusion Probabilistic Models 

(DDPMs) [5], have markedly improved training stability and 

output fidelity. The incorporation of classifier guidance and 

text-conditional generation techniques has further enabled 

diffusion models to surpass previous generative approaches, 

especially in image synthesis and conditional text-to-image 

tasks [6]. 

Beyond these recent developments, a rich body of work has 

explored alternative deep generative approaches for 
molecular design. Early studies employed Variational 

Autoencoders (VAEs) to learn continuous latent 

representations from discrete molecular inputs such as 

SMILES strings or molecular graphs. VAEs facilitate latent-

space interpolation and property optimization, as 

demonstrated by Gómez-Bombarelli et al [7]. However, they 

often require extensive data and careful tuning to ensure that 

decoded molecules adhere to chemical validity. Extensions 

such as Junction-Tree VAEs have been proposed to capture 

the underlying chemical structure better. Meanwhile, 

Generative Adversarial Networks (GANs) have also been 
applied to molecule generation. For instance, models like 

MolGAN generate molecular graphs by pitting a generator 

against a discriminator, thereby learning to produce structures 

that mimic the distribution of real molecules. Despite their 

potential, GAN-based methods often face issues such as mode 

collapse and training instability. In addition, autoregressive 

language models that generate SMILES sequences token by 

token have demonstrated robust performance in preserving 

local syntactic correctness, albeit sometimes at the expense of 

global structural fidelity [8]. Other approaches—including 

reinforcement learning–driven models and evolutionary 
algorithms—further contribute to this diverse landscape, each 

balancing trade-offs between novelty, validity, and property 

optimization. 

 
Fig. 1  Example of ChEBI Dataset 

 

Within this context, our study presents a comprehensive 

comparison of two state-of-the-art paradigms for text-guided 

molecular generation: the autoregressive MolT5 and the 

diffusion-based TGM-DLM. Utilizing the ChEBI-20 dataset 

(e.g., Fig. 1), which is stratified into “Global” (complex) and 

“Local” (simple) subsets based on chemical criteria such as 

molecular weight (>500), ring count (>3), and hydrogen 

bonding capacity (>5) [9], we rigorously evaluate model 

performance via metrics including BLEU scores, exact match 

ratios, Levenshtein distance, chemical validity, and 

fingerprint similarity measures. By integrating our 
experimental findings with established literature [10]–[13], 

this work elucidates the trade-offs between preserving local 

syntactic accuracy and achieving global structural fidelity 

[14], and it lays the groundwork for future hybrid models that 

can combine the strengths of diverse generative approaches. 

II. MATERIAL AND METHOD 

A. Dataset and Preprocessing 

We employ the ChEBI-20 dataset, which comprises 33,010 

paired instances of SMILES strings and their corresponding 
natural language descriptions. The dataset is divided into 

training, validation, and test sets in an 80:10:10 ratio. 

Following established protocols [15], [16], molecules are 

classified into “simple” and “complex” subsets. Specifically, 

molecules with a molecular weight greater than 500, more 

than three ring structures, or more than five hydrogen bond 

donors are designated as “complex” (hereafter “Global”), 

while the remaining molecules are considered “simple” 

(hereafter “Local”). This stratification is performed using 

RDKit to compute molecular descriptors, ensuring 

reproducibility and methodological rigor [17]–[19]. 
SMILES strings are first standardized to mitigate syntactic 

variability and subsequently tokenized at the character level 

using a specialized SMILES tokenizer. The tokenizer treats 

each atom, bond symbol, ring indicator, bracket, and other 

special characters as distinct tokens. Domain-specific 

vocabulary enhancements (e.g., distinguishing “Sc” from an 

“S” followed by “c”) are incorporated to reduce tokenization 

errors. Additional preprocessing steps include noise filtering 

and alignment between the chemical and text modalities to 

facilitate joint representation learning. 

