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Abstract— Ensemble learning is an effective machine learning approach to improve the prediction performance by fusing several 
single classifier models. In computer-aided diagnosis system (CAD), machine learning has become one of the dominant solutions for 
tissue images diagnosis and grading. One problem in a single classifier model for multi-components of the tissue images combination 
to construct dense feature vectors is the overfitting. In this paper, an ensemble learning for multi-component tissue images 
classification approach is proposed. The prostate cancer Hematoxylin and Eosin (H&E) histopathology images from HUKM were 
used to test the proposed ensemble approach for diagnosing and Gleason grading. The experiments results of several prostate 
classification tasks, namely, benign vs. Grade 3, benign vs.Grade4, and Grade 3vs.Grade 4 show that the proposed ensemble 
significantly outperforms the previous typical CAD and the naïve approach that combines the texture features of all tissue component 
directly in dense feature vectors for a classifier. 
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I. INTRODUCTION 

Ensemble learning model is a powerful approach in 
machine learning. The aim is to include several single 
classifiers, which are both diverse and accurate. Thus, better 
classification performance on a test sample is obtained. In 
ensemble learning, the outputs of all base classifiers are 
combined to create an ensemble final output [1]. Among 
several combination methods, product rule is the simpler and 
provide higher classification performance [2]. Previous 
studies have illustrated that ensemble learning model often 
demonstrated promising capabilities in achieving higher 
performance in classification tasks than the single classifier 
[1], which due to the overfitting problem  [3], [4]. 
Overfitting issue could be induced by a small number of 
training samples used to construct the classifier relative to a 
large number of features that used to describe the samples 
[5].  There are several approaches for avoiding model 
overfitting [6]. One of the most common strategies for 
avoiding overfitting is the ensemble learning model [7]. 
Ensemble divides the dense feature vectors among different 
classifiers. Thus, by combining the classification result from 

the different base classifiers, the overfitting caused by dense 
feature vectors can be reduced. Although ensemble learning 
model has been employed in several medical image 
applications, a single classifier (typical CAD), as illustrated 
in Fig. 1, has been become one of the dominant approaches 
in most digital pathology studies on the computer-aided 
prognosis for prostate cancer (PCa). 

 

 
Fig.  1  The general architecture of the typical CAD system for PCa [8] 
 
In typical prostate CAD system (Fig. 1), research efforts 

have mostly focused on the constructing of the single 
classifier. But, a critical limitation within the typical CAD 
with the classifier design process is the large variability 
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within the same class (e.g., benign, Grade 3, Grade 4) [9], 
[10], [11], [12]. The main reasons for this variability are the 
variation in the amount of stain used, the duration of tissue 
storage, and the thickness of the tissue [13], which makes 
classification task quite difficult. For these reasons, a single 
classifier design may face a great challenge in achieving 
high performance that meets the requirement of the clinical 
application. Therefore, this paper overcome the 
aforementioned limitations by extracting the texture features 
from the main tissue components of the prostate 
histopathological image, namely, lumen, nuclei, cytoplasm, 
and stroma. However, a combination the multi-components 
of the prostate tissue images construct dense feature vectors 
(called naïve approach, Fig. 2), which suffer from the 
overfitting [14]. 

The main theoretical contributions of the current study 
can be explained as follows. First, extracting the texture 
features from the spatial distribution of lumen, nuclei, and 
cytoplasm and stroma tissue components. These tissue 
components could prove more expressive power in 
minimizing the class heterogeneity for each classification 
task. Second, to propose ensemble framework to solve the 
overfitting issue that produced by combining the multi-
components features in dense feature vectors. In particulars, 
the proposed ensemble framework constructs four base 
classifiers for the corresponding main tissue components. 
The goal is to generate from given tissue components a 
collection of diverse predictors whose errors are 
uncorrelated. Each base classifier is trained using the texture 
features of a specific tissue component. Finally, the output of 
the ensemble is combined using the product rule. 

Moreover, the proposed ensemble framework is used to 
solve three different prostate cancer classification tasks, 
namely, Benign vs. Grade 3, Benign vs. Grade 4, and Grade 
3 vs. Grade 4. Finally, the performance of the proposed 
ensemble framework is compared to the typical CAD (Fig. 1) 
that uses single classifier [8], and the naïve approach [15] 
(Fig. 4) that combines the features of all tissue components 
in a single input vector for a classifier (e.g., Support Vector 
Machine (SVM)). 

