
Vol.12 (2022) No. 3

ISSN: 2088-5334

Convolutional Neural Networks for Herb Identification: Plain

Background and Natural Environment

Supawadee Chaivivatrakul a,*, Jednipat Moonrinta b, Suchada Chaiwiwatrakul c
a Agriculture Faculty, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand

b Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
c Faculty of Humanities and Social Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand

Corresponding author: *supawadee.c@ubu.ac.th

Abstract—Convolutional neural networks have achieved success in resolving object identification problems. This study contributes a

suitable new approach to herb identification for educational and research purposes based on a small dataset and small-sized images.

Two self-collected Thai herb datasets with either plain or natural environment backgrounds were used for experimentation to realize

this objective. The plain background dataset includes 4,400 images of 11 leaf types, and the natural dataset contains 1,620 images of

nine leaf types. The images were divided into a training set containing 75% of the images and a separate test set with the remaining

25%. The experiments included five-fold cross-validation applied to the training set; the InceptionV3, MobileNetV2, ResNet50V2,

VGG16, and Xception convolutional neural network models RMSprop and Adam optimizers. Further, dropout rates of 0.3, 0.5, and

0.7 were considered along with five and ten epochs. Transfer learning was applied using pre-trained weights. The model with the best

outcome, based on the average accuracy of the cross-validation results on both datasets (the plain background dataset was 94.55%, and

the natural dataset was 90.37%), was the VGG16 with the RMSprop optimizer, which exhibited a dropout rate of 0.5 over ten epochs.

The model achieved 96.64% and 92.00% accuracy on the plain background training and test sets, and 99.59% and 91.36% on the

natural environment training and test sets, respectively. The results show that the method has a high potential for objective tasks and

application in identifying herbs based on visual leaf information.

Keywords—Deep learning; leaf identification; transfer learning.

Manuscript received 25 May 2021; revised 11 Nov. 2021; accepted 12 Dec. 2021. Date of publication 30 Jun. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Herb identification is crucial in medicine, botany, and the
food industry. Typically, experts or experienced persons

undertake this task. The plant parts that can be used to identify

plant species are leaves, flowers, fruits, seeds, and roots.

Because the leaves exist for most of the plant’s life, they are

suitable for herb identification. Several studies have proposed

identifying plant species based on the visual information of

plant parts. Yigit et al. [1] conducted experiments to identify

plant leaves using an artificial neural network, the Naive

Bayes algorithm, the random forest algorithm, K-nearest

neighbor, and a support vector machine (SVM). The SVM

returned the best accuracy of 92.91%. Soleimanipour et al. [2]

proposed a flower identification method used the principal
component analysis, latent Dirichlet allocation, and SVM,

which achieved 99.5% accuracy. Ambarwari et al. [3] called

SVM to classify plant species using leaf venation features and

achieved an accuracy of 82.6% with a precision of 84% and

recall of 83%. Furthermore, Chaki et al. [4] experimented on

bag-of-features, fuzzy-color, and edge-texture histogram

descriptors of a multi-layer perceptron for a fragmented leaf

recognition problem, and Kala and Viriri [5] classified plant

species based on the sinuosity coefficients of leaves.
Moreover, Bao et al. [6] used a convolutional neural network

(CNN) over histogram-of-oriented-gradients features with the

SVM classifier on the Swedish and Flavia datasets.

Muthireddy and Jawahar [7] researched Indian plant

recognition in the wild using a convolutional neural network.

Further, Mookdarsanit and Mookdarsanit [8] worked with

Thai herb identification on a plain background.

The potential of deep learning based on a CNN has yielded

high accuracy results in various problems, including plant

research. Previous studies have investigated plant disease

classification on citrus leaves [9], olive leaves [10], and apple
leaves [11]. Moreover, weed detection experiments have been

1244

conducted in the crop environment [12], [13], and nutrient

deficiency classification has been performed with tomatoes

[14]. The detection of fruit on the plant was explored as a

multiclass problem [15] and was conducted with tomatoes [16]

and small fruits [17].

