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Abstract—Convolutional neural networks have achieved success in resolving object identification problems. This study contributes a 

suitable new approach to herb identification for educational and research purposes based on a small dataset and small-sized images. 

Two self-collected Thai herb datasets with either plain or natural environment backgrounds were used for experimentation to realize 

this objective. The plain background dataset includes 4,400 images of 11 leaf types, and the natural dataset contains 1,620 images of 

nine leaf types. The images were divided into a training set containing 75% of the images and a separate test set with the remaining 

25%. The experiments included five-fold cross-validation applied to the training set; the InceptionV3, MobileNetV2, ResNet50V2, 

VGG16, and Xception convolutional neural network models RMSprop and Adam optimizers. Further, dropout rates of 0.3, 0.5, and 

0.7 were considered along with five and ten epochs. Transfer learning was applied using pre-trained weights. The model with the best 

outcome, based on the average accuracy of the cross-validation results on both datasets (the plain background dataset was 94.55%, and 

the natural dataset was 90.37%), was the VGG16 with the RMSprop optimizer, which exhibited a dropout rate of 0.5 over ten epochs. 

The model achieved 96.64% and 92.00% accuracy on the plain background training and test sets, and 99.59% and 91.36% on the 

natural environment training and test sets, respectively. The results show that the method has a high potential for objective tasks and 

application in identifying herbs based on visual leaf information.  

Keywords—Deep learning; leaf identification; transfer learning. 

Manuscript received 25 May 2021; revised 11 Nov. 2021; accepted 12 Dec. 2021. Date of publication 30 Jun. 2022. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Herb identification is crucial in medicine, botany, and the 
food industry. Typically, experts or experienced persons 

undertake this task. The plant parts that can be used to identify 

plant species are leaves, flowers, fruits, seeds, and roots. 

Because the leaves exist for most of the plant’s life, they are 

suitable for herb identification. Several studies have proposed 

identifying plant species based on the visual information of 

plant parts. Yigit et al. [1] conducted experiments to identify 

plant leaves using an artificial neural network, the Naive 

Bayes algorithm, the random forest algorithm, K-nearest 

neighbor, and a support vector machine (SVM). The SVM 

returned the best accuracy of 92.91%. Soleimanipour et al. [2] 

proposed a flower identification method used the principal 
component analysis, latent Dirichlet allocation, and SVM, 

which achieved 99.5% accuracy. Ambarwari et al. [3] called 

SVM to classify plant species using leaf venation features and 

achieved an accuracy of 82.6% with a precision of 84% and 

recall of 83%. Furthermore, Chaki et al. [4] experimented on 

bag-of-features, fuzzy-color, and edge-texture histogram 

descriptors of a multi-layer perceptron for a fragmented leaf 

recognition problem, and Kala and Viriri [5] classified plant 

species based on the sinuosity coefficients of leaves. 
Moreover, Bao et al. [6] used a convolutional neural network 

(CNN) over histogram-of-oriented-gradients features with the 

SVM classifier on the Swedish and Flavia datasets. 

Muthireddy and Jawahar [7] researched Indian plant 

recognition in the wild using a convolutional neural network. 

Further, Mookdarsanit and Mookdarsanit [8] worked with 

Thai herb identification on a plain background.  

The potential of deep learning based on a CNN has yielded 

high accuracy results in various problems, including plant 

research. Previous studies have investigated plant disease 

classification on citrus leaves [9], olive leaves [10], and apple 
leaves [11]. Moreover, weed detection experiments have been 
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conducted in the crop environment [12], [13], and nutrient 

deficiency classification has been performed with tomatoes 

[14]. The detection of fruit on the plant was explored as a 

multiclass problem [15] and was conducted with tomatoes [16] 

and small fruits [17]. 

