
Vol.14 (2024) No. 6

ISSN: 2088-5334

Enhanced Chaos-Driven Automation: A Unique Resilience Testing

Toolkit for Cloud-Native IoT Networks

Yu Weiyuan a, Mohd Hafeez Osman a,*, Rodziah Atan a, Wan Nurhayati Wan Ab a. Rahman a
a Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Corresponding author: *hafeez@upm.edu.my

Abstract— Conventional approaches, such as static load testing and synthetic monitoring, typically evaluate system performance under

controlled conditions but do not fully capture the unpredictable scenarios encountered in real-world operations. For instance, static

load testing involves applying a predetermined load to the system to measure performance metrics like response time and throughput,

which may not reflect the variability and chaos of actual usage. Similarly, synthetic monitoring uses scripted transactions to check

system availability and performance, but these scripts often lack the complexity and variability of real-world interactions. This research

aims to overcome these limitations by utilizing advanced chaos engineering techniques to simulate a range of faults, including network

latency, service crashes, resource exhaustion, message loss, and security attacks. The proposed tool integrates components for data

generation, fault injection, storage, monitoring, and visualization, allowing for a thorough evaluation of system robustness. The

methodology involves conducting controlled experiments within an AWS-based cloud-native IoT environment to assess the tool’s

effectiveness. These experiments demonstrate that the tool effectively identifies weaknesses in system resilience and improves overall

robustness. By replicating real-world disruptions and analyzing system responses, the tool provides critical insights into the behavior

of IoT devices under stress. The study concludes that this chaos engineering tool significantly enhances the ability to detect and address

vulnerabilities, supporting creating more resilient IoT systems. Future work will expand the range of simulated faults, validate the tool

across various cloud platforms, and incorporate additional real-time analysis features.

Keywords—Chaos engineering; IoT resilience; fault injection; cloud-native environments; Amazon Web Services (AWS).

Manuscript received 16 Jan. 2024; revised 10 Sep. 2024; accepted 28 Oct. 2024. Date of publication 31 Dec. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In recent years, the resilience of cloud-native IoT

environments has gained increasing significance due to the

complex integration of IoT devices across diverse
applications. Critical infrastructure sectors such as smart

grids, healthcare systems, and industrial automation

increasingly rely on IoT. For instance, smart grids use IoT

sensors for real-time monitoring and control of electrical

distribution, while healthcare systems employ IoT devices for

patient monitoring and data collection. Traditional testing

methodologies often fall short when it comes to continuously

operating, interconnected systems that require high reliability.

Chaos engineering emerges as a powerful approach to enhance

system resilience by intentionally injecting faults to test

systems' ability to withstand unexpected conditions [1]-[6].
This study introduces a chaos engineering tool explicitly

designed for IoT systems in cloud-native environments,

employing advanced fault injection techniques to simulate

real-world disruptions and assess system robustness.

Conventional methods for testing IoT resilience often involve

static tests that do not fully represent the dynamic nature of

real-world operations. For example, standard testing may fail

to account for sudden network outages or security breaches
that can significantly impact system performance. The

proposed tool addresses these limitations by integrating

comprehensive fault injection capabilities, including network

latency, service crashes, and security attacks. For instance, by

simulating a Distributed Denial of Service (DDoS) attack, the

tool can evaluate how well an IoT system withstands such a

high-volume attack and recovers from it.

IoT systems' growing complexity and integration into

critical infrastructure demand robust testing methods that can

predict and prevent failures before they occur [7]-[9]. Chaos

Engineering provides a proactive testing framework,
contrasting with traditional reactive methods. By adopting

chaos engineering principles, our tool aims to offer a detailed

analysis of fault tolerance and resilience, paving the way for

creating more reliable IoT systems [10]-[12]. For example,

the tool’s ability to simulate network latency allows it to test

2059

how IoT devices manage delayed communications, which is

crucial for maintaining functionality in smart grid systems

where timely data is essential.

This paper proposes a structured methodology using a

chaos-driven testing tool to evaluate IoT devices' resilience in

cloud-native setups systematically. The tool leverages both

simulated and real data to create a variety of test scenarios that

mirror potential operational disruptions. This methodical

injection of faults and subsequent monitoring allows for

precisely assessing system capacities and recovery
mechanisms.

