

Vol.6 (2016) No. 6

ISSN: 2088-5334

The Design and Implementation of Middleware for Application
Development within Honeybee Computing Environment

Nur Husna binti Azizul*1, Abdullah bin Mohd Zin*2, Elankovan Sundararajan*3
*Research Center for Software Technology and Management, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
 E-mail: 1husna2005.nh@gmail.com , 2amzftsm@ukm.edu.my, 3elan@ukm.edu.my

Abstract— Computing technology is now moving from ubiquitous computing into advanced ubiquitous computing environment. An
advanced ubiquitous environment is an extension of ubiquitous environment that improve connectivity between devices. This
computing environment has five major characteristics, namely: large number of heterogeneous devices; new communication
technology; mobile ad hoc network (MANET); peer-to-peer communication; and Internet of Things. Honeybee computing is a
concept based on advanced ubiquitous computing technology to support Smart City-Smart Village (SCSV) initiatives, which is a
project initiated within Digital Malaysia. This paper describes the design and implementation of a middleware to support application
development within Honeybee computing environment.

Keywords— Software Development Kit; Android; REST API; Honeybee Computing

I. INTRODUCTION

Computing technology consists of a number of elements
such as user devices, network, servers, and software.
Changes in any of the elements introduce new phases of
computing technology. Currently, computing technology is
moving from ubiquitous computing into advanced
ubiquitous computing environment. An advanced ubiquitous
environment is an extension of ubiquitous environment that
improves connectivity between devices. The major
characteristics of this environment can be stated as follows:
(i) Large number of heterogeneous devices; (ii) New
communication technology; (iii) Mobile ad hoc network
(MANET); (iv) A peer to peer communication; and (v)
Internet of Things.

Heterogeneous devices include devices such as notebook
computers, tablets, smartphones and wearable computers are
common user devices [1]. Most of these devices operate
under many different operating systems such as Windows,
Linux, Android or iOS.

The new communication technology refers to an
enhancement of communication technology such from 3G to
4G, IPv4 to IPv6 and Near Field Communication (NFC).
The introduction of 4G is expected to provide a more stable
communication connection between devices [2], [3]. NFC
mainly based on Radio-frequency identification (RFID)
technology enables a set of devices to establish radio
communication with each other by touching or putting the

device within the range provided that is not more than a few
inches. Problems with IPv4 such as address shortages,
routing scalability, and broken end-to-end property are
expected to be overcome with the introduction of IPV6 [4].

Mobile ad hoc network (MANET) is different from the
conventional network as it does not require a fixed
infrastructure. Nodes in MANET are free to move and
organize themselves in an arbitrary fashion [5]. In a peer to
peer network concept, a device acts as a server and as a
client at the same time. Another characteristic of advanced
ubiquitous computing is Internet of Things (IoT). IoT
extends Internet connectivity beyond traditional devices to a
diverse range of devices and everyday things.

Honeybee computing is a concept based on advanced
ubiquitous computing technology to support Smart City-
Smart Village (SCSV) initiatives. SCSV is a project initiated
within Digital Malaysia that is basically an extension of the
Multimedia Super Corridor initiative that was introduced in
the 1990s. The main objective of SCSV is to create a new
benchmark in urban and rural development at strategic
locations nationwide. It involves consolidation and
enhancement of existing initiatives carried out by the
Malaysian government [6]. The concept of Honeybee
Computing is derived based on beehive model. A bee
represents any computing devices such as mobile, PC,
sensors, and device with embedded software. The bee can
communicate to the internet via the wireless network. Some
of the bees (from two to a thousand) can create ad hoc
communication between them to implement a certain task.

937

Honeybee computing is an extension of ubiquitous
environment by adding peer to peer communication and ad
hoc network.

In this paper, we present the design and implementation
of a middleware to support advanced ubiquitous computing
environment. The remainder of the paper is organized as
follows. Section II presents the proposed design for the
middleware development . Next, in section III, the honeybee
middleware is described. Finally, section IV summarizes the
paper.