Recently, TensorFlow [18]–[20], open-source software 

that provides a stable platform for CNN deep learning, has 

been used in various research studies and applications that 

include identifying plants [6], [21], [22] and plant diseases 

[23], [24]. Automatic herb identification is a helpful support 

system for botanical education and surveying. The studies 
mentioned above did not consider including Thai herbs in 

both the plain background and natural environment scenarios 

in a botanical education and surveying system. Because of the 

tasks’ requirements, the classifications of herb leaves on a 

plain background and the plants in their natural environment 

were explored to gain confidence for further application 

development. The classification of Thai herb leaves was 

experimentally tested on various CNNs to select the most 

suitable method. 

II. MATERIALS AND METHOD 

Two datasets were collected, one of the leaves on a plain 

background and the other of leaves on plants in their natural 

environments. The proposed method included a deep 

convolutional neural network with convolutional neural 

network models, optimizer, dropout rate, and varying 

numbers of epochs. The experimental setups are given with 

specific details of the experiments. 

A. Datasets 

The plain background dataset included 11 leaf types: holy 

basil, betel, celery, asiatic pennywort, ivy gourd, kaffir lime, 

mint, water morning glory, mulberry, wild pepper, and 

Tiliacora trianda Diels (Fig.1). All leaf types in this dataset 
were classified as herbs and vegetables. During our data 

collection process, each leaf was pasted to a plain white 

background. A total of 100 leaves of each plant type were 

taken to obtain 100 images (1,100 images for all types). The 

dataset includes images with poor form leaves, immature 

leaves, damaged leaves, shadows, and insufficient image 

quality.  

The dataset of the leaves in their natural environments 

includes nine leaf types: Alixia reinwardtii Blume, aloe, 

common rhinacanthus, frangipani, goat's foot creeper, 

Muehlenbeckia platyclade (F. Muell.) Meisn., mulberry, 
pagoda, and patchouli (Fig. 2). All leaf types in this dataset 

were classified as herbs, and some were further classified as 

vegetables. The dataset was collected from the Somdet 

Phrathep Rattana Ratchasuda Flora Herb Park in Rayong, 

Thailand. A total of 20 images were collected of every plant 

type in this dataset (180 images for all types). Because of the 

park environment and the nature of the plants, this dataset 

includes various photos: with one leaf, many leaves, old 

yellow leaves, damaged leaves, obstacles, an unclear camera 

view, and insufficient image quality. This dataset 

demonstrates the complexity of the plants surveying tasks in 

their natural environments. 

 

 
Fig. 1  Sample images from the plain background dataset. All 11 leaf types are shown, with original leaf images followed by augmented images. 

 

 

Fig. 2  Sample images from the natural dataset. Nine leaf types are shown, with original leaf images followed by augmented images. 

B. Method 

The overall system is illustrated in Fig. 3. The training 

phase has two paths: the model and parameter search using 

five-fold cross-validation [25] and the adoption of the 

appropriate parameter set to train with the whole dataset. In 

the training phase, the images and their class labels are input, 

and pre-processing is conducted, which includes cropping, 

rescaling, and augmentation. A model is trained based on a 

base model, an optimizer, a dropout rate, and epochs, and a 

trained CNN model is received as an output.  
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Fig. 3  System overview including training and prediction phases. 

 

The test set images (without labels) are input in the trained 

model in the prediction phase. The input images are taken in 

the pre-processing step and classified, and finally, the output 
class labels are obtained. The output class labels are evaluated 

using the true labels, and the model's accuracy is determined. 

The pre-processing steps follow either Algorithm I PREP-

ROCESSING I or Algorithm II PRE-PROCESSING II. 

 
The algorithm I PRE-PROCESSING I 

Input:  I an original image. 

Input:  W is the width of the output image. 

Input:  H is the height of the output image. 

Input:  C is the channel number of the output image. 

Output: Oii1…n is a set of augmented images of I. 

1: Ic  CROP-TO-SQUARE(I) 
2:  � Ic is a cropped image of I.  

3: O1  RESIZE(Ic,[W,H,C]) 
4:  � O1 is a resized image of Ic.  

5: O2  HORIZONTAL-FLIP(O1) 
6:  � O2 is a horizontally flipped image of O1.   

7: A1  RANDOM(-90,90) 

8: O3  ROTATE(O1, A1) 
9:  � A1 is a rotation angle.  