Recently, TensorFlow [18]–[20], open-source software

that provides a stable platform for CNN deep learning, has

been used in various research studies and applications that

include identifying plants [6], [21], [22] and plant diseases

[23], [24]. Automatic herb identification is a helpful support

system for botanical education and surveying. The studies
mentioned above did not consider including Thai herbs in

both the plain background and natural environment scenarios

in a botanical education and surveying system. Because of the

tasks’ requirements, the classifications of herb leaves on a

plain background and the plants in their natural environment

were explored to gain confidence for further application

development. The classification of Thai herb leaves was

experimentally tested on various CNNs to select the most

suitable method.

II. MATERIALS AND METHOD

Two datasets were collected, one of the leaves on a plain

background and the other of leaves on plants in their natural

environments. The proposed method included a deep

convolutional neural network with convolutional neural

network models, optimizer, dropout rate, and varying

numbers of epochs. The experimental setups are given with

specific details of the experiments.

A. Datasets

The plain background dataset included 11 leaf types: holy

basil, betel, celery, asiatic pennywort, ivy gourd, kaffir lime,

mint, water morning glory, mulberry, wild pepper, and

Tiliacora trianda Diels (Fig.1). All leaf types in this dataset
were classified as herbs and vegetables. During our data

collection process, each leaf was pasted to a plain white

background. A total of 100 leaves of each plant type were

taken to obtain 100 images (1,100 images for all types). The

dataset includes images with poor form leaves, immature

leaves, damaged leaves, shadows, and insufficient image

quality.

The dataset of the leaves in their natural environments

includes nine leaf types: Alixia reinwardtii Blume, aloe,

common rhinacanthus, frangipani, goat's foot creeper,

Muehlenbeckia platyclade (F. Muell.) Meisn., mulberry,
pagoda, and patchouli (Fig. 2). All leaf types in this dataset

were classified as herbs, and some were further classified as

vegetables. The dataset was collected from the Somdet

Phrathep Rattana Ratchasuda Flora Herb Park in Rayong,

Thailand. A total of 20 images were collected of every plant

type in this dataset (180 images for all types). Because of the

park environment and the nature of the plants, this dataset

includes various photos: with one leaf, many leaves, old

yellow leaves, damaged leaves, obstacles, an unclear camera

view, and insufficient image quality. This dataset

demonstrates the complexity of the plants surveying tasks in

their natural environments.

Fig. 1 Sample images from the plain background dataset. All 11 leaf types are shown, with original leaf images followed by augmented images.

Fig. 2 Sample images from the natural dataset. Nine leaf types are shown, with original leaf images followed by augmented images.

B. Method

The overall system is illustrated in Fig. 3. The training

phase has two paths: the model and parameter search using

five-fold cross-validation [25] and the adoption of the

appropriate parameter set to train with the whole dataset. In

the training phase, the images and their class labels are input,

and pre-processing is conducted, which includes cropping,

rescaling, and augmentation. A model is trained based on a

base model, an optimizer, a dropout rate, and epochs, and a

trained CNN model is received as an output.

1245

Fig. 3 System overview including training and prediction phases.

The test set images (without labels) are input in the trained

model in the prediction phase. The input images are taken in

the pre-processing step and classified, and finally, the output
class labels are obtained. The output class labels are evaluated

using the true labels, and the model's accuracy is determined.

The pre-processing steps follow either Algorithm I PREP-

ROCESSING I or Algorithm II PRE-PROCESSING II.

The algorithm I PRE-PROCESSING I

Input: I an original image.

Input: W is the width of the output image.

Input: H is the height of the output image.

Input: C is the channel number of the output image.

Output: Oii1…n is a set of augmented images of I.

1: Ic  CROP-TO-SQUARE(I)
2: � Ic is a cropped image of I.

3: O1  RESIZE(Ic,[W,H,C])
4: � O1 is a resized image of Ic.

5: O2  HORIZONTAL-FLIP(O1)
6: � O2 is a horizontally flipped image of O1.

7: A1  RANDOM(-90,90)

8: O3  ROTATE(O1, A1)
9: � A1 is a rotation angle.

10: � O3 is a rotated image of O1.

11: A2  RANDOM(-90,90)

12: O4  ROTATE(O2, A2)
13: � A2 is a rotation angle.

14: � O4 is a rotated image of O2.

Algorithm II PRE-PROCESSING II

Input: I an original image.

Input: W is the width of the output image.
Input: H is the height of the output image.
Input: C is the channel number of the output image.

Output: Oii1…n is a set of augmented images of I.

1: Ic  CROP-TO-SQURE(I)

2: � Ic is a cropped image of I.