II. MATERIALS AND METHODS

Middleware is a software that helps to integrate hardware
and software. Each computing technology is supported by a
specific middleware. For example, Globus is a middleware
that support Grid Computing, while Alljoyn [7] provides
middleware for ubiquitous computing.

In order to design and implement the middleware, we
have considered a number of similar researches. One of them
is concerning the design and implementation of RFID
middleware since there are a lot of researches in this area
that have been carried out. The design of a lightweight
RFID middleware is presented by Lin et al [9]. Another
middleware that uses RFID technology is WinRFID [10] that
is specifically designed as a platform for .NET applications.

Many middleware’s are designed based on message-
oriented approach [11]. A message-oriented middleware
(MOM) allows application modules to be distributed over
heterogeneous platforms and reduces the complexity of
developing applications that involve multiple devices,
operating systems, and network protocols. Another approach
for designing a middleware is by taking advantage of the
virtualization and transparency of Cloud computing [12].

Middleware is located in the server, where the
functionality involves task inside the server. To bridge the
client side with the middleware, a software development kit
(SDK) is normally provided. For example, Facebook SDK
enables the programmer to access data inside the Facebook’s
server [13]. Spotify provides SDK and web service for a
developer to use the music playlist [14]. The Qualcomm
LTE Broadcast SDK gives developers the power to bring
LTE Broadcast connectivity and content to their apps [15].
SDK normally provides APIs and interface to make it easier
for application to be developed. Most SDKs also include
tools, libraries, documentation and sample codes. SDK is
normally designed for a specific server since the type of data
is different between servers.

III. RESULTS AND DISCUSSION

A. Middleware Design

As shown in Fig. 1, the general architecture of Honeybee
Computing environment contains various devices that can
communicate between one another through various apps.
These apps can be supported by a number of tools such as
predictive analytic and semantic knowledge tool. Data
collected from various sources will be analysed by semantic
knowledge tool and will then be stored in a knowledge base.
Data in the knowledge base can then be used directly by the
apps or can be further analysed by a predictive analytic tool.

Fig. 1 Honeybee computing

In honeybee environment the user devices act as a node.

The structure of the node is shown in Fig. 2.

Fig. 2 The structure of a honeybee node

The architecture of Honeybee middleware is shown in Fig.

3. It consists of six managers to support six basic
functionalities, namely Service Manager, Communication
Manager, Security Manager, Semantic Manager, and News
Manager.

Fig. 3 The architecture of honeybee middleware

The design of these managers is described in the

following subsections.

1) Service Manager: A honeybee device needs to
communicate with other honeybee devices in a
neighbourhood through an ad hoc network. It also needs to
communicate with servers through the Internet. In order for a
honeybee device to be recognized, it needs to be registered
with the Honeybee server.

938

The general architecture of the middleware is shown in
Fig. 4.

Fig. 4 Interaction of honeybee API and middleware within honeybee
computing

Fig. 4 shows the interaction of honeybee middleware that

located in the server and honeybee API that located in the
mobile devices. The middleware enables data from the
server to be accessed by the honeybee API, but to access the
middleware, a correct request must be sent to the server, so
that it will return an output. To send the correct request to
the middleware, honeybee API will do the job. Honeybee
API provides the request to be sent to the middleware.
Honeybee API also will process the output so that it can be
used by the application.

Fig. 5 shows the interaction of honeybee API and
middleware inside service manager. The API is part of the
SDK that will be used during honeybee application
development.

Fig. 5 Interaction of the API and middleware in service manager

The main role of the service manager is to manage device

registration with the server. It also helps Honeybee device to
recognize other honeybee devices in a neighbourhood. Fig. 6
shows the registration process for a mobile device.

2) News Manager: One of the important facilities
provided within Honeybee computing is the ability to obtain
latest information about certain issues. This facility can be
implemented by using the News Manager. Fig. 7 shows two
news servers that can be accessed through honeybee API.
The news API provides bridge between API to the news
server, for example, multiple local news such as Berita
Harian (www.bharian.com.my), News Strait Times
(www.nst.com.my) and Utusan Malaysia
(www.utusan.com.my).