10:  � O3 is a rotated image of O1.  

11: A2  RANDOM(-90,90) 

12: O4  ROTATE(O2, A2) 
13:  � A2 is a rotation angle.  

14:  � O4 is a rotated image of O2.  
 

 

 

 

Algorithm II PRE-PROCESSING II 

Input:  I an original image. 

Input:  W is the width of the output image. 
Input:  H is the height of the output image. 
Input:  C is the channel number of the output image. 

Output: Oii1…n is a set of augmented images of I. 

1: Ic  CROP-TO-SQURE(I) 

2:  � Ic is a cropped image of I.  

3: O1  RESIZE(Ic,[W,H,C]) 

4:  � O1 is a resized image of Ic.  

5: O2  HORIZONTAL-FLIP(O1) 

6:  � O2 is a horizontally flipped image of O1.   

7: O3  VERTICAL-FLIP(O1) 

8:  � O3 is a vertically flipped image of O1. 

9: A1  RANDOM(-90,0) 

10: O4  ROTATE(O1, A1) 

11: A2  RANDOM(0,90) 

12: O5  ROTATE(O1, A2) 

13:  � A1, A2 are rotation angles.  
14:  � O4, O5 are rotated images of O1. 

15: A3  RANDOM(-90,0) 

16: O6  ROTATE(O2, A3) 

17: A4  RANDOM(0,90) 

18: O7  ROTATE(O2, A4) 

19:  � A3, A4 are rotation angles.  
20:  � O6, O7 are rotated images of O2. 

21: A5  RANDOM(-90,0) 

22: O8  ROTATE(O3, A5) 

23: A6  RANDOM(0,90) 

24: O9  ROTATE(O3, A6) 

25:  � A5, A6 are rotation angles.  
26:  � O8, O9 are rotated images of O3. 
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Five experimental models were proposed for use on the 

datasets. The general architecture of a CNN for image 

classification includes feature extraction: a convolutional 

kernel with subsampling and classification as depicted in Fig. 

4. Each model differs in its details, such as the number of 

layers, convolution, and the subsampling method. 

InceptionV3 [26], [27] is a model obtained from a series of 

deep-learning convolutional architectures. MobileNetV2 

[28], [29] is a model proposed for mobile devices based on an 

inverted residual structure, which uses an intermediate 

expansion layer and lightweight depthwise convolutions. 

ResNet50V2 [27], [30] is a modified version of ResNet50 (50 

weight layers) with changes in how the propagation 

connections between blocks are formulated. VGG16 [27], 

[30], [31] is a weighted 16-layer model. Xception [32] 

involves depthwise separable convolutions, its architecture 

being inspired by the Inception model.  

 

 

Fig. 4  General architecture of CNN for image classification. 

 

An optimizer changes the attributes of a network to reduce 

loss. The Root Mean Square Propagation (RMSprop) 

optimizer accumulates the gradients in a fixed window instead 

of gathering all gradients [33], [34]. The RMSprop is 

calculated as follows: 
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 is the exponential average of the gradients’ 

squares, � is an initial learning rate, 
�
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 is the gradient at step 

�, ��
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, � is a hyperparameter, � is the step in the stochastic 

gradient descent algorithm, �  indicates the associated 

component weight, and ��
���

 is the weight of step �  and 

component �. 

Adaptive Moment Estimation (Adam) utilizes the concept 

of momentum fractions of previous gradients added to the 

current one [34]–[36]. The details are as follows: 
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where �	  and ��  are parameters, ��
���

 is an exponential 

average of the squares of gradients, "  is the regularization 

term, � is an initial learning rate, 
�
���

 is the gradient at step � 

along ��
���

, �  is a hyperparameter, �  is the step in the 

stochastic gradient descent algorithm, �  indicates the 

associated component weight, and ��
���

 is the weight of step � 

and component �. 

