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Abstract— Soil degradation is a severe problem in the northern region of Ecuador. Due to deforestation, expansion of the agricultural 

frontier, and poor tillage practices, the outcrop of cangahuas further aggravates. Remote Sensing allows mapping this type of subsoil, 

which is often related to eroded areas; the spatial resolution of free multispectral images contains more than one coverage. This means 

that techniques to discern the pure spectral signature of the object of interest are required. Pixel Purity Index (PPI) is an endmember 

extraction algorithm capable of selecting the pure pixel and classifying it better than object-oriented techniques. The study's objective 

was to map soils with outcrops of cangahua, by PPI applied to Landsat 8 images in Ilaló volcano and later performed a physicochemical 

characterization to know the magnitude of the soil degradation in the mapped areas. We used two models with PPI: SAM and LSU; 

both were compared with classifications based on three vegetation indexes. LSU obtained the best result (91.2% accuracy and 0.81 

Kappa coefficient). The mapped cangahua was approximately 806.85 ha. The soil had an average porosity of 45%, a relative density of 

2.271 g/cm3, low concentrations of nitrates, phosphates, and sulfates, electrical conductivity <500 µS/cm, and alkaline pH, this means 

there is soil degradation. The PPI method had good accuracy and was achieved in identifying cangahua outcrops, which demonstrated 

its potentiality in mapping land cover.  
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I. INTRODUCTION

The development of instruments for Earth observation, 
such as satellites, has made it possible to obtain more accurate 
information about the topographic reality of the planet. 
Remote Sensing allows studying a geographic object using 
data represented in a satellite image [1]. This technique is very 
useful for monitoring changes in land cover [2]. It has been 
extensively studied in topics such as plant stress detection [3]; 
seed chlorophyll [4]; vegetation index calculation [5]; water 
body discrimination [6]; urban sprawl [7]; and other 
applications. However, in most free access multispectral 
images, owing to the spatial resolution that they present (30 
meters on the Landsat satellite), the information contained in 
the pixel often presents noise [8], that leads to mistakes in 
common object-oriented classification techniques (supervised 
and unsupervised) [9]. A mixed pixel is an element that 
represents an area with more than one coverage [10]. If an 
image of the Landsat satellites is being considered, it would 
be logical to infer that there will be two or more coverages in 

the same pixel due to its spatial resolution, so methodologies 
capable of discerning the purity of the data representing the 
object to be studied are required. 

In remote sensors, selecting extreme members is essential 
for the correct mapping of existing surfaces in a study area 
[11]. Endmember means the pure signature idealized for a 
class [12]. There are several algorithms for obtaining extreme 
members of an image, such as N-finder (N-FINDR) algorithm, 
Iterative Error Analysis (IEA), Automated morphological 
Endmember Extraction (AMEE) algorithm, Minimum 
Volume Transform, Convex Geometry, and Pixel Purity 
Index (PPI), the latter, is widely used due to its remarkable 
ability to extract endmembers [13]. 

In the case of Ecuador, several works have dealt with the 
identification of land covers using commonly supervised or 
unsupervised classification techniques [14], [15], but very 
few have used PPI to identify areas with soil degradations. In 
studies such as the ones developed by Jimenez et al. [14] to 
map cangahua in Ecuador using Remote Sensing, although 
specialized software and supplies such as satellite images and 
orthophotos are used, the classification of soils is done by the 

2121



interpretation of the geomorphological features. Pixel sorting 
methods are not widely applied in these cases, even when they 
could provide relevant information by interpreting land area 
covers; this information can allow us to identify areas affected 
by erosion and the causes related to this process. 

The loss of soil resources is a worrying reality in the central 
region of Ecuador. Every year, the situation worsens due to 
the agricultural frontier's advance, poor planting practices, 
and indiscriminate logging. Erosion is aggravated by losing 
the productive topsoil layer, which gives way to the outcrop 
of cangahuas, a typical soil in the Inter-Andean region of 
Ecuador [16]. 

The objectives of this study are as follows:  
 Mapping the soils with the presence of cangahua, using 

the PPI endmember extraction algorithm applied to 
Landsat 8 OLI/TIRS multispectral images in the Ilaló 
volcano in order to jointly with a physicochemical 
characterization of the soil 

 Obtaining an approximation of the surface occupied by 
cangahuas and know the state of the erosive process in 
order to show the real situation of this soils of this 
emblematic, protected area of Quito – Ecuador. 