3: O1  RESIZE(Ic,[W,H,C])

4: � O1 is a resized image of Ic.

5: O2  HORIZONTAL-FLIP(O1)

6: � O2 is a horizontally flipped image of O1.

7: O3  VERTICAL-FLIP(O1)

8: � O3 is a vertically flipped image of O1.

9: A1  RANDOM(-90,0)

10: O4  ROTATE(O1, A1)

11: A2  RANDOM(0,90)

12: O5  ROTATE(O1, A2)

13: � A1, A2 are rotation angles.
14: � O4, O5 are rotated images of O1.

15: A3  RANDOM(-90,0)

16: O6  ROTATE(O2, A3)

17: A4  RANDOM(0,90)

18: O7  ROTATE(O2, A4)

19: � A3, A4 are rotation angles.
20: � O6, O7 are rotated images of O2.

21: A5  RANDOM(-90,0)

22: O8  ROTATE(O3, A5)

23: A6  RANDOM(0,90)

24: O9  ROTATE(O3, A6)

25: � A5, A6 are rotation angles.
26: � O8, O9 are rotated images of O3.

1246

Five experimental models were proposed for use on the

datasets. The general architecture of a CNN for image

classification includes feature extraction: a convolutional

kernel with subsampling and classification as depicted in Fig.

4. Each model differs in its details, such as the number of

layers, convolution, and the subsampling method.

InceptionV3 [26], [27] is a model obtained from a series of

deep-learning convolutional architectures. MobileNetV2

[28], [29] is a model proposed for mobile devices based on an

inverted residual structure, which uses an intermediate

expansion layer and lightweight depthwise convolutions.

ResNet50V2 [27], [30] is a modified version of ResNet50 (50

weight layers) with changes in how the propagation

connections between blocks are formulated. VGG16 [27],

[30], [31] is a weighted 16-layer model. Xception [32]

involves depthwise separable convolutions, its architecture

being inspired by the Inception model.

Fig. 4 General architecture of CNN for image classification.

An optimizer changes the attributes of a network to reduce

loss. The Root Mean Square Propagation (RMSprop)

optimizer accumulates the gradients in a fixed window instead

of gathering all gradients [33], [34]. The RMSprop is

calculated as follows:

 ��
��� � ����	

���
 �1 � ���
�
����� (1)

 ���	
��� � ��

��� � �
���

�����

�

���
 (2)

where ��
���

 is the exponential average of the gradients’

squares, � is an initial learning rate,
�
���

 is the gradient at step

�, ��
���

, � is a hyperparameter, � is the step in the stochastic

gradient descent algorithm, � indicates the associated

component weight, and ��
���

 is the weight of step � and

component �.

Adaptive Moment Estimation (Adam) utilizes the concept

of momentum fractions of previous gradients added to the

current one [34]–[36]. The details are as follows:

 ��
��� � �	���	

���
 �1 � �	�
�
���

 (3)

 ��
��� � �����	

���
 �1 � ����
�
����� (4)

 ���
��� � ��

���
	����

 (5)

 � �
��� � ��

���
	��!�

 (6)

 ���	
��� � ��

��� � �
�� �

�����
���

���
 (7)

where �	 and �� are parameters, ��
���

 is an exponential

average of the squares of gradients, " is the regularization

term, � is an initial learning rate,
�
���

 is the gradient at step �

along ��
���

, � is a hyperparameter, � is the step in the

stochastic gradient descent algorithm, � indicates the

associated component weight, and ��
���

 is the weight of step �

and component �.

The pre-trained weight is an effective alternative method to

initiate the weight of a CNN. This approach is suited for small

datasets and meets the time-saving criterion for training. The

pre-trained weight on the ImageNet dataset [37] was adopted

for our method. This pre-trained weight was acquired from

the training process with a large-scale dataset consisting of 14

million images with 1,000 classes for multipurpose use.

Algorithm III FIT-MODEL

Input: T is a training set.

Input: V is a validation set.

Input: B is a based model.

Input: W is the initial weight.

Input: P is an optimizer option.

Input: D is the dropout rate.

Input: E is the number of epochs.

Input: N is the number of classes.

Input: H is the batch size of the image.

Input: S is image size.
Output: M is an output model.