The pre-trained weight is an effective alternative method to 

initiate the weight of a CNN. This approach is suited for small 

datasets and meets the time-saving criterion for training. The 

pre-trained weight on the ImageNet dataset [37] was adopted 

for our method. This pre-trained weight was acquired from 

the training process with a large-scale dataset consisting of 14 

million images with 1,000 classes for multipurpose use. 
 

Algorithm III FIT-MODEL 

Input: T is a training set. 

Input: V is a validation set. 

Input: B is a based model. 

Input: W is the initial weight. 

Input: P is an optimizer option. 

Input: D is the dropout rate. 

Input: E is the number of epochs. 

Input: N is the number of classes. 

Input: H is the batch size of the image. 

Input: S is image size. 
Output: M is an output model. 

1: Load T 

2: T  SHUFFLE(T) 

3: T'  NORMALIZED(T) 
4:  � Normalized RGB value of T [0,255] to [0,1] 

5: B'  SET-BASED-MODEL(B,S,W,) 
6:  � B' is based model with setting 

7: M'  MODEL-SEQUENTIAL(B',D,N) 

8: M"  MODEL-COMPILE(M',P)  
9:  � Compile the model with  

10:  � loss='sparse_categorical_crossentropy',  

11:  � and metrics=['accuracy'] 

12: M  MODEL-FIT(M",T',E,V) 

 

The CNN models were trained to follow the steps in the 

Algorithm III FIT-MODEL. The algorithm takes a base 

model, an optimizer option, a dropout rate (dropout), epochs, 

the training set, the validation set, the number of classes, the 
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batch size, and the image size as inputs and returns a trained 

output model. The training set was shuffled, and the RGB 

value was normalized from 0–255 to 0–1. The image batch 

size was set to 32; the image size was set to 128 × 128 × 3. 

The training process took the training set as input and returned 

the output model. The output model was then evaluated 

(Algorithm IV EVALUATE), and the training and test sets’ 

results were reported separately. 

 
Algorithm IV EVALUATE 

Input: M is a model. 

Input: Z is a test set without labeling. 

Input: ZL is a test set label. 

Output: C is the accuracy. 

Output: L is the precision. 

Output: R is the recall. 
Output: F is the F1-score. 

1: Load Z 

2: Z'  NORMALIZED(Z) 
3:  � Normalized RGB value of Z [0,255] to [0,1] 

4: ZL'  MODEL-PREDICT(M, Z') 
5:  � ZL' is the predicted label of Z 

6: C,L,R,F  MODEL-EVALUATE(ZL,ZL') 

 

The methods were evaluated by machine learning criteria 

[25], [38]. Accuracy (8) is the percentage of correct events 

overall. Precision (9) is the percentage of correct events 

overall predicted positively. Recall (10) is the percentage of 

correct events among all positive events. The F1-score (11) is 

the harmonic mean of precision and recall. Let TP be the 

number of true-positive events, TN the number of true-

negative events, FN the number of false-negative events, and 

FP the number of false-positive events. However, TN is not 

considered and is set to zero in this research. 
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C. Experimental Setup 

In pre-processing the plain background dataset, a white 
border of each image was cropped to obtain a square image 

with the original aspect ratio of the leaf unchanged. The 

images were resized to 128 × 128 × 3. A horizontal flip and a 

rotation between −90° and 90° were randomly applied to 

obtain a larger dataset. Algorithm I PRE-PROCESSING I 

gives detail of the steps. The augmented dataset contained a 

total of 4,400 images. 

In pre-processing of the natural dataset, the border of each 

image was cropped to obtain a square image with the original 

aspect ratio of the leaf unchanged. The image was then resized 

to 128 × 128 × 3. Steps of a horizontal flip, a vertical flip, a 
random rotation of between −90° and 0°, and a random 

rotation of 0°–90° were applied. The obtained dataset 

contained 1,620 images. The steps follow Algorithm II PRE-

PROCESSING II. 

Each dataset was divided into a training set with 75% of 

the images and a test set with 25%. Original and augmented 

image proportions are shown in TABLE I, and the samples of 

the original images with their augmented images are depicted 

in Fig. 5. 