 
Fig.  2 Dense feature vectors of all tissue components (called naive approach) 

 
The rest of this paper is organized as follow: Section II 

presents the related works for the prostate cancer diagnosis 
and grading. The methodology is presented in Section III. In 

Section IV, the experiment results and discussion are 
presented. Finally, the conclusion and future work are shown 
in Section V. 

Prostate cancer is the most common cancer that occurs in 
male’s reproductive system [16]. The microscopic analysis 
of prostatic tissue is the gold standard for diagnosing 
prostate cancer. In this analysis, tissue samples are processed 
in the laboratory and stained using Hematoxylin and eosin 
(H&E) to highlight the cell morphology. Then, the tissue 
samples are examined under a microscope to establish 
diagnosis and grading using a specific procedure. 

The widely accepted procedure for the histological 
grading of prostate tissue is the Gleason grading system [17], 
which is a strong prognostic indicator and correlates with the 
outcome following radiotherapy [8]. The grading system 
categorizes the histologic patterns by the extent of glandular 
differentiation and the pattern of growth of the cancer cells 
in the prostatic stroma. Five basic grade patterns are used to 
generate the histologic grading. These grades determine the 
aggressiveness of the prostate cancer [9]. For example, 
Grade one corresponds to a well-differentiated tumor, i.e., 
the tissue with the highest degree of resemblance to normal 
tissue, and is associated with a low mortality rate. Grade five 
corresponds to a poorly differentiated tumor and correlates 
with tumor aggressiveness and a higher mortality rate. The 
Gleason score is used to measure the heterogeneity of 
prostate cancer [18]. The Gleason score denotes the sum of 
the highest and second highest predominant Gleason grades 
in the tumor. For instance, if the most predominant 
carcinoma pattern is Gleason grade 4 and the second most 
common is 5 in the cancer tissue, the final Gleason score for 
this cancer is 4 + 5 = 9. Therefore, the range of the final 
Gleason score is from 2 to 10 [9]. 

In most prostate digital pathology researchers on 
computer-aided diagnosis for prostate cancer, the typical 
framework [8] (Fig. 1) consists of four main phases: 
preprocessing phase, feature extraction and feature selection 
phases and a classification phase. The preprocessing 
phase .intended to remove irrelevant background noise or 
segment important tissue component within the 
histopathology image. Then, the feature extraction phase 
emphasizes on extraction the relevant characteristics of the 
image by measuring the texture or structure features. Next, 
in feature selection phase, the most important features that 
best differentiate the Gleason grades are selected using the 
appropriate method such Support Vector Machine - 
Recursive Feature Elimination (SVM-RFE) [19]. Finally, the 
pattern recognition phase employed a specific classifier (e.g., 
SVM) to diagnosis and grade the region of tissue image. 

Based on the feature extraction approaches used for 
prostate tissue image classification (Fig. 1), there are two 
main categories of CADs: texture-based CADs use and 
tissue-structure-based CADs. Texture-based CADs utilize 
the spatial distribution of the pixels in the tissue image to 
distinguish malignant from benign tissue or discerning the 
Gleason grades. For instance, the most conventional texture 
analysis for tissue image classification are co-occurrence 
matrices [20], [21] such as in [9], [22], [23] and fractal 
analysis [24], [25]. The Fractal analysis is used to describe 
the texture roughness at a specific location, analyze 
variations of intensity and texture complexity in tissue 
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images [24], [25]. For example, Huang & Lee [24] employed 
the fractal dimension features for the prostate tissue images 
and the low-frequency sub-bands to discriminate between 
high-grade versus low-grade Gleason grade. They reported 
86% accuracy for the classification prostate tissue into 
benign, Grade 3, 4 and 5. 

Diamond et al. [26] proposed a framework to classify the 
sub-region from a tissue image as either a prostatic 
carcinoma or stroma. They used Haralick texture features 
[27] that extracted from the co-occurrence matrix to classify 
the sub-region in either stroma or cancerous tissue and used 
morphometric features under the assumption that abnormal 
tissue exhibits smaller areas of the associated lumen to 
classify the normal sub-region. This study reported 79.3% 
accuracy when evaluating the algorithm on sub-regions of 8 
tissue images (40 times magnification).  