II. MATERIALS AND METHODS 

A. Study Area 

The Ilaló is a mountainous elevation made up of what was 
left after the eruption of a now-extinct volcano, which is 
located in the center of the Inter-Andean depression, southeast 
of the city of Quito, capital of Ecuador (Figure 1), whose 
slopes were eroded by glaciers [17]. 

 

 
Fig. 1  Location map of the study area 

The Ilaló volcano is part of the Metropolitan District of 
Quito; however, despite being a protected area, it presents an 
accelerated change in the existing vegetation cover, mainly 

due to indiscriminate logging. This problem, added to the 
steep slopes, the advance of the agricultural frontier, and poor 
planting practices by the inhabitants of the communities 
located on the slopes of the old volcano, have had an impact 
on the soil quality and have given way to the outcrop of one 
of the most common edaphological formations, cangahua 
(Figure 2), which in Quichua means "sterile hard land" [18]. 
It contributes significantly to the erosive processes of this 
region. 

The cangahua is a geological formation of ryodacytic ash 
[19], originated by the partial diagenesis of the fine and 
hardened explosive volcanic material caused by pyroclastic 
falls. In Ecuador, cangahua can be found in the northern part 
of the Inter-Andean valley [20]. This area stands out for the 
serious soil erosion analyzed in the study and its history and 
unique geological features. 

 

 

 
Fig. 2  Forest cover deforestation (A) and outcropping cangahuas in Ilaló 
volcano (B) 

B. Radiometric and atmospheric correction 

Landsat 8 OLI/TIRS images have certain advantages 
compared to their predecessors TM and ETM+, for example, 
this satellite takes approximately 725 images every day about, 
with three additional spectral bands (central wavelengths: 
0.443 μm, 1.375 μm, 11.45 ± 0.555 μm), has a delay time of 
fewer than 8 hours after capture and, in addition, it allows to 
achieve better geometric and radiometric correction 
accuracies [21]. 

Before processing, it is necessary to make certain 
corrections to the image to avoid distortions or errors in the 
classification [8]. The Landsat 8 images have a geometric 
correction. However, radiometric correction is required to 
convert the image's digital numbers (DN) at apparent radiance 
values [9]. In the case of radiometric calibration, the radiance 
TOA (Top of Atmosphere) R�  [W/(m�. sr. μm)]  is 
calculated by (1), with the digital numbers of the image to 
correct the influence of the solar zenith angle between the 
acquisition of the information. The value of the gain 
coefficients G� and compensation factor O� is obtained from 
the metadata. 

 

 R� = G� ∗ DN+ O� (1) 

A 

B 
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The satellite's due to the gas dispersion and aerosological 
absorption present in the atmosphere [2]. This bias is 
corrected utilizing an atmospheric calibration in TOA 
radiance, using the Fast Line-of-Sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH), a module based on 
MODTRAN 4, found in ENVI v.5.1 [22], with which the 
surface reflectance is obtained. The atmospheric parameters 
for atmospheric calibration are a function of the time and 
location of each image [23]. 

C. Minimum Noise Fraction (MNF) 

Principal component analysis (PCA) presents the difficulty 
of not segregating adjacent noise in the dataset [24]. This 
problem is solved by applying a transformation MNF or also 
called cascading PCA [1]. Its most notable difference is that 
MNF considers noise within the data set, while PCA only 
considers the variations of each vector [25]. The noise value 
existing in the dataset is not always constant everywhere, but 
the variance of the noisy data is greater than the variance of 
the actual data, so the principal components obtained with 
MNF are better [1]. 

The transformation MNF serves to reduce dimensionality 
and eliminate noise in data [26]. The algorithm performs two 
principal component transformations; the first converts the 
noise covariance matrix into an identity matrix (whitening 
step) [27], thereby obtaining the mean for each band of the 
input image, statistics of the noise covariance, and statistics 
of the covariance of the bleached and rescaled input data [1], 
these are calculated using the exchange difference method 
[26]. The second is a standard transformation of the principal 
component of the noise bleached data set that maximizes the 
signal/noise ratio (SNR), with which the matrix of vectors and 
eigenvalues is obtained and the separation between SNR [22]. 

D. Pixel Purity Index (PPI) 

The algorithm PPI is based on a convex geometry [28], 
where data vectors are defined with a minimum or maximum 
orthogonal projection towards a certain direction [1] (Figure 
3). 