 
Fig. 2  Study Design Framework 

B. Autoregressive Model: MolT5 

MolT5 is implemented upon the T5 (Text-to-Text Transfer 

Transformer) framework and adapted to handle both natural 

language and SMILES representations. Its training pipeline is 

divided into two main stages—pre-training and fine-tuning—

and each stage is supported by specialized tokenization 

methods and a decoding strategy designed to capture the 

nuances of chemical notation (e.g., Fig. 3). 

1) Text Tokenizer: For the natural language component, 

MolT5 leverages a Hugging Face pretrained tokenizer 
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initialized with SciBERT (i.e., 

allenai/scibert_scivocab_uncased) to better capture domain-

specific terminology [20]. SciBERT’s tokenizer is based on 

the WordPiece (or SentencePiece) subword approach, which 

splits words into smaller subword units to handle out-of-

vocabulary terms and morphological variations effectively. 

This strategy is particularly advantageous for biomedical text, 

as it allows the model to capture partial matches of rare or 

compound terms often found in chemical and biomedical 

descriptions. During pre-training, the tokenizer is used in 
conjunction with a “replace corrupted spans” objective: 

contiguous segments of both natural language text and 

SMILES are masked and replaced by sentinel tokens. By 

predicting these masked spans, MolT5 learns a joint 

embedding space encompassing both linguistic semantics and 

chemical syntax. This cross-modal representation is critical 

for subsequent tasks such as molecule captioning and 

molecule generation [21], [22]. 

2) SMILES Tokenizer: While the text tokenizer handles 

domain-specific biomedical vocabulary, SMILES 

tokenization in MolT5 typically involves a specialized 

scheme at the character or sub-character level. For example: 

 Atoms and Atom Groups: Each element symbol (e.g., 

“C,” “Cl,” “Br”) is treated as a token. Special care is 

taken for cases like “Sc” (scandium) to avoid confusion 

with “S” followed by “c.” 

 Bonds and Ring Closures: Characters for double bonds 
(“=”), ring indices (“1,” “2,” etc.), and branching 

parentheses are each considered distinct tokens. 

 Bracketed Notations: Square brackets (e.g., [NH3+]) or 

stereochemical indicators are also split into separate 

tokens or sub-tokens to ensure precise reconstruction. 

This level of granularity helps the autoregressive decoder 

predict each symbol in a strictly ordered manner, reducing 

syntactic errors in the final SMILES output. During fine-

tuning, a dedicated tokenizer script resolves these SMILES-

specific ambiguities [23], ensuring that tokens representing 

similar chemical entities are handled consistently. 

3) Training Process: During pre-training, MolT5 learns 

cross-modal embeddings by applying a “replace corrupted 

spans” objective to both text and SMILES sequences. 

Random contiguous segments are masked and replaced with 

sentinel tokens, and the model must predict these missing 

spans. This approach is similar to multilingual pre-training 

methods like mBERT [14], allowing MolT5 to jointly encode 

linguistic semantics and chemical syntax [21], [22]. After this 

unsupervised phase, fine-tuning is conducted on a curated 

subset of the ChEBI-20 dataset [24]. Fine-tuning focuses on 

two key tasks: (1) molecule generation, where the input is a 

textual description and the output is the corresponding 
SMILES, and (2) molecule captioning, which reverses the 

process by translating SMILES into descriptive text. By 

training on both directions, MolT5 strengthens its ability to 

bridge language and chemical notation. 

4) Decoding Method: MolT5 uses a beam search 

algorithm at inference time to generate SMILES from textual 

prompts. In beam search, multiple candidate sequences 

(beams) are maintained at each decoding step. Each beam is 

expanded by possible next tokens, and only the highest-

scoring beams—according to the model’s probability 

estimates—are retained. This process continues until an end-

of-sequence token is reached or a maximum length is met. 

Although more computationally demanding than simple 

greedy decoding, beam search generally yields more 

chemically valid and semantically coherent SMILES because 

it explores a broader set of candidate sequences. As a result, 

MolT5 achieves a balance between preserving local syntactic 

correctness (through its autoregressive architecture) and 

leveraging domain-specific knowledge acquired during pre-

training with SciBERT-initialized parameters. 
 