In [22], the authors used the co-occurrence texture [20] 
[21], Gabor filter and first order statistics (mean, median) 
features to classify the prostate tissue images into cancer vs. 
non-cancer. They constructed 594 base learners for 
AdaBoost-ensemble using the Bayes classifier, one classifier 
for an individual feature. The reported accuracy was 88% on 
a dataset of 22 images (40x magnification). In [9], Tabesh et 
al. employed color, morphometric cues and the texture 
features of the entire image and local features of the tissue 
components to classify prostate tissue images into low and 
high grade. By using SVM classifier with fivefold cross-
validation using 286 images at 20x magnification, the 
method achieved 81% accuracy for low grade/ high-grade 
classification.  

Alexandratou et al. [23] compared between 16 machine 
learning algorithms based on their performance. In each 
algorithm, the training dataset extracted from the prostate 
tissue images based on thirteen Gray Level Co-occurrence 
Matrix (GLCM) to distinguish between the Gleason grades. 
The reported results low and high grade was 80.8% and 77.8% 
for accomplishing Gleason grading.  

On the other hand, tissue-structure-based CADs utilize 
geometrical features (e.g., size and shape) vectors extracted 
from specific tissue components. For instance, Nguyen et al 
[13] employed K-means in RGB color space to extract the 
main tissue components, namely nuclei, stroma, lumen, and 
cytoplasm, to distinguish between two/three-way 
classification tasks based on the structure and contextual 
features of lumen and nuclei. In [28], the authors utilized the 
domain of prostate histopathology knowledge to segment the 
image into its basic tissue components to distinguish 
between different pattern Gleason grades. Naik et al. [29] 
extracted the shape features of glands and lumen to 
discriminate between different pattern Gleason grades. 
Using 44 images, they reported: 86.35% for benign versus 
grade 3, 92.9% for benign versus grade 4, and 95.19% for 
grade 3 versus grade 4. 

II. MATERIAL AND METHOD 

A. Dataset 
The dataset consists of a total 149 Hematoxylin and Eosin 

(H&E)-stained prostate images with fixed size 4140 X 3096 
pixels. There are 41 images of Grade 3 and 56 of Grade 4, 
and 52 of benign.  The images digitized at 40x optical 

magnification. Each region of interest was previously 
extracted from homogeneous patches of whole tissue slides, 
and three experienced pathologists graded it. The average 
classification performance over 50 different runs for the best 
parameters is reported. 

 
B.  The Proposed Framework  

This research presents a new ensemble framework for 
diagnosis and grading a prostate tissue image based on their 
main tissue components. The main contributions of this 
framework are utilizing the texture features of the 
independent tissue components instead of computing the 
texture or structure features from the region image as in 
previous studies (Fig. 1). As a result, this strategy will 
overcome the heterogeneity within the same class. Moreover, 
spreading the tissue components’ features into four different 
groups to achieve the diversity among the base classifiers of 
the ensemble, and reduce the problem of overfitting that 
construct from combining all tissue components’ features in 
dense feature vectors. Fig. 3 depicts the schematic of the 
proposed ensemble framework, which consists of five stages 
(1) tissue component identification (2) feature extraction, (3) 
feature selection, and (4) ensemble learning. 

 

 
Fig. 3. The proposed ensemble framework 

1) Tissue Components Identification 

The prostate tissue components have been segmented 
using K-means clustering method into four clusters. By 
finding four cluster centers, each pixel in the tissue image is 
assigned a label corresponding to a particular tissue 
component (lumen, nuclei, cytoplasm and stroma). Since the 
colors of the tissue components are quite salient, the K-
means method is sufficient to identify them regardless of the 
intensity variation among the tissue image [13].  

Fig. 4 (a) to Fig. 4 (e) illustrate the four main tissue 
components that extracted from a prostate tissue image. The 
main tissue components are identified by utilizing a 
technique created by [30]. This technique initiates as the 
following: First, the cluster that has the brightest pixel values 
are assigned to lumina object, Fig.4 (b). Second, the cluster 
that has the darkest pixel values are assigned to cell nuclei 
Fig. 4 (c). Consequently, since epithelial-cell cytoplasm 
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cluster is close to lumina, it will take the cluster that has a 
center value close to lumina cluster’s center value, Fig. 4 (d). 
Finally, the remaining cluster is assigned to the stroma 
component Fig. 4 (d). 