 

 
Fig. 3  PPI diagram. Source: Adapted de Xu et al., [29] 

 
PPI acts on the MNF image with thousands of repetitions, 

where the number of times that a pixel was treated as extreme 
is indicated [27]. This algorithm iteratively works with 
projections that produce n-dimensional scatterplots in a 
random unit vector [22], where the extreme pixels are 

recorded in each projection and the total number that these 
were considered external [30]. The pixels that are furthest to 
the extreme are considered pure pixels and will be the ones 
that help determine the potential spectra of the image of the 
endmembers through spectral mixing [9]. Using a threshold 
value, the extreme pixels of the projected vector is defined. 
Figure 4 shows the iterations of PPI versus total pixels on the 
PPI graph. This threshold should be approximately two or 
three times that of the noise level in the data [22]. The PPI 
finds more extreme pixels; however, endmembers are less 
likely to be pure [1]. 

 

 
Fig. 4  PPI graph with the iterations for all pixels 

E. n-Dimensional visualizer 

The n-D (or n-Dimensional) viewer is a handy interactive 
tool for locating, identifying and matching spectral pure or 
unique pixels in the image [27]. Thus, it is possible to graph 
the image data in the spectral space, where the display's axes 
correspond to the images' bands [22]. n-D is commonly used 
with MNF data from a spatial subset of pure pixels obtained 
from PPI [31]. The PPI scatterplot makes it easier to select the 
purest pixels by rotating their axes. 

F. Extraction of endmembers 

In the extraction of the endmembers of the image, two 
methods were used: Spectral Angle Mapper (SAM) and 
Linear Spectral Unmixing (LSU). These two forms of 
endmember extraction are the most widely used in PPI; 
therefore, it was applied, and its subsequent results are 
compared. 

SAM enables rapid classification mapping by calculating 
the spectral similarity between the image spectra and the 
referential reflectance spectra [22] (in this case, the pure 
spectral value of the object compared to the spectral library of 
endmembers obtained in the previous step). SAM is less 
sensitive to solar illumination errors because the angle 
between the two vectors is independent of the length of the 
vector [27]. It is calculated by (2) with the following equation 
[32]: 

 θ = Cos�� � ∑ ��∗�� �!"#∑ ��$ �!" ∗∑ ��$ �!"
% (2)  

Where t  and r  are the sources and target spectra, 
respectively, i is the image band, and θ is the average angle. 
The angular difference is the output of the SAM function, 
measured in radians (0 – π/2) [1]. It is important to note that 
if the spectral angle (SA) is slight, there is a similarity 
between t and r, and vice versa [22]. 
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The LSU model is another method used for mixed pixel 
decomposition [33]. This can determine the abundance of 
endmembers of the image according to the spectral 
characteristics of the different surface coverages under study 
[34]. LSU is based on three assumptions: a) the reflectance of 
the pixels comes from a linear combination between the 
reflectance of the endmember and the portion of the area that 
the endmember occupies in the pixel, b) the endmembers are 
isolated, homogeneous, and do not have multiple dispersion, 
c) contiguous pixels do not affect the spectrum of a target 
pixel [9]. Equation (3) shows the model: 

 D() = ∑ m)* ∗ α* + e)-*.�  (3)  

Where p is the number of endmembers, i  represents the 
index of the band, mij is the reflectance of the endmember j 
in band i, αj is the proportion of the area that the endmember 
j occupies in a pixel, e) is the error adjacent in band i. 
G. Physical and chemical characterization of the soil 

To carry out the measurement, soil samples were collected 
at a depth of approximately 15 cm in La Toglla, Alangasí, La 
Merced, and Angamarca communities, located on the slopes 
of the Ilaló volcano of parameters in the laboratory and relate 
the results to the mapping of cangahuas. The physical 
parameters were: humidity, bulk density (BD), relative 
density (RD), and porosity; this analysis was based on the 
Mexican regulations on fertility, salinity, and soil 
classification NOM-021-SEMARNAT-2000 [35].  

On the other hand, the chemical parameters were pH, 
electrical conductivity (EC), organic matter (OM), potassium, 
nitrates, and phosphates, in soil/water extracts 1:1, 1:5, and 
1:10. In the measurement of potassium, nitrates, and 
phosphates, an atomic absorption spectrometer was used 
according to the methodology of The Standard Methods given 
by the American Public Health Association (APHA) [36]. 