1: Load T

2: T  SHUFFLE(T)

3: T'  NORMALIZED(T)
4: � Normalized RGB value of T [0,255] to [0,1]

5: B'  SET-BASED-MODEL(B,S,W,)
6: � B' is based model with setting

7: M'  MODEL-SEQUENTIAL(B',D,N)

8: M"  MODEL-COMPILE(M',P)
9: � Compile the model with

10: � loss='sparse_categorical_crossentropy',

11: � and metrics=['accuracy']

12: M  MODEL-FIT(M",T',E,V)

The CNN models were trained to follow the steps in the

Algorithm III FIT-MODEL. The algorithm takes a base

model, an optimizer option, a dropout rate (dropout), epochs,

the training set, the validation set, the number of classes, the

1247

batch size, and the image size as inputs and returns a trained

output model. The training set was shuffled, and the RGB

value was normalized from 0–255 to 0–1. The image batch

size was set to 32; the image size was set to 128 × 128 × 3.

The training process took the training set as input and returned

the output model. The output model was then evaluated

(Algorithm IV EVALUATE), and the training and test sets’

results were reported separately.

Algorithm IV EVALUATE

Input: M is a model.

Input: Z is a test set without labeling.

Input: ZL is a test set label.

Output: C is the accuracy.

Output: L is the precision.

Output: R is the recall.
Output: F is the F1-score.

1: Load Z

2: Z'  NORMALIZED(Z)
3: � Normalized RGB value of Z [0,255] to [0,1]

4: ZL'  MODEL-PREDICT(M, Z')
5: � ZL' is the predicted label of Z

6: C,L,R,F  MODEL-EVALUATE(ZL,ZL')

The methods were evaluated by machine learning criteria

[25], [38]. Accuracy (8) is the percentage of correct events

overall. Precision (9) is the percentage of correct events

overall predicted positively. Recall (10) is the percentage of

correct events among all positive events. The F1-score (11) is

the harmonic mean of precision and recall. Let TP be the

number of true-positive events, TN the number of true-

negative events, FN the number of false-negative events, and

FP the number of false-positive events. However, TN is not

considered and is set to zero in this research.

 #$$%&'$(�)*
)*�+,�),�+* (8)

 .&/$01023 �)*
)*�+* (9)

 4/$'55 �)*
)*�+, (10)

 61 � 1$2&/ � �*789:;:<=∙?89@AA
*789:;:<=�?89@AA (11)

C. Experimental Setup

In pre-processing the plain background dataset, a white
border of each image was cropped to obtain a square image

with the original aspect ratio of the leaf unchanged. The

images were resized to 128 × 128 × 3. A horizontal flip and a

rotation between −90° and 90° were randomly applied to

obtain a larger dataset. Algorithm I PRE-PROCESSING I

gives detail of the steps. The augmented dataset contained a

total of 4,400 images.

In pre-processing of the natural dataset, the border of each

image was cropped to obtain a square image with the original

aspect ratio of the leaf unchanged. The image was then resized

to 128 × 128 × 3. Steps of a horizontal flip, a vertical flip, a
random rotation of between −90° and 0°, and a random

rotation of 0°–90° were applied. The obtained dataset

contained 1,620 images. The steps follow Algorithm II PRE-

PROCESSING II.

Each dataset was divided into a training set with 75% of

the images and a test set with 25%. Original and augmented

image proportions are shown in TABLE I, and the samples of

the original images with their augmented images are depicted

in Fig. 5.

TABLE I

NUMBERS OF IMAGES IN THE DATASETS, SHOWING THE PROPORTION OF

ORIGINAL AND AUGMENTED IMAGES IN THE TRAINING AND TEST SETS

Dataset
Type

Total images Original images
Augmented

images

Total Train Test Total Train Test Total Train Test

100% 75% 25% 100% 75% 25% 100% 75% 25%

Plain

background
All 11 types
Each type

4,400

3,300

1,100

1,100

825

275

3,300

2,475

825

400 300 100 100 75 25 300 225 75

Natural
All 9 types

Each type

1,620

1,215

405

180

135

45

1,440

1,080

360

180 135 45 20 15 5 160 120 40

Fig. 5 Samples of pre-processing step

The CNN model fitting was provided by calling the steps

of the algorithm in Algorithm III FIT-MODEL and evaluated
the result follows Algorithm IV EVALUATE. The

experiment was configured to work with CNN implemented

on TensorFlow (Core v2.4.1) [18] using Python in a Google

Colab environment (GPU Jupyter notebook) [39]. The

experiment was performed on the default parameter set of five

CNN models: InceptionV3, MobileNetV2, ResNet50V2,

VGG16, and Xception. Transfer learning was applied using

pre-trained weights on ImageNet. Each model was evaluated

using either of the two optimizers, namely RMSprop and

Adam, with a dropout rate of 0.3, 0.5, and 0.7, and epoch

numbers of 5 and 10.