 

 
Fig. 4 A) Prostate Grade3 H&E histological image, B) The lumen tissue 
component, C) Nuclei tissue component. D) Cytoplasm tissue component. 
E) Stroma tissue component 

2) Feature Extraction 

In this step, for individual tissue component, a set of co-
occurrence texture features that measure the characteristic of 
a tissue component have been computed. We extract 21 co-
occurrence texture features from each of the individual color 
channels of the HSV (Hue, Saturation, and Intensity) and 
L*a*b*(except L channel since it for illumination) color 
spaces, resulting in 105 features for each tissue component. 
The following 21 co-occurrence texture  feature are 
computed: entropy, energy, dissimilarity, contrast, inverse 
difference, correlation, homogeneity, autocorrelation, cluster 
shade, cluster prominence, maximum probability, sum of 
squares, sum average, sum variance, sum entropy, difference 
variance, difference entropy, information measures of 
correlationⅠ, information measures of correlation Ⅱ, maximal 
correlation coefficient, and inverse difference normalized 
(INN) [20] [21]. The following feature vectors represent the 
extracted features of the individual tissue components: 

 
     ����a�� , 	��,
�� , ��� , ���
 (1) 

     	������� , 	��,
�� , ��� , ���
 (2) 

     ������� , 	��,
�� , ��� , ���
 (3) 

     ������� , 	��,
�� , ��� , ��� 	
 (4) 

      
where, 	�� , �� , 	�� , ���	��  represent the respective 

features vectors of L, N, C, and S, and 
a�� , 	��,
�� , ��� , ��� 	are the Haralick features for the a*,b*,H, 
S, and V channels respectively.  

3) Feature Selection 

Feature selection is a vital pre-processing step in pattern 
recognition. To obtain a high classification accuracy, it is 
critical to select the most important set of features for each 
tissue component dataset that are highly expressed in 
diagnosing and grading prostate cancer. To derive the most 
important features, in this methodology SVM-RFE (Guyon 
et al., 2002) is used to select the most relevant features 
subset for each tissue component dataset. SVM-RFE utilizes 

criteria derived from the weighted coefficients in SVM 
models to rank features, and recursively in backward 
removes features that have a small criterion. Comparing to 
wrapper methods, SVM-RFE (1) uses the full training set 
whereas the wrapper uses the cross-validation on the training 
data; (2) much faster; (2) less prone to overfitting; (3). 
Therefore, this study proposes SVM-RFE for selecting the 
most important features from individual tissue components’ 
features.    

4) Ensemble Learning Components 

In this research, the ensemble learning consists of two 
main components: base classifiers and a fusing rule. The 
base classifiers include four independent base support vector 
machine (SVM) [31] classifiers. SVM is a binary learning 
algorithm proposed by Vapnik [31], which is used to analyze 
and recognizes patterns. 

In this study, the four base SVM classifiers are built based 
on the selected features of corresponding tissue components. 
For each base SVM, a Radial- Basis-Function (RBF) kernel 
was used in the experiments. Initially, the selected features 
in the training and testing sets were normalized to the 
interval [-1,+1].  To find the SVM parameters C and γ that 
perform best for the selected features. To optimize the 
classification performance, the parameters were determined 
by using the LibSVM [32] grid-search algorithm. We tried 
the following values {2 -20, ..., 21…, 220}  for C and γ, 
respectively. The values which gave the best accuracy 
performance with threefold cross-validation are picked and 
used to train on the training set. 

5) Ensemble Fusing Rule 

In machine learning, ensemble classifier is becoming 
increasingly important as they have repeatedly displayed the 
ability to improve upon the performance of a single classifier 
in theory and practice [33]. The ensemble classifier consists 
of a set of independent trained base classifiers whose 
predictions are fused to classify new samples. The outputs of 
all these base classifiers are fused to create an ensemble final 
output based on a fusion rule.  The fusion rules are 
categorized as (i) a fusion rule that applies to class label, and 
(ii) class-specific continuous outputs [34]. For example, 
majority voting is classified as the former group (i). In a 
comparison of different fusing rules for ensemble learning, 
majority voting is as effective as other complicated rules. 
However, it not work as good as other techniques with the 
problem of binary classes [35]. Thus, this study utilizes the 
continuous output because it looks to solve the two-class 
classification problems. Among the continuous output fusion 
rules, the product rule most efficient and simple rule for 
combining the output of the base classifiers, which is fast 
and uses all the information available in the outputs of the 
base classifiers [2]. Moreover, the product rule is utilized 
when the base classifiers operate in independent feature 
spaces and have small errors. Thus, in this study, the product 
rule is employed to fuse the output of the lumen and nuclei 
base classifiers to produce the final decision of the ensemble. 
In product rule (Eq. 5), the posterior probability outputs 
��
���� (I) for class j of t different base classifiers are fused by: 

     ���� � ������
���∏ ��

���� �!
���  (5) 
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then, the class with the maximum probability product is 
considered as the final class label belonging to the test tissue 
image(I). 