III. RESULTS AND DISCUSSION 

With the help of the n-D visualizer, four endmembers were 
selected (Figure 5A) that correspond to the coverings of 
dispersed vegetation, the body of water, leafy vegetation, and 
bare soil. Regions of interest (ROI) obtained the selection of 
the pure pixels of each coverage that, as a whole, defined a 
spectral library, the same one that served as training for the 
classification of the different coverage in the study area. 

The two methodologies used for the classification of 
coverage were based on the library previously obtained. The 
resulting spectral collection of endmembers is shown in 
Figure 5B, which corresponds to the spectral signature of the 
identified coverages (green: leafy vegetation, magenta: bare 
soil; yellow: scattered vegetation, blue: a body of water). 

The spectral graph corresponds to the behavior of the 
electromagnetic spectrum of light reflected by the different 
covers on the earth's surface [37]. In Figure 5B, it is observed 
that the leafy vegetation presents a higher reflectance due to 
the presence of chlorophyll with a jump between the green 
and red band [38], contrary to what happens with scattered 
vegetation, which represents a mixture of low grass, soil and 
herbaceous vegetation, which is less reflective than bare soil 
[9]. The signature of the bare soil is very distinctive [39], 
which is a way to check the correct selection of the 

endmembers and the spectral signature of water, whose 
behavior is not very reflective [2]. The result of mapping 
using SAM and LSU are shown in Figure 6. 

 

 
Fig. 5  Selected members (A) and spectral collection of endmembers (B) 

 

 
 

 
Fig. 6  Mapping obtained with LSU (A) and SAM (B) 

 
In addition, based on the mapping methods of endmembers, 

a supervised classification was made from the vegetation 

B 

A 

B 

A 
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index: Normalized Difference Vegetation Index (NDVI), 
Soil-Adjusted Vegetation Index (SAVI), and Modified Soil-
Adjusted Vegetation Index (MSAVI), in order to compare the 
results of the classification using PPI and the traditional 
methods of identification of coverage. The precision 
evaluation was carried out through a confusion matrix and the 
calculation of the Kappa coefficient to obtain the overall 
mapping precision and measure the degree of agreement of 
each classification, respectively. Table 1 shows the results of 
the tests applied. 

TABLE I 
ACCURACY OF THE HEDGE CLASSIFICATION METHODS 

Method 
Overall 

accuracy 

Kappa 

Coefficient 

LSU 91.271% 0.892 
SAM 88.108% 0.854 
NDVI 85.897% 0.781 
SAVI 85.897% 0.781 
MSAVI 86.538% 0.790 

 
As seen in the values obtained from the confusion matrix 

and Kappa coefficient, coverage mapping using conventional 
object-oriented classification methods (based on vegetation 
index (NDVI) and soil (SAVI, MSAVI) respectively, was less 
accurate than that performed with the extraction of 
endmembers. Therefore, PPI presented a clear advantage over 
standard classifiers, proving itself to be a potent tool to 
discern the different objects of the territory, in this case, soils 
with cangahua. LSU was the method that reached the most 
agreement and precision. 

Subsequent work in the field helped validate the 
effectiveness of the obtained result (LSU) in identifying the 
sites cataloged as discovered or with scattered vegetation, in 

which the presence of cangahua, mostly outcropping, could 
be confirmed (superficial). Although after the field visit, a 
high degree of erosion was visually evident, the interpretation 
of the physical and chemical parameters allowed 
characterizing and knowing the real state of the soil. 

Physical parameters listed in Table 2 indicate low humidity 
content, which translates into poor water retention and 
consequently low oxygen availability. This result contrasts 
with the porosity percentage of around 45%, a value within 
the range for sandy-type soils, which goes from 35% to 50% 
and indicates an abundant runoff, and minimal water retention 
[40]. On the other hand, the average RD was 2.271 g/cm3, a 
value higher than the BD of all the samples, suggesting 
medium compaction of the soil [41]. 

TABLE II 
PHYSICAL PARAMETERS OF THE SOIL WITH CANGAHUA 

Sector 
Humidity 

(%) 

BD 

(g/cm3) 

RD 

(g/cm3) 

Porosity 

(%) 

La Toglla 6.04% 1.136 2.097 45.83 
La Merced 9.68% 1.250 2.248 44.39 
Alangasí 8.46% 1.315 2.359 44.23 
Angamarca 5.06% 1.280 2.380 46.08 

 
The results of the chemical parameters shown in Table 3 

indicate pH values within the range of 7.5 to 7.8, 
corresponding to alkaline soil. Most crops grow better if the 
soil pH is between 6.0 and 7.5 as the nutrients are readily 
available and in an appropriate balance. In alkaline soils, 
saturation and excess calcium prevent elements such as Iron 
from being absorbed by the plants [42].  