The primary contributions of this study are threefold:

a. Innovative Fault Injection Techniques: The tool

introduces advanced fault simulation methods tailored for

cloud-native IoT environments, such as simulating

network latency and service crashes to test system

resilience under real-world conditions [13].

b. Comprehensive System Evaluation: Through continuous

monitoring and data analysis, the tool provides insights into

how IoT systems respond to and recover from disruptions

like service failures and security attacks, thereby

facilitating a deeper understanding of system
vulnerabilities [14].

c. Enhanced Resilience Strategies: By identifying critical

weaknesses and testing various fault scenarios, such as

network partitions and security breaches, the tool helps

develop effective mitigation strategies, significantly

improving system robustness against future disruptions [15].

II. MATERIALS AND METHOD

A. Proposed Chaos Engineering Tool

The proposed chaos engineering tool for IoT systems in
cloud-native environments leverages fault injection

techniques to evaluate system resilience. The tool integrates

various fault scenarios, such as network latency, service

crashes, and security attacks, to simulate real-world

disruptions and assess the robustness of IoT devices [16][17].
Fig. 1 illustrates the tool's architecture, showing its key

components: fault injectors, monitoring modules, and

resilience reporting. The fault injectors introduce disruptions

into the system, the monitoring modules track the system’s

performance during these disruptions, and the resilience

reporting component analyzes the data to provide insights and
suggestions for improving system robustness. These

components interact seamlessly within the cloud-native

environment, ensuring comprehensive resilience testing.

Fig. 1 The Architecture of the Proposed Chaos Engineering Tool

B. Fault Injection Techniques

In this study, we designed multiple fault injection

techniques to test IoT systems' resilience comprehensively.

These techniques include network latency injection, service

crash simulation, and security attack emulation [18]. Their

primary task is to create realistic fault scenarios that can

challenge the system and reveal potential vulnerabilities [19],

[20]. Fig. 2 illustrates the fault injection process,

demonstrating how different fault scenarios are introduced

and monitored within the system.

2060

Fig. 2 Fault Injection Process

1) Network Latency Injection: This technique simulates

delays in network communication to test the system's ability

to handle slow or disrupted connectivity. By varying latency
levels, we can assess the impact on data transmission and

system performance [12], [16].

2) Service Crash Simulation: This method involves

intentionally crashing specific services within the IoT system

to evaluate the system's ability to detect, isolate, and recover

from service failures. This helps identify critical dependencies

and improve fault tolerance [19], [20].

3) Security Attack Emulation: This technique simulates

different types of security attacks, such as Man-in-the-Middle

(MitM) and Denial of Service (DoS), to assess the system's

security measures and resilience against malicious activities.

C. Conceptual Model Design

This section focuses on designing the workflow for chaos

engineering tools tailored for MQTT (Message Queuing

Telemetry Transport)-based cloud-native IoT systems. The

following diagram (Fig. 3) illustrates this system's primary

workflow, including preparation, experiment design, and

result analysis.

1) Connect IoT Devices: Connect the required devices to

the cloud-native platform, such as AWS, using the appropriate
communication protocol (focus on MQTT). For devices still

in development, load the workload onto the cloud-native

platform using manual simulation.

2) Ensure Observability: Integrate monitoring and

logging components to ensure each IoT device service can be

monitored. This allows the system to track the impact of chaos

engineering fault injections in real time.

3) Define Steady State: According to chaos engineering

principles, define the system's steady state, which should be

inferred through measurable indicators such as workload and

observability metrics.

4) Design Chaos Experiments: Design chaos experiments

based on the fault injection models proposed earlier. Inject

faults according to the fault types and compare the results with

the steady state defined in step three.

5) Analyze Results and Generate Reports: Analyze the

results and generate reports to provide recommendations for

resilience enhancement.

D. Model Development

Fig. 1 illustrates the various system components and their

interactions, providing a comprehensive overview of how

different modules collaborate to enhance the resilience of the

cloud-native IoT environment [21], [22], [23], [24], [25], [26],

[27], [28], [29], [30].

1) IoT Devices & End-users: Generate workloads and

send them to the cloud-native platform.

2) Cloud Native Platform: Includes workload processors

and multiple services (Service A, B, C).

3) Chaos Toolkit: Contains fault injectors and steady-

state checkers for injecting faults and checking system steady-

state.

4) Monitoring Module: This includes a log system,

indicator system, and tracing system, as well as Prometheus

and Grafana for real-time analysis and monitoring.

5) Resilience Report: Generates reports and suggestions

for improving system resilience.