III. RESULTS AND DISCUSSION

The five-fold cross-validation results are shown in Fig. 6

and Fig. 7. The best model on both datasets was VGG16 with

transfer learning, pre-trained weight ImageNet, optimizer

RMSprop, dropout 0.5, and 10 epochs. The average accuracy

of the plain background dataset was 94.55%, and that of the

natural dataset was 90.37%.

1248

Fig. 6 Average accuracy results of the five-fold cross-validation of all combinations with the plain background dataset.

Fig. 7 Average accuracy results of the five-fold cross-validation of all combinations with the natural dataset.

The best model was adopted to apply to the entire training

set and evaluate the output model. The evaluation was

performed with the entire training and test sets. The accuracy,

precision, recall, and F1-score of all leaf classes on the

training and test sets were calculated and reported in table II.

The true negative case was not considered (set to zero).

TABLE II
RESULTS OF THE BEST MODEL ON THE TRAINING AND TEST SETS.

Dataset Model Result Training set Test set

Plain Background
 VGG16
 RMSprop
 Dropout 0.5
 Epochs 10

Accuracy 0.9664 0.9200

Precision 0.9676 0.9201

Recall 0.9664 0.9200

F1-score 0.9665 0.9196

Natural
 VGG16
 RMSprop
 Dropout 0.5
 Epochs 10

Accuracy 0.9959 0.9136

Precision 0.9960 0.9222

Recall 0.9959 0.9136

F1-score 0.9959 0.9142

The confusion matrices of the best model on the training

and test sets are depicted in Fig. 8–Fig. 9. In Fig. 8, the

confusion matrices of the plain background dataset show the

classification of water morning glory and Tiliacora trianda

Diels. achieved high accuracy (98%–100%) on the training

and test sets because the leaf shapes of these two plant types

are distinct from the others. Moreover, the images of these

groups had a small number of poor forms leaves and no

immature or damaged leaves. In the test set, the classification

of mulberry and wild pepper achieved 81% (81 of 100), and

that of ivy gourd reached 85% (85 of 100) because of their
similar shape to others, especially when using a small-size

image. The model achieved an accuracy of over 90% with the

remaining leaf types in this dataset.

In Fig. 9, the confusion matrix of the natural dataset shows

that the model achieved 100% accuracy in the prediction of

aloe and Muehlenbeckia platyclade (F. Muell.) Meisn. in the

training and test sets, the leaf shape of this plant type is

distinct from that of the others. In the test set, the model

1249

achieved 68.89% (31 of 45) with mulberry images, 82.22%

(37 of 45) with patchouli, and 86.67% (39 of 45) with pagoda

plant.

The unstable light conditions of the outdoor environment,

the camera view, and many leaves in the same image made

the images look very similar, and the shapes were not clearly

defined. The model achieved an accuracy of over 90% with

the remaining plant types in this dataset. Fig. 10 and Fig. 11

show the incorrect prediction samples from the respective

datasets with the true and predicted classes.

(a) (b)

Fig. 8 Confusion matrix of the plain-background dataset. (a) Confusion matrix for the training set. (b) Confusion matrix for the test set.

(a) (b)

Fig. 9 Confusion matrix of the natural dataset. (a) Confusion matrix for the training set. (b) Confusion matrix for the test set.

Fig. 10 Incorrect prediction samples from the plain background dataset.

1250

Fig. 11 Incorrect prediction samples from the natural dataset.

IV. CONCLUSION

Two datasets were assembled to identify Thai herbs using

visual leaf information. The examined datasets included 11

leaf types in the plain background dataset and nine leaf types
in the natural dataset. Augmentation was applied to obtain a

larger dataset for the CNN. VGG16 with transfer learning

(pre-trained weight ImageNet) yielded the highest accuracy.