Fig. 6 Device registration for mobile device

Fig. 7 News package access multiple news servers

Fig. 8 shows the application interaction with API and the
server. The request sent by the API is a function that is used
in honeybee apps.

Fig. 8 Interaction with the news manager

3) Communication Manager: Communication Manager
provides communication for three type of network, which
are W.A.P, p2p, and gsm. The application will first check
the type of network needed and used suitable protocol for the
communication. Fig. 9 shows the flow of the protocol
processes under different types of network.

Different protocols will enable different data to be sent
without causing any conflicts. Since different protocols
support different types of data thus the package of the API
classification are based on the network name. This package
contains functions for sending and receiving messages
through different network connections, which are: wireless
network, GSM network and p2p network, as shown in Fig.
10. GSM network is provided since it is the most popular
technology and widely used.

939

Fig. 9 List of network and protocol provided by honeybee API

Fig. 10 Communication between honeybee devices

A function embedded in honeybee application send

messages to another device that provides the message and
the source of the device. The information sent is then
received by another device and the embedded will then
display messages from the sender. List of functions provided
by the Communication manager is shown in Table 1.

TABLE I

LIST OF FUNCTIONS PROVIDED BY THE COMMUNICATION MANAGER

Functions Description
Discover neighbour
devices

To discover a list of the devices
in current Wi-Fi access point.
List of device is in XML format
to save memory

Send message to IP
address

To send a message to other
device based on IP address.

Broadcast message To broadcast message to group
device in list

Get device list to
broadcast

To provide list of device to
broadcast

GSM only allows messages to be sent in a text format. In

order for images to be sent through GSM network, an
additional function for converting text to image is also
provided. Communication manager also can be used as a
communication between mobile devices and other devices
such as an IP camera. List of functions provided for a
camera is shown in Table 2.

TABLE II
LIST OF FUNCTIONS PROVIDED FOR CAMERA

Functions Description
View current state To view the state of the camera
Register device. To enable device to access the

camera

Normally, cameras are located in the different network,
communication between the mobile device and camera can
only be done through a server as shown in Fig. 11.

Fig. 11 Communication with an IP camera

Fig. 12 is the sequence diagram that shows the flow of

data from multiple cameras.

Fig. 12 The Sequence Diagram for Honeybee

As shown in Fig. 12, each request provides the type of

data needed, such as RTSP. The server will access the IP
camera since it has username and password for each camera.
Once the camera received the correct username and
password, honeybee application can access the selected
camera.

4) Semantic Manager: In honeybee computing, users can
search information by using a semantic search engine.
Semantic manager provides access to the semantic search
engine. In order to obtain information, the app needs to send
a query to the server which will then reply by giving a list of
information that matched the query as shown in Fig. 13.

940

Fig. 13 General interaction of honeybee API and middleware

This diagram shows the interaction of the honeybee API

using semantic package that communicates with the
semantic middleware located at the server. The semantic
middleware will then process the request and provide the
output to the apps.

In order to obtain an information, the apps need to send a
query to the server which will then reply by giving a list of
information that matches the query as shown in Fig. 14.

Fig. 14 Interaction with the semantic manager

B. Implementation

1) Client Side: In order to make it easier for developing an
app, the SDK that support software development within the
Honeybee computing is provided. The SDK provides
interfaces as well as methods for manipulating the interface.

Thus to create a new app, a programmer needs to create a
class and then initialize the SDK. To call a specific manager,
an object representing that particular manager is created and
the interface will also be provided. To do a specific task, a
suitable method can be used. The classes provided by the
SDK are identified by standard naming convention as shown
in Table 3.

TABLE III
NAMING CONVENTION

Package Description
Org.honeybee Service Manager
Org.honeybee.news. News manager
Org.honeybee.comm Communication manager
Org.honeybee.comm.wap Communication manager

for wireless
communication

Org.honeybee.comm.gsm Communication manager
for GSM network

Org.honeybee.comm.p2p Communication manager

for peer to peer
communication

Org.honeybee.comm.camera Communication manager
for the camera

Org.honeybee.semantic Semantic manager

Some of the classes provided for each package are also

shown in Table 4.