III.  RESULTS AND DISCUSSION 

A. Performance Measures 

In this study, multiple classification measures are used to 
obtain a more reliable comparison. In each binary 
classification task, e.g., Grade 3 versus Grade 4, correspond 
to negative and positive samples, respectively. In this 
context, true positive (TP) and true negative (TN), 
respectively, represent the number of Grade 3 and Grade 4, 
which are correctly classified. Similarly, false positive (FP) 
and false negative (FN), characterize the number of Grade3 
and Grade 4 samples, which are miss-classified, respectively. 
The performance of the proposed and the other frameworks 
are measured in terms of averaged area under ROC curves 
(AUC), accuracy, specificity, and sensitivity. These criteria 
are measured in the ensemble framework based on the 
product rule (Eq. 5). First, AUC represents the system over 
its entire operating range, and it computed by plotting the 
sensitivity and (1-specificity) of the classification system. 
Second, accuracy criterion (Eq. 6), which represent the 
number of correctly classified samples (i.e. TP and TN). 
Third, sensitivity criterion (Eq. 7), which determines the 
probability of the true positive cases such that the test image 
has the Grade 3. While, specificity criterion (Eq. 8), 
determines the probability of the results that are true 
negative such that the test image does not have Grade 3.All 
of these criteria are multiply by 100% . Finally, a paired t-
test at significant level 95% is performed to determine any 
significant difference in the obtained results between the 
proposed ensemble framework and the other methods. 

 
     Accuracy= (TP +TN)/(TP+TN+FP+FN)  x100% (6) 

    Sensitivity=TP/ (TP+FN) x100% (7) 

    Specificity=TN/ (TN+FP) x100% (8) 

B. Empirical Results and Discussion 

The proposed ensemble framework was tested on three 
classification tasks, namely, benign vs. Grade 3, benign vs. 
Grade 4, and Grade 3 vs. Grade 4, where the number of the 
images in each grade is described in Section IV.1. The 
performance of the proposed ensemble framework was 
compared against the typical CAD framework [8] (Fig. 1) 
and a naïve base approach (Fig. 2). 

In the experiments, the classification performance is 
evaluated by dividing the dataset randomly into 50% of 
samples for training and remaining 50% of samples for 
testing. In each training-test procedure, the frameworks used 
for comparison are repeated 50 times with different random 
seeds to guarantee that the comparison among the 
frameworks does not happen by chance. In this way, 50 
experiments results for each framework are obtained. Then, 
the mean of the 50 performances is used as final results for 
the proposed ensemble framework, naïve approach, and 
typical framework respectively.  

The results of all experimentations are shown in Table 1. 
It can be seen that the proposed ensemble framework 

significantly outperformed the typical CAD framework [8] 
and a naïve base approach, in most of the performance 
measures on different classification tasks. The last two 
columns in Table 1 show the significance of the differences 
of performances of the ensemble framework over the Naïve 
approach and the typical CAD, respectively. For example, in 
Grade 3 vs. Grade 4, comparing to the other frameworks, the 
values of AUC significantly (p-value <0.05) were increased 
with about 2.39% and 1.66% in order of naïve base approach 
and typical CAD framework, respectively. 

The results of Benign vs. G3 are also presented in Table 1, 
regarding these results, the proposed ensemble framework 
obtained better AUC accuracy than the typical CAD.  
Comparing to the naïve approach, the proposed ensemble 
framework significantly outperformed the naive approach, 
this is due to solving the overfitting problem. Similarly, 
there was a significant increase in accuracy (1.81%) and 
sensitivity (3.19%) values. 

Although the proposed framework obtained competitive 
performances in the Benign vs. Grade 4 classification task, 
their results were not significant due to sensitivity value, 
which achieved the lowest value 90.64%. One reason for this 
low value is that in Gland 4 the glands are fuse with each 
other. Thus, their size becomes large and affect the texture of 
their individual tissue components, while the Benign tissue 
image has a large glands size. Thus, the tissue components 
of the Benign and Gland 4 have become close in their tissue 
components. 