The model achieved an accuracy of 96.64% and 92.00% for

the training and test sets of the plain background dataset,

respectively, and 99.59% and 91.36% for the natural dataset

training and test sets, respectively.

CNN requires a large dataset to obtain a good model for the

training process. However, our datasets were small, although

augmentation was applied. One alternative option for using a

small dataset is transfer learning with a pre-trained weight.
Furthermore, this approach has the advantage of saving

training time. Thus, transfer learning was adopted with a pre-

trained weight (ImageNet) for this research.

Incorrect predictions with the plain background dataset

were obtained in cases of similar leaf shapes, poor form

leaves, damaged leaves, immature leaves, varied light

conditions, strong shadows, and insufficient image quality.

Incorrect predictions with the natural dataset were old yellow

leaves, unclear background, varied light conditions, unclear

camera view, and inadequate image quality. Avoiding all of

these issues when constructing the dataset would yield better

results.
The small size of the image was used to obtain benefits

concerning data loading and algorithm running time. The

overall accuracy was sufficiently high to show that the small

size did not negatively affect the method. Thus, the high

accuracy of small image size indicates that the technique has

a high potential for applications in limited systems such as

mobile-device and real-time systems. An approach to

obtaining higher accuracy with the same method and image

size would be to use multiple identifications and a suitable

image view.

The potential of the CNN model could be confirmed by
comparison with previous methods. For identifying Thai

herbs from images on a plain background, the best-

investigated model achieved a recall and precision of over

90% compared to the model by Mookdarsanit and

Mookdarsanit [8] that achieved a recall of over 75% and a

precision of over 80%. Compared with other plant

identification datasets obtained in the natural environment,

our results were better than those of Muthireddy and Jawahar

[7], with the image width and height we used (128 × 128

pixels) being almost half (224 × 224 pixels) of theirs. The

smaller image size confers better management of resources
such as running time and storage. Thus, the proposed CNN-

model approach and the input image size are more suitable for

both datasets.

More leaf types and a larger dataset will be investigated in

future work to obtain a wider perspective of the problem and

a more reliable trained model for leaf identification, botanical

education, and surveying. This requires a larger dataset and a

practical means of capturing images of leaves on the plants by

managing the process in the outdoor environment. Moreover,

this system will be developed further in a future project.

ACKNOWLEDGMENT

The author thanks the Coordinating Center for Thai

Government Science and Technology Scholarship Students

(CSTS) and the National Science and Technology

Development Agency (NSTDA) for their financial support.

The author is grateful to the Somdet Phrathep Rattana

Ratchasuda Flora Herb Park in Rayong, Thailand, for the data

collection and the agricultural community's support.

REFERENCES

[1] E. Yigit, K. Sabanci, A. Toktas, and A. Kayabasi, “A study on visual

features of leaves in plant identification using artificial intelligence

techniques,” Comput. Electron. Agric., vol. 156, no. June 2018, pp.

369–377, 2019, doi: 10.1016/j.compag.2018.11.036.

[2] A. Soleimanipour, G. R. Chegini, and J. Massah, “Classification of

anthurium flowers using combination of PCA, LDA and support

vector machine,” Agric. Eng. Int. CIGR J., vol. 20, no. 1, pp. 219–228,

2018.

[3] A. Ambarwari, Q. J. Adrian, Y. Herdiyeni, and I. Hermadi, “Plant

species identification based on leaf venation features using SVM,”

TELKOMNIKA (Telecommunication Comput. Electron. Control., vol.

18, no. 2, p. 726, Apr. 2020, doi: 10.12928/telkomnika.v18i2.14062.

[4] J. Chaki, N. Dey, L. Moraru, and F. Shi, “Fragmented plant leaf

recognition: Bag-of-features, fuzzy-color and edge-texture histogram

descriptors with multi-layer perceptron,” Optik (Stuttg)., vol. 181, no.

1251

December 2018, pp. 639–650, Mar. 2019, doi:

10.1016/j.ijleo.2018.12.107.

[5] J. R. Kala and S. Viriri, “Plant Specie Classification Using Sinuosity

Coefficients of Leaves,” Image Anal. Stereol., vol. 37, no. 2, p. 119,

Jul. 2018, doi: 10.5566/ias.1821.