TABLE IV
LIST OF CLASS FOR EACH PACKAGE

Packages List of class
Org.honeybee Server.java
Org.honeybee.news. AddURL.java

ListSource.java
newsSection.java

Org.honeybee.comm.wap IncomingFragment.java
OutFragment.java

Org.honeybee.comm.gsm Convert.java
Org.honeybee.comm.p2p IncomingPeerFragment.java

OutPeerFragment.java
Org.honeybee.comm.camera Camera.java
Org.honeybee.semantic Semantic.java

In order to manipulate the News manager, the following

steps are needed:
1. Select Org.honeybee.news package.
2. Create a new object for NewsSection and name it, for

example, newsection1.
3. This particular class has three methods: refresh,

addnewserver, and listserverURL.
4. An interface for a News manager is provided as

shown in Fig. 15.

Fig. 15 Interface for News Manager

2) Device to Device Communication: Honeybee service
that involves communication between devices is
implemented by using Android API as shown in Fig. 16.

941

Fig. 16 Honeybee Service

3) Client Server Implementation: Services that involve

servers are implemented by using the concept of web
services. Currently, web services are becoming a simple
service-oriented architecture (SOA) with lower development
cost [16]. SOA combines Distributed Object Computing,
Component Based and web based concepts [17]. According
to Al-Rrawahi and Baghdadi [16], web services can (i) easily
live with distributed object computing middleware; (ii) make
legacy database; (iii) integrate with semantic web and (iv)
implement the business transaction. SOA is a set of XML-
based open standards that defines everything from service
description (for example, WSDL-the Web Services
Description Language), to communication with the service,
to discovering and connecting to the services (for example,
universal description, discovery, and integration-UDDI), to
details on combining services to create composite services,
transaction completion, and security [18].

There are a number of technologies that have been
developed to enable communication with the services. Major
software infrastructure providers provide tools support for
SOAP–based web services. However, the parsing of SOAP
(Simple Object Access Protocol) messages can be memory
and computation intensive.

An alternative to SOAP is REST (Representational State
Transfer). REST is easier to be used since it is based on
URLs and HTTP's four methods, namely, POST, PUT, GET,
and DELETE. Furthermore, REST is also understandable by
non-programmers [20]. REST also accept XML and JSON
format, while SOAP on the other hand only accepts XML
format [19]. REST has the advantage because it is an
architectural style that provides constraints for the design of
networked applications.

Resources are the main entities of abstraction in RESTful
architectures. A resource's state is defined by the values of
its attributes and connected resources [21]. Access to the
web services is done through a Web Service or a simple
Web API. The HTTP level access requires many low-level
operations and the knowledge of various protocols. High-
level libraries in popular languages are often provided [22].
 Garber [23] defines API implementations trends to four
classifications: (i) API frameworks; (ii) Aggregation; (iii)
Backend as service, and (iv) API service providers.

An example of API framework is Facebook API that is
used by developers to access Facebook social network.
Facebook API is divided to three general APIs, namely,
Core API, Facebook SDK, and Advanced API. Core APIs
example is Graph API that is a Web API for desktop
applications. Facebook SDK is provided in different
application language development such as iOS, android,
PHP, and Python.

The server side implementation of the Honeybee
middleware is done by using REST. For example, Service
manager is supported by two web APIs: Web API for
registration and Web API for download list. Web API for
registration is provided by using the POST method as shown
in Fig. 17.

Fig. 17 Post method

<<host_name>> is the name of the host, <<device_name>>
is the name of device input by user, and
<<device_mac_address>> is the mac address of device get
from honeybee SDK. In order to download the list for the
device, the GET method is used. The request method is
shown in Fig. 18.

Fig. 18 Request method

IV. CONCLUSIONS

In this paper, we have described the architecture and
implementation of the Honeybee middleware. In particular,
we have described the implementation of the client side and
server side. The availability of the middleware helps
software developers to develop applications within the
Honeybee computing environment.