 

TABLE I 
AVERAGE CLASSIFICATION PERFORMANCE (IN %) AND STATISTICAL 

SIGNIFICANCE OVER 50 RUNS OF THE PROPOSED ENSEMBLE AND OTHER 

FRAMEWORKS ON DIFFERENT TWO-CLASS PROSTATE CALSSIFICATION 

TASK. THE BEST RESULT IS INDICATED IN BOLD FACE 

 
 
The using of multi-components of the prostate tissue 

images is an important process to produce high-performance 
diagnosis and grading CAD. However, combining all tissue 
components’ features produce dense features vectors which 
suffer from overfitting. The use of ensemble learning 
framework explicitly enables prediction using several 
training subsets aids to alleviate this issue. These different 
subsets clearly are shown in the proposed ensemble 
framework. So, it outperformed the naïve approach. Indeed, 
in all prostate two-class classification tasks studied here, it 
was found that the ensemble framework significantly 
outperformed the naïve and typical CAD. In addition, due to 
diversity among the base classifiers training datasets, the 
experiment results indicate that the proposed ensemble 
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framework performed well over all the cases studied here in 
term of their AUC, accuracy, sensitivity and specificity.  

 

 
 
 
 
 
Besides, this study has compared the proposed ensemble 

framework with the individual tissue components. The 
results are given in Fig. 5. It can be seen that the proposed 
Ensemble framework outperformed the induvial tissue 
components (i.e., single classifier) in term of accuracy. In 
particularly, using the ensemble framework, classification 
performance substantiality improved with around 7.1%, 4.3% 
and 5.1 for nuclei tissue component (i.e., the most critical 
component for grading) in Grade3 vs. Grade 4, Benign vs. 
Grade 3, and Benign vs. Grade 4, respectively. Moreover, 
the results show that the cytoplasm tissue component 
produced the highest performance than the other tissue 
components. However, comparing to the proposed ensemble 
framework, the latter also outperformed the cytoplasm with 
around 2.69%, 1.6%, and 5.7% for the two-class 
classification tasks, respectively. These results indicate that 
the proposed ensemble framework is suitable for the PCa 
grading. 

Nevertheless, despite the superiority of the proposed 
ensemble framework, it is likely that ensemble framework 
performance can be enhanced by selection the most relevant 
features. In this study, the selection of the most relevant 
features was achieved by utilizing a powerful feature 
selection method, namely, SVM-RFE [19], which is robust 
to overfitting.   

In this study, the ensemble framework was also compared 
to the typical previous CAD, which has been widely used in 
most of the previous studies [8], [9], [23]. However, the 
typical CAD had been focused on the study of the 
application of the single based solutions. It has been widely 
accepted in most of the previous study that distinguishes 
between Grade 3 versus Grade 4 in prostate histopathology 
domain is quite challenging, mainly due to heterogeneity 
among the same class and restricted training dataset. As such, 
the construction of a single classifier that performs well for 
such challenging classification task may be quite difficult. 
To overcome the previous issue, this paper extracted the 
texture feature from individual tissue components. Then, 

build an ensemble learning model that consist of diverse 
base classifiers for the corresponding tissue components. 
Thus, the obtained results of the ensemble framework 
significantly outperformed the typical previous CAD, which, 
due to reducing the intra-class. 

IV.  CONCLUSION 

In this study, a novel ensemble framework, based on the 
multi-components, has been proposed for classification and 
grading cancer in prostate histopathological images. The 
current ensemble framework is strongly motivated to solve 
the overfitting issue, which, due to dense feature vectors that 
construct by combining the texture features of the main 
tissue components. The study successfully has demonstrated 
that through performance evaluations, the proposed 
ensemble framework of the multi-tissue components can 
achieve accurate and reliable classification prostate tissue 
images superior to the naïve approach that combines the 
texture features of all tissue components, and the typical 
CAD.  

A key characteristic of the proposed ensemble framework 
is that the texture features are extracted from individual 
tissue components, which play a critical role in minimizing 
the heterogeneity among the same class and increase the 
performance of diagnosis and grading. Finally, this ensemble 
framework may be expected to work well for other machine 
learning applications in the medical histopathological image. 
In future work, we plan further to investigate other machine 
learning techniques, such as feature selection methods, to 
select the most important features with minimum 
redundancy for each tissue component that leads to 
improving the accuracy of Grade 3 versus Grade 4 
classification task. 
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