[6] T. Q. Bao, N. T. T. Kiet, T. Q. Dinh, and H. X. Hiep, “Plant species

identification from leaf patterns using histogram of oriented gradients

feature space and convolution neural networks,” J. Inf. Telecommun.,

vol. 4, no. 2, pp. 140–150, Apr. 2020, doi:

10.1080/24751839.2019.1666625.

[7] V. Muthireddy and C. V. Jawahar, “Indian Plant Recognition in the

Wild,” in Computer Vision, Pattern Recognition, Image Processing,

and Graphics, N. V. P. Babu R.V., Prasanna M., Ed. Springer,

Singapore, 2020, pp. 439–449.

[8] L. Mookdarsanit and P. Mookdarsanit, “Thai Herb Identification with

Medicinal Properties Using Convolutional Neural Network,” Suan

Sunandha Sci. Technol. J., vol. 06, no. 2, pp. 34–40, 2019, doi:

10.14456/ssstj.2019.8.

[9] U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman,

“Comparison of convolution neural networks for smartphone image

based real time classification of citrus leaf disease,” Comput. Electron.

Agric., vol. 177, no. July, p. 105661, Oct. 2020, doi:

10.1016/j.compag.2020.105661.

[10] S. Uğuz and N. Uysal, “Classification of olive leaf diseases using deep

convolutional neural networks,” Neural Comput. Appl., vol. 33, no. 9,

pp. 4133–4149, May 2021, doi: 10.1007/s00521-020-05235-5.

[11] C. Bi, J. Wang, Y. Duan, B. Fu, J.-R. Kang, and Y. Shi, “MobileNet

Based Apple Leaf Diseases Identification,” Mob. Networks Appl., Aug.

2020, doi: 10.1007/s11036-020-01640-1.

[12] P. Lottes, J. Behley, A. Milioto, and C. Stachniss, “Fully

Convolutional Networks With Sequential Information for Robust Crop

and Weed Detection in Precision Farming,” IEEE Robot. Autom. Lett.,

vol. 3, no. 4, pp. 2870–2877, Oct. 2018, doi:

10.1109/LRA.2018.2846289.

[13] H. Jiang, C. Zhang, Y. Qiao, Z. Zhang, W. Zhang, and C. Song, “CNN

feature based graph convolutional network for weed and crop

recognition in smart farming,” Comput. Electron. Agric., vol. 174, no.

April, p. 105450, Jul. 2020, doi: 10.1016/j.compag.2020.105450.

[14] T.-T. Tran, J.-W. Choi, T.-T. Le, and J.-W. Kim, “A Comparative

Study of Deep CNN in Forecasting and Classifying the Macronutrient

Deficiencies on Development of Tomato Plant,” Appl. Sci., vol. 9, no.

8, p. 1601, Apr. 2019, doi: 10.3390/app9081601.

[15] H. Kuang, C. Liu, L. L. H. Chan, and H. Yan, “Multi-class fruit

detection based on image region selection and improved object

proposals,” Neurocomputing, vol. 283, pp. 241–255, 2018, doi:

https://doi.org/10.1016/j.neucom.2017.12.057.

[16] C. Hu, X. Liu, Z. Pan, and P. Li, “Automatic Detection of Single Ripe

Tomato on Plant Combining Faster R-CNN and Intuitionistic Fuzzy

Set,” IEEE Access, vol. 7, pp. 154683–154696, 2019, doi:

10.1109/ACCESS.2019.2949343.

[17] X. Mai, H. Zhang, X. Jia, and M. Q. H. Meng, “Faster R-CNN With

Classifier Fusion for Automatic Detection of Small Fruits,” IEEE

Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1–15, 2020, doi:

10.1109/TASE.2020.2964289.

[18] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine

Learning,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), Nov. 2016, pp. 265–283, [Online].

Available: https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/abadi.

[19] K. Wongsuphasawat et al., “Visualizing Dataflow Graphs of Deep

Learning Models in TensorFlow,” IEEE Trans. Vis. Comput. Graph.,

vol. 24, no. 1, pp. 1–12, Jan. 2018, doi: 10.1109/TVCG.2017.2744878.

[20] J. Persano, S. M. Mikki, and Y. M. M. Antar, “Gradient Population

Optimization: A Tensorflow-Based Heterogeneous Non-Von-

Neumann Paradigm for Large-Scale Search,” IEEE Access, vol. 6, pp.