There are three challenges faced during the
implementation stage. The first challenge is to explore
functions of a hardware component, for example how to
connect to IP camera for a user device to access the camera.
The node communicates with each other by using different
network connection such as W.A.P, peer-to-peer, and GSM.
Thus the second challenge is related to finding the suitable
communication mechanism to be implemented. The third
challenge is the transmission of video to the user device
from the local server.

The next stage of the research is to focus on the security
for data transmission. Since the middleware involves the use
of web service and peer to peer technologies, different
security method is needed. Since web service acts as a
bridge between server and client, it is important to ensure the
security of data transfer. The concept of security in the
client-server application, involves multiple roles of client
since some of the data are restricted to a particular user.

GET /honeybee/manager/download
Host: <<host_name>>

POST /honeybee/manager/register
Host: <<host_name>>

Body: <<device_name>>, <<device_mac_address>>

942

ACKNOWLEDGMENT

This research is one of the Malaysian Government funded
projects under Ministry of Higher Education (MOHE) Long
Term Research Grant (LRGS) with reference number
LRGS/TD/2011/UKM/ICT/02.

REFERENCES
[1] O. Amft, and P. Lukowicz, “From backpacks to smartphones: Past,

present, and future of wearable computers”. IEEE Pervasive
Computing, vol. 3, pp. 8-13, 2009.

[2] P. Wuttidittachotti, and T. Daengsi, “QoE of social network
applications: A study of VoIP quality from Skype vs LINE over 3G
and 4G”, in Seventh International Conference on Ubiquitous and
Future Networks (ICUFN), 2015, pp. 462-464.

[3] M. Lin, H. Choi, T. Dawson, and T. La Porta. “Network integration
in 3G and 4G wireless networks,” in Proceedings of 19th
International Conference on Computer Communications and
Networks (ICCCN), 2010, 2000, pp. 1-8.

[4] Y. Cui, P. Wu, M. Xu, J. Wu, Y. L. Lee, A. Durand, and C. Metz
“Network layer virtualization for IPv4-IPv6 coexistence,” IEEE
Network, 26(5), pp. 44-48, 2012.

[5] C. K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and
Systems. Pearson Education. 2001.

[6] (2015) Smart City & Smart Village. [Online]. Available:
http://www.gsiac.org/programmes/smart-city-smart-village-2/

[7] J. Kwak, J. H. Jin, and M. J. Lee, “A Mobile Application for
Information Sharing and Collaboration among Co-located People,” in
Proceedings of the 7th International Interdisciplinary Workshop
Series, 2015, Vol.106, pp.17-21.

[8] Y. Wang, L. Wei, Q. Jin, and J. Ma, “AllJoyn based direct proximity
service development: Overview and prototype,” in 17th International
Conference on Computational Science and Engineering (CSE), 2014,
pp. 634-641.

[9] F. Lin, B. Chen, C. Y. Chan, C. H. Wu, W. H. Ip, A. Mai, H. Wang,
and W. Liu, “The design of a lightweight RFID middleware,”
International Journal of Engineering Business Management, vol.
1(2), pp. 25-30, 2009.

[10] B. S. Prabhu, X. Su, C. Qiu, H. Ramamurthy, P. Chu, and R. Gadh,
“WinRFID–middleware for distributed RFID infrastructure,”
International Workshop on Radio Frequency Identification (RFID)
and Wireless Sensors, 2015.

[11] P. Tran, P. Greenfield, and I. Gorton, “Behavior and performance of
message-oriented middleware systems,” in 22nd International
Conference on Distributed Computing Systems Workshops, 2002, pp.
645-650.

[12] W. Tian, R. Xue, X. Dong, and H. Wang, “An approach to design
and implement RFID middleware system over cloud computing,”
International Journal of Distributed Sensor Networks, vol. 2013, pp.
1-13, 2013.