TABLE III 
CHEMICAL PARAMETERS OF THE SOIL WITH CANGAHUA IN THE STUDY AREA. 

Sector 
Soil 

extract 
pH EC (µS/cm) OM (%) Nitrates (ppm) Phosphates (ppm) Potassium (ppm) 

La Toglla 

1:1 7.66 0.873 0.00005958 6.60 0.23 0.99 

1:5 7.69 0.872 0.00028440 9.00 0.34 0.94 

1:10 7.66 0.881 0.00059220 15.00 0.27 1.20 

La Merced 

1:1 7.5 0.551 0.00005909 1.30 0.51 0.49 

1:5 7.8 0.475 0.00032555 5.00 0.35 0.41 

1:10 7.8 0.483 0.00031370 16.00 0.32 0.31 

Alangasí 

1:1 7.1 0.460 0.00000097 0.45 0.01 0.78 

1:5 7.6 0.470 0.00000625 6.00 0.15 0.76 

1:10 7.8 0.471 0.00001570 6.00 1.24 0.63 

Angamarca 

1:1 7.6 0.360 0.00000114 2.00 0.10 0.31 

1:5 7.8 0.370 0.00000100 17.50 0.28 0.11 

1:10 7.7 0.385 0.00004050 16.00 0.16 0.08 
 

EC is correlated with soil properties that affect crop 
productivity (texture, cation exchange capacity, drainage 
conditions, organic matter, salinity, and subsoil 
characteristics) [43]. While each crop survives different 
ranges of conductivity depending on the type of salts, it can 
be said in a general way that: <750 µS/cm, none degree of 
restriction; 750-1500 µS/cm, slight to moderate degree of 

restriction; >1500 µS/cm, severe degree of restriction [44]. 
The electrical conductivity values measured in the sample 
extracts were very low, < 500 µS/cm. That is, they had a low 
amount of salts. 

OM is useful for indirectly knowing soil fertility by 
improving the microstructure and having a high cation 
exchange capacity. The lack of OM reflects problems with the 
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soil structure resulting in the hardness of the soil and a limited 
water flow, this accompanies a decrease in fertility, and 
together they cause a general degradation of the soil [45]. In 
this case, the percentage of OM present in the samples is 
almost zero, indicating the soil's poverty and tendency to 
erosion.  

The presence of nitrates, phosphates, and potassium is 
directly linked to the type of soil and the region where it is 
located. During the fieldwork, a large number of outcropping 
cangahua, typical of the Inter-Andean region, were observed; 
in addition, the low levels of nitrates, phosphates, and 
potassium found in the samples from the four communities 
(Table 3) agree with the expected levels in recently 
discovered cangahuas that have not received any type of 
qualification either for agriculture or naturally [45]. 

The results obtained from the physical and chemical 
analysis show poor soil and signs of erosive processes, in 
addition, it agrees with the characteristics of recently 
discovered cangahuas. This is related to the field visits and 
the mapping carried out, which showed the lack of vegetation 
cover and a large area of outcropping cangahua. 

IV. CONCLUSION 

The land surface coverage mapping in the study area 
showed greater precision by extracting endmembers with PPI 
than the traditional supervised classification that cannot 
discriminate the adjacent noise in each pixel of the image, 
enhancing PPI as an optimal technique for determining 
coverage in very heterogeneous areas. LSU showed a better 
fit than SAM for this case study from the two methodologies 
used in PPI. With an overall precision of 91.27% and 88.10%, 
a Kappa coefficient of 0.89 and 0.85 for the first and second, 
respectively, where LSU identified an area of approximately 
806.85 ha of bare soil with cangahua. 

The physical parameters analysis indicated that it is a 
moderately compacted soil with low humidity and a porosity 
typical of sandy-type soil. It can make water retention difficult 
and, in turn, reduces the available oxygen, added to the low 
content of OM found, an alkaline pH greater than 7.5, and the 
scarce presence of nutrients such as nitrates, phosphates, and 
potassium. It resulted in the soil present in the communities 
corresponds to poor, degraded soil, with a tendency to erosion. 
Such as mapping and sampling performed most of the soil in 
the study area is made up of outcropping cangahua, a situation 
that magnifies the erosive processes. Therefore, the recovery 
of the substrate and the habilitation of cangahuas in the Ilaló 
volcano is urgent to stop the deterioration. 
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