77097–77122, 2018, doi: 10.1109/ACCESS.2018.2868236.

[21] X. Liu, F. Xu, Y. Sun, H. Zhang, and Z. Chen, “Convolutional

Recurrent Neural Networks for Observation-Centered Plant

Identification,” J. Electr. Comput. Eng., vol. 2018, pp. 1–7, 2018, doi:

10.1155/2018/9373210.

[22] T. Boston and A. Van Dijk, “Some experiments in automated

identification of Australian plants using convolutional neural

networks,” in MODSIM2019, 23rd International Congress on

Modelling and Simulation., Dec. 2019, no. October, pp. 15–21, doi:

10.36334/modsim.2019.A1.boston.

[23] M. Chohan, R. Adil Khan, S. H. K. Chohan, and M. S. Mahar, “Plant

Disease Detection using Deep Learning,” Int. J. Recent Technol. Eng.,

vol. 9, no. 1, pp. 909–914, May 2020, doi:

10.35940/ijrte.A2139.059120.

[24] D. Argüeso et al., “Few-Shot Learning approach for plant disease

classification using images taken in the field,” Comput. Electron.

Agric., vol. 175, no. June, p. 105542, Aug. 2020, doi:

10.1016/j.compag.2020.105542.

[25] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine

Learning. Cham: Springer International Publishing, 2019.

[26] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, 2017,

vol. 31, no. 1.

[27] J. Gu et al., “Recent advances in convolutional neural networks,”

Pattern Recognit., vol. 77, pp. 354–377, May 2018, doi:

10.1016/j.patcog.2017.10.013.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

Jun. 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[29] B. Singh, D. Toshniwal, and S. K. Allur, “Shunt connection: An

intelligent skipping of contiguous blocks for optimizing MobileNet-

V2,” Neural Networks, vol. 118, pp. 192–203, Oct. 2019, doi:

10.1016/j.neunet.2019.06.006.

[30] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“DeepLab: Semantic Image Segmentation with Deep Convolutional

Nets, Atrous Convolution, and Fully Connected CRFs,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018, doi:

10.1109/TPAMI.2017.2699184.

[31] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training

for High Fidelity Natural Image Synthesis,” 7th Int. Conf. Learn.

Represent. ICLR 2019, pp. 1–35, Sep. 2018, [Online]. Available:

http://arxiv.org/abs/1809.11096.

[32] F. Chollet, “Xception: Deep Learning with Depthwise Separable

Convolutions,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Jul. 2017, vol. 2017-Janua, pp. 1800–

1807, doi: 10.1109/CVPR.2017.195.

[33] A. K. A. S. P. M. and P. R. Vinod Kumar, “Design and implementation

of web-based expert tool for selection of climate resilient rapeseed-

mustard varieties,” J. Oilseed Brassica, vol. 0, no. 0, pp. 168–175,

2018.

[34] V. H. Nhu et al., “Effectiveness assessment of Keras based deep

learning with different robust optimization algorithms for shallow

landslide susceptibility mapping at tropical area,” Catena, vol. 188, no.

November 2019, p. 104458, 2020, doi: 10.1016/j.catena.2020.104458.

[35] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A Sufficient Condition

for Convergences of Adam and RMSProp,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Jun.

2019, vol. 2019-June, no. 1, pp. 11119–11127, doi:

10.1109/CVPR.2019.01138.

[36] A. Sharma, “Guided Stochastic Gradient Descent Algorithm for

inconsistent datasets,” Appl. Soft Comput. J., vol. 73, pp. 1068–1080,

2018, doi: 10.1016/j.asoc.2018.09.038.

[37] K. He, R. Girshick, and P. Dollar, “Rethinking ImageNet Pre-Training,”

in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), Oct. 2019, vol. 2019-Octob, no. ii, pp. 4917–4926, doi:

10.1109/ICCV.2019.00502.

[38] A. Berger and S. Guda, “Threshold optimization for F measure of

macro-averaged precision and recall,” Pattern Recognit., vol. 102, p.

107250, Jun. 2020, doi: 10.1016/j.patcog.2020.107250.

[39] E. Bisong, “Google Colaboratory,” in Building Machine Learning and

Deep Learning Models on Google Cloud Platform, Berkeley, CA:

Apress, 2019, pp. 59–64.

1252