[13] (2016) Facebook for developers. [Online]. Available:
https://developers.facebook.com/docs/android/

[14] (2016) Spotify developer. [Online]. Available:
https://developer.spotify.com/technologies/spotify-android-sdk/

[15] (2016) Qualcomm developer network. [Online]. Available:
https://developer.qualcomm.com/software/lte-broadcast-sdk

[16] N. Al-Rawahi and Y. Baghdadi, “Approaches to identify and develop
Web services as instance of SOA architecture,” in International
Conference Services Systems and Services Management, ICSSSM’05.
2005, vol. 1, pp. 579-584.

[17] D. Controneo, C. D. Flora, and S. Russo, “Improving dependability
of service oriented architectures for pervasive computing,” in Eighth
International Workshop on Object-Oriented Real-Time Dependable
Systems, WORDS, 2003, pp. 74-81.

[18] R. Welke, R. Hirschheim, and A. Schwarz (2011). Service oriented
architecture maturity. [Online]. Available:
https://www.infoq.com/articles/soa-maturity-model.

[19] S. Kumari, and S. K. Rath, “Performance comparison of SOAP and
REST based Web Services for Enterprise Application Integration,” in
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2015, pp. 1656-1660.

[20] X. Shi,”Sharing service semantics using SOAP-based and REST web
services.” IT Profesional, vol. 8(2), pp. 18-24, 2006.

[21] O. Liskin , L. Singer, and K. Schneider, “Welcome to the real world:
A notation for modeling REST services,” Internet Computing, vol.
16(4), 36-44. 2012.

[22] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service API
evolution affect clients?” in 20th IEEE International Conference on
Web Services (ICWS), 2013, pp. 300-307.

[23] L. Garber, “The lowly API is ready to step front and center”.
Computer, vol.8, pp. 14-17. 2013.

[24] (2014) R. Horrigan. API Vs. SDK: What The What?. [Online]
Available: http://robhorrigan.com/api-vs-sdk-what-the-what/

[25] (2009) G. Simon. Infrastructureless Wireless networks. [Online]
Available: http://www.slideshare.net/gwendal-/infrastructureless-
wireless-networks

[26] (2014) HTG Explains: What’s the Difference between Ad-Hoc and
Infrastructure Mode?. [Online]. Available:
http://www.howtogeek.com/180649/htg-explains-whats-the-
difference-between-ad-hoc-and-infrastructure-mode/

[27] Introducing JSON [Online]. Available: http://www.json.org/
[28] J. Jeong, D. Shin, and D. Shin, “An XML-based single sign-on

scheme supporting mobile and home network service environments,”
IEEE Transactions on Consumer Electronics, vol. 50(4), pp. 1081-
1086. 2004.

[29] S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial,, and P. T. Fischer,
“Prototyping connected devices for the Internet of Things”.
Computer, vol. 46(2), pp. 26-34. 2013.

[30] N. H Azizul, M. F. Nasruddin, M. R. Mokhtar and A. M. Zin,
"Advanced ubiquitous computing to support smart city smart village
applications," in International Conference on Electrical Engineering
and Informatics (ICEEI), 2015, pp. 720-725.

[31] F. Lin, and B. Chen, “The design of a lightweight RFID middleware”,
International Journal of Engineering Business Management, vol.
1(2), pp. 25-30, 2009.

[32] B. S. Prabhu, X. Su, H. Ramamurthy, C. Chu, R. Gadh, “WinRFID: a
middleware for the enablement of radio frequency identification
(RFID) based applications”, in Proceedings of the Wireless Internet
for the Mobile Enterprise Consortium (WINMEC '05), 2005. In
Mobile, Wireless and Sensor Networks: Technology, Applications
and Future, pp. 331-336, John Wiley & Sons, 2005.

[33] P. Tran, P. Greenfield, I. Gorton, “Behavior and performance of
message-oriented middleware systems,” in Proceedings of the 22nd
International Conference on Distributed Computing Systems, 2002.

[34] W. Tian, R. Xue, X. Dong, and H. Wang, “An Approach to Design
and Implement RFID Middleware System over Cloud Computing”.
International Journal of Distributed Sensor Network, vol. 9(10),
2013.

943