TABLE I  

NUMBERS OF IMAGES IN THE DATASETS, SHOWING THE PROPORTION OF 

ORIGINAL AND AUGMENTED IMAGES IN THE TRAINING AND TEST SETS 

Dataset 
Type 

Total images Original images 
Augmented 

images 

Total Train Test Total Train Test Total Train Test 

100% 75% 25% 100% 75% 25% 100% 75% 25% 

Plain 

background 
All 11 types 
Each type 

 
 

4,400 

 
 

3,300 

 
 

1,100 

 
 

1,100 

 
 

825 

 
 

275 

 
 

3,300 

 
 

2,475 

 
 

825 

400 300 100 100 75 25 300 225 75 

Natural 
All 9 types 

Each type 

 
1,620 

 
1,215 

 
405 

 
180 

 
135 

 
45 

 
1,440 

 
1,080 

 
360 

180 135 45 20 15 5 160 120 40 

 

 
Fig. 5 Samples of pre-processing step 

 

The CNN model fitting was provided by calling the steps 

of the algorithm in Algorithm III FIT-MODEL and evaluated 
the result follows Algorithm IV EVALUATE. The 

experiment was configured to work with CNN implemented 

on TensorFlow (Core v2.4.1) [18] using Python in a Google 

Colab environment (GPU Jupyter notebook) [39]. The 

experiment was performed on the default parameter set of five 

CNN models: InceptionV3, MobileNetV2, ResNet50V2, 

VGG16, and Xception. Transfer learning was applied using 

pre-trained weights on ImageNet. Each model was evaluated 

using either of the two optimizers, namely RMSprop and 

Adam, with a dropout rate of 0.3, 0.5, and 0.7, and epoch 

numbers of 5 and 10. 

III. RESULTS AND DISCUSSION 

The five-fold cross-validation results are shown in Fig. 6 

and Fig. 7. The best model on both datasets was VGG16 with 

transfer learning, pre-trained weight ImageNet, optimizer 

RMSprop, dropout 0.5, and 10 epochs. The average accuracy 

of the plain background dataset was 94.55%, and that of the 

natural dataset was 90.37%. 
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Fig. 6  Average accuracy results of the five-fold cross-validation of all combinations with the plain background dataset. 

 

 
Fig. 7  Average accuracy results of the five-fold cross-validation of all combinations with the natural dataset. 

 
The best model was adopted to apply to the entire training 

set and evaluate the output model. The evaluation was 

performed with the entire training and test sets. The accuracy, 

precision, recall, and F1-score of all leaf classes on the 

training and test sets were calculated and reported in table II. 

The true negative case was not considered (set to zero).  

TABLE II 
RESULTS OF THE BEST MODEL ON THE TRAINING AND TEST SETS. 

Dataset Model Result Training set Test set 

Plain Background 
 VGG16 
 RMSprop 
 Dropout 0.5 
 Epochs 10 

Accuracy 0.9664 0.9200 

Precision 0.9676 0.9201 

Recall 0.9664 0.9200 

F1-score 0.9665 0.9196 

Natural 
 VGG16 
 RMSprop 
 Dropout 0.5 
 Epochs 10 

Accuracy 0.9959 0.9136 

Precision 0.9960 0.9222 

Recall 0.9959 0.9136 

F1-score 0.9959 0.9142 

The confusion matrices of the best model on the training 

and test sets are depicted in Fig. 8–Fig. 9. In Fig. 8, the 

confusion matrices of the plain background dataset show the 

classification of water morning glory and Tiliacora trianda 

Diels. achieved high accuracy (98%–100%) on the training 

and test sets because the leaf shapes of these two plant types 

are distinct from the others. Moreover, the images of these 

groups had a small number of poor forms leaves and no 

immature or damaged leaves. In the test set, the classification 

of mulberry and wild pepper achieved 81% (81 of 100), and 

that of ivy gourd reached 85% (85 of 100) because of their 
similar shape to others, especially when using a small-size 

image. The model achieved an accuracy of over 90% with the 

remaining leaf types in this dataset.  