 
 

Fig. 3  Design flow chart for applying MolT5. 

C. Diffusion-Based Model: TGM-DLM 

TGM-DLM employs a diffusion-based strategy for text-

guided molecular generation, and its approach can be broadly 

divided into two sequential phases: text-guided generation 

and iterative denoising correction. This structure is designed 

to capture both the global molecular architecture and the local 

syntactic details essential for valid SMILES representations 

(e.g., Fig. 4). 

1) Text-Guided Generation: In the first phase, a 

pretrained language model transforms the input textual 

description into a continuous latent embedding space. This 

latent space is enriched by cross-attention mechanisms that 

inject the textual context into every layer, ensuring that 
critical semantic cues are well represented. From this 

continuous space, the model generates an initial SMILES 

sequence. The tokenizer used here is tightly integrated with 

the diffusion framework, with a detailed vocabulary 

specifically designed to handle chemical nuances such as ring 

closures, branching parentheses, bracketed notations, and 

charge states. This ensures that when the continuous latent 

vectors are mapped back to discrete tokens, key chemical 

features are preserved. 

2) Iterative Denoising Correction: Recognizing that the 

initial SMILES output may exhibit minor syntactic 
discrepancies—such as unbalanced brackets or misaligned 

ring closures—a second, iterative denoising process is applied. 

In this phase, Gaussian noise is incrementally introduced into 

the latent embedding, and then systematically removed over 

multiple diffusion steps. At each step, the model refines the 

latent representation to better adhere to global molecular 
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constraints. A final rounding step maps the continuous latent 

vectors back to discrete SMILES tokens by finding the closest 

match in the pre-defined embedding vocabulary (using L₂ 

distance). This two-stage reverse diffusion process, 

conceptually analogous to methods in Diffusion-LM and 

Diffuseq [3], ensures that the final output is both globally 

coherent and chemically valid. Further details on the 

denoising framework, including parameter settings for the 

noise schedule (βₜ) and the cumulative product formulation for 

αₜ, are provided in the Supplementary Information. 

In summary, while MolT5’s autoregressive beam search 

excels at preserving chemical validity step by step, TGM-

DLM’s diffusion-based iterative refinement is particularly 

adept at capturing the global molecular structure, especially 

for more complex molecules. Together, these approaches 
represent complementary paradigms in text-guided molecular 

generation, each offering unique advantages depending on the 

desired balance between local syntactic accuracy and global 

structural fidelity. 

 
Fig. 4  Design flow chart for applying TGM-DLM. 

D. Evaluation Metrics 

The performance of both models is rigorously quantified 

using a suite of evaluation metrics as shown in Table 1 and 2: 

TABLE Ⅰ 

COMPLEX STRUCTURE DATASET (1454) RESULT 

Model MolT-5 TGM-DLM 

BLEU 0.440 0.821 

Exact 0.0 0.162 

Levenshtein 69.802 28.765 

Validity 0.935 0.714 

MACC 0.658 0.904 

RDK 0.488 0.826 

Morgan 0.317 0.758 

TABLE Ⅱ 

SIMPLE STRUCTURE DATASET (1846) RESULT 

Model MolT-5 TGM-DLM 

BLEU 0.395 0.802 

Exact 0.001 0.211 

Levenshtein 30.095 9.148 

Validity 0.928 0.882 

MACC 0.409 0.799 

RDK 0.203 0.646 

Morgan 0.164 0.611 

1) BLEU Score: This metric assesses n-gram overlap 

between the generated and reference SMILES strings. 

SMILES sequences are tokenized to extract n-grams, and 

precision scores are computed with an additional brevity 

penalty to account for overly short sequences [25]. 

2) Exact Match Ratio: The proportion of generated 

SMILES strings that exactly match the reference molecules is 

computed, providing a direct measure of generation accuracy. 

3) Levenshtein Distance: The minimum number of edit 

operations (insertions, deletions, substitutions) required to 

transform the generated SMILES string into the reference 

string is calculated. This metric indicates the overall sequence 

similarity. 

4) Chemical Validity: The fraction of generated SMILES 

strings that correspond to chemically plausible molecules is 

determined using standard cheminformatics toolkits (e.g., 

RDKit) [26]. 

5) Fingerprint Similarity Metrics: Structural similarity 

between generated and reference molecules is quantified 

using multiple fingerprint representations, including MACCS 

keys (166-bit vectors), RDKit fingerprints (2048-bit vectors), 

and Morgan (ECFP) fingerprints. These metrics assess the 

overlap of molecular substructures, providing a robust 

measure of chemical similarity [27], [28]. 

III. RESULTS AND DISCUSSION 

A. Experimental Results 

Our evaluation on the ChEBI-20 dataset—divided into 

“Global” (complex) and “Local” (simple) subsets based on 

molecular weight (>500), ring count (>3), and hydrogen 

bonding capacity (>5)—reveals distinct performance profiles 

for the two models. For the complex (Global) subset, the 

diffusion-based TGM-DLM model achieves substantially 

higher BLEU scores and superior fingerprint similarity 
(evaluated using MACCS, RDKit, and Morgan fingerprints) 

compared to the autoregressive MolT5. This result indicates 

that TGM-DLM’s iterative denoising framework is especially 

effective at capturing long-range dependencies and 

reconstructing the intricate global architecture of complex 

molecules [28], [29] (See Table 3). However, MolT5 

consistently attains higher chemical validity scores, 

suggesting that its sequential, token-by-token generation 

method is better at preserving local syntactic correctness and 

ensuring that the resulting SMILES strings correspond to 

chemically plausible structures [30]. 
For simple (Local) molecules, the performance gap 

between the two models narrows, though the observed trends 

persist (See Table 4). Quantitatively, TGM-DLM’s ability to 

reconstruct overall structural features is reflected in improved 

global similarity metrics, even as its iterative refinement 

process can introduce minor syntactic discrepancies. In 

contrast, MolT5’s autoregressive approach robustly preserves 

chemical validity, albeit at the potential cost of slight 

deviations in global structural fidelity. Representative 

qualitative examples and a detailed quantitative summary 

substantiate these observations, highlighting the 
complementary strengths and limitations of each modeling 

approach.  
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TABLE Ⅲ 

EXAMPLES OF GENERATED MOLECULES FROM BOTH MODELS COMPARED WITH GROUND-TRUTH STRUCTURES  (COMPLEX) 

No. Input Ground Truth MolT5 TGM-DLM 

1 

The molecule is a kanamycin obtained by 
dehydrogenation at position 2' of kanamycin 
A. It derives from a kanamycin A. It is a 
conjugate base of a 2'-oxokanamycin(4+).    

2 

The molecule is a steroid acid anion that is 
the conjugate base of 3-dehydro-4-

carboxyzymosterol, obtained by 
deprotonation of the carboxy group; major 
species at pH 7.3. It is a conjugate base of a 
3-dehydro-4-carboxyzymosterol. 

   

3 

The molecule is a methylbutanoyl-CoA, is 
the S-isovaleryl derivative of coenzyme A. 
It has a role as a mouse metabolite. It 
derives from isovaleric acid and butyryl-

CoA. It is a conjugate acid of an isovaleryl-
CoA(4-). 

  
 

TABLE Ⅳ 

EXAMPLES OF GENERATED MOLECULES FROM BOTH MODELS COMPARED WITH GROUND-TRUTH STRUCTURES (SIMPLE) 

No Input Ground Truth MolT5 TGM-DLM 

1 

The molecule is a member of the class of phosphonic acids, 
which is phosphonic acid in which the hydrogen attached to 

the phosphorus is replaced by a carboxymethyl group. It has a 
role as an antiviral agent and an EC 2.7.7.7 …    

2 

The molecule is a hydrochloride resulting from the reaction 

of pipamperone with 2 mol eq. of hydrogen chloride. It is 
used as an antipsychotic. It has a role as a dopaminergic 
antagonist, a first-generation antipsychotic, and a 
serotonergic antagonist 

 
 

 

3 

The molecule is a muconic semialdehyde having a hydroxy 
substituent at the 2-position. It is a muconic semialdehyde 
and an alpha, beta-unsaturated monocarboxylic acid. It is a 

conjugate acid of a 2-hydroxy-6-oxohexa-2,4-dienoate.  
  