In Fig. 9, the confusion matrix of the natural dataset shows 

that the model achieved 100% accuracy in the prediction of 

aloe and Muehlenbeckia platyclade (F. Muell.) Meisn. in the 

training and test sets, the leaf shape of this plant type is 

distinct from that of the others. In the test set, the model 
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achieved 68.89% (31 of 45) with mulberry images, 82.22% 

(37 of 45) with patchouli, and 86.67% (39 of 45) with pagoda 

plant.  

The unstable light conditions of the outdoor environment, 

the camera view, and many leaves in the same image made 

the images look very similar, and the shapes were not clearly 

defined. The model achieved an accuracy of over 90% with 

the remaining plant types in this dataset. Fig. 10 and Fig. 11 

show the incorrect prediction samples from the respective 

datasets with the true and predicted classes. 

 

  
(a) (b) 

Fig. 8  Confusion matrix of the plain-background dataset. (a) Confusion matrix for the training set. (b) Confusion matrix for the test set. 

 

  

(a) (b) 

Fig. 9  Confusion matrix of the natural dataset. (a) Confusion matrix for the training set. (b) Confusion matrix for the test set. 

 
Fig. 10  Incorrect prediction samples from the plain background dataset. 
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Fig. 11  Incorrect prediction samples from the natural dataset. 

 

IV. CONCLUSION 

Two datasets were assembled to identify Thai herbs using 

visual leaf information. The examined datasets included 11 

leaf types in the plain background dataset and nine leaf types 
in the natural dataset. Augmentation was applied to obtain a 

larger dataset for the CNN. VGG16 with transfer learning 

(pre-trained weight ImageNet) yielded the highest accuracy. 

The model achieved an accuracy of 96.64% and 92.00% for 

the training and test sets of the plain background dataset, 

respectively, and 99.59% and 91.36% for the natural dataset 

training and test sets, respectively. 

CNN requires a large dataset to obtain a good model for the 

training process. However, our datasets were small, although 

augmentation was applied. One alternative option for using a 

small dataset is transfer learning with a pre-trained weight. 
Furthermore, this approach has the advantage of saving 

training time. Thus, transfer learning was adopted with a pre-

trained weight (ImageNet) for this research. 

Incorrect predictions with the plain background dataset 

were obtained in cases of similar leaf shapes, poor form 

leaves, damaged leaves, immature leaves, varied light 

conditions, strong shadows, and insufficient image quality. 

Incorrect predictions with the natural dataset were old yellow 

leaves, unclear background, varied light conditions, unclear 

camera view, and inadequate image quality. Avoiding all of 

these issues when constructing the dataset would yield better 

results. 
The small size of the image was used to obtain benefits 

concerning data loading and algorithm running time. The 

overall accuracy was sufficiently high to show that the small 

size did not negatively affect the method. Thus, the high 

accuracy of small image size indicates that the technique has 

a high potential for applications in limited systems such as 

mobile-device and real-time systems. An approach to 

obtaining higher accuracy with the same method and image 

size would be to use multiple identifications and a suitable 

image view. 

The potential of the CNN model could be confirmed by 
comparison with previous methods. For identifying Thai 

herbs from images on a plain background, the best-

investigated model achieved a recall and precision of over 

90% compared to the model by Mookdarsanit and 

Mookdarsanit [8] that achieved a recall of over 75% and a 

precision of over 80%. Compared with other plant 

identification datasets obtained in the natural environment, 

our results were better than those of Muthireddy and Jawahar 

[7], with the image width and height we used (128 × 128 

pixels) being almost half (224 × 224 pixels) of theirs. The 

smaller image size confers better management of resources 
such as running time and storage. Thus, the proposed CNN-

model approach and the input image size are more suitable for 

both datasets. 

More leaf types and a larger dataset will be investigated in 

future work to obtain a wider perspective of the problem and 

a more reliable trained model for leaf identification, botanical 

education, and surveying. This requires a larger dataset and a 

practical means of capturing images of leaves on the plants by 

managing the process in the outdoor environment. Moreover, 

this system will be developed further in a future project.  
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