 

B. Discussion 

Our results underscore a critical trade-off inherent in 

current text-guided molecular generation methods. The 

superior global performance of the diffusion-based TGM-
DLM model is consistent with recent studies that highlight the 

efficacy of diffusion processes in capturing long-range 

dependencies in complex, high-dimensional data [9], [25], 

[26]. Similar benefits have been reported in other domains, 

such as image and audio synthesis, where diffusion-based 

strategies enable the reconstruction of intricate global patterns 

[10], [31]. 

Conversely, the autoregressive MolT5 model demonstrates 

higher chemical validity, a finding that corroborates previous 

research on sequential generation methods where the stepwise 

prediction mechanism minimizes local errors and reinforces 

syntactic integrity [8], [22]. This local accuracy is particularly 
crucial in molecular design, where minor deviations in token 

sequences can result in invalid chemical structures. 

Bridging these findings with the existing literature, our 

study reinforces the notion that model architecture is crucial 

in striking a balance between global structural fidelity and 

local syntactic accuracy. Recent reviews have advocated for 

hybrid approaches that integrate the strengths of both 

diffusion-based and autoregressive models [3], [21], [24]. Our 

comparative analysis provides empirical support for such 

strategies: while TGM-DLM excels in reconstructing the 

overall molecular framework, its iterative denoising process 

may sometimes compromise chemical validity. This 

shortcoming could be mitigated by incorporating 

autoregressive elements. 

Furthermore, the comprehensive suite of evaluation 

metrics employed—ranging from sequence-level BLEU 

scores and Levenshtein distances to chemical validity and 

multi-fingerprint similarity analyses—affords a nuanced 
understanding of model performance. These metrics, refined 

in recent studies [27], [28], [29], are indispensable for 

capturing the multifaceted nature of molecular generation 

tasks. They ensure that assessments reflect both the holistic 

structural coherence and the granular chemical plausibility of 

generated molecules. 

In summary, our results highlight that while diffusion-

based methods, such as TGM-DLM, are adept at capturing 

global structural features, autoregressive models, like MolT5, 

excel in maintaining chemical correctness. This 

complementary performance suggests that future research 

should explore hybrid architectures that combine the iterative 
refinement capabilities of diffusion models with the local 

precision of autoregressive approaches, thereby advancing the 

frontier of multi-modal molecular design. 

IV. CONCLUSION 

In this study, we conducted a detailed comparative analysis 

of two state-of-the-art language models for text-guided 

molecular structure generation—the autoregressive MolT5 
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and the diffusion-based TGM-DLM—using the ChEBI-20 

dataset. Our experiments demonstrate that TGM-DLM excels 

at capturing global structural nuances of complex molecules, 

as evidenced by its superior BLEU and fingerprint similarity 

scores, while MolT5 consistently achieves higher chemical 

validity through its sequential token generation approach. 

These complementary strengths underscore a fundamental 

trade-off between global structural coherence and local 

syntactic accuracy. 

Our findings suggest that neither model, when used in 
isolation, fully satisfies the multifaceted requirements of de 

novo molecular design. Instead, the integration of diffusion-

based global modeling with the robust local error-correction 

capabilities of autoregressive models may represent a 

promising direction for future research. Further development 

of such hybrid architectures, along with the refinement of 

evaluation metrics that capture both molecular validity and 

novelty, is essential for advancing multi-modal molecular 

design. 

The convergence of NLP techniques and cheminformatics, 

as evidenced by our study, is poised to accelerate innovations 
in drug discovery and materials science. As these 

interdisciplinary fields continue to merge, we anticipate that 

increasingly sophisticated models will emerge, capable of 

generating molecules that not only meet stringent chemical 

criteria but also push the boundaries of design in complex 

chemical spaces. 
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