The interaction flow design section (Fig. 3) outlines the

system's interaction flow, illustrating how users interact with

the system and how data moves through different

components. This flowchart clarifies the roles of each element

and the sequence of operations that occur during typical usage
scenarios.

Fig. 3 Interaction Flow Diagram

The sequence diagram (Fig. 4) provides a step-by-step

illustration of the proposed chaos engineering model's

activities, detailing the components' interactions during a

2061

resilience test. Users generate workloads and send data to the

cloud platform through IoT devices and end users.

1) Workload Generation: Users generate workloads

through IoT devices and end-users, which send data to the

cloud platform for processing.

2) Data Processing: The workload processor receives

and processes the data, distributing it to each service for

further processing according to their specialized functions.

3) Monitoring: Each service sends logs, performance

indicators, and call link data to the corresponding systems
within the monitoring module. This ensures that all activities

are tracked and can be analyzed for performance and issues.

4) Fault Injection: The Chaos Toolkit injects faults into

the system, simulating different failure scenarios. Steady-state

checkers within the toolkit monitor the system's response,

ensuring it continues operating effectively despite

disruptions.

5) Data Collection & Analysis: Prometheus collects data

from the monitoring systems, including logs, indicators, and

traces. This data is then provided to Grafana for real-time

analysis and visualization.

6) Resilience Reporting: Based on the collected data,

Grafana generates comprehensive resilience reports. These

reports include detailed analyses of how the system responded

to the injected faults and provide actionable suggestions for

improving system resilience.

Fig. 4 Sequence Diagram

E. Validation of Model

After the model was developed, several experts in cloud

computing, IoT, and chaos engineering reviewed the model

[21], [22], [23]. The main steps include:

1) Model Introduction: Introduce the chaos engineering

model in detail to the experts.

2) Expert Feedback: Collect feedback and suggestions on

the model's rationality, practicality, and innovation.

3) Problem Discussion: Discuss potential problems and

deficiencies in the model with experts and seek improvement

solutions.

4) Review Summary: Summarize the results of the expert

review and provide a basis for model improvement.

The experts involved in reviewing the model are the

following:

1) Expert A: Scholar in chaos engineering, Tsinghua

University.

2) Expert B: Expert in IoT and cloud computing, Peking

University.

3) Expert C: Senior engineer at Alibaba Cloud.

4) Expert D: Senior researcher at Huawei.

The feedback from the experts is the following:

1) Expert A: Suggested further refinement of the fault

injection methods.

2) Expert B: Recommended considering more user

behaviors and usage scenarios when defining the system's

steady state.

3) Expert C: Suggested detailed simulation schemes for

cloud service provider failures.

4) Expert D: Recommended incorporating more real-time

analysis tools into the monitoring module.

From the expert feedback, improvements were made to the

model (illustrated in Fig 5):

2062

1) Enhanced Fault Injection: Tailored fault injection

methods were refined for specific failure scenarios like

network partitioning and CPU exhaustion, broadening the

model's ability to simulate diverse conditions.

2) Expanded Steady State Definition: The system's steady

state was expanded to include various user behaviors and peak

usage scenarios, offering a more accurate baseline for

resilience assessment.

3) Detailed Cloud Failure Simulations: New simulation

schemes for cloud service provider failures, such as database
outages, were incorporated to test system recovery under

critical conditions.

4) Added Real-Time Analysis: The monitoring module

now includes additional real-time tools like distributed tracing

and anomaly detection, improving the system’s ability to

quickly identify and respond to issues.

Integrating these enhancements posed challenges, such as

compatibility issues with new fault injection methods and

complexities monitoring expanded steady-state definitions.

These were resolved through infrastructure updates and

refined data processing capabilities. The experiment aims to

validate the effectiveness of the designed tool through

simulated workloads. It covers three types of fault injection:

external faults, internal faults, and cloud service provider

faults. The experiments will be divided into three groups to

verify the tool's applicability and effectiveness.

Fig. 5 Improvement of the proposed model after expert review

F. External Service Fault Injection

This experiment tests the tool's ability to inject faults from

external services. User and gateway services handle user

requests through an API gateway and communicate with an

external database service. The primary goal is to demonstrate

the tool's impact on the system's steady state by injecting DNS

failures and blocking traffic to the external database service.

The simulation of user requests is the following:
a. Configured to send requests at a rate of two user threads

per second.
b. Maximum request throughput set to two requests per

second.
c. Each user thread executes 300 requests each time, for a

total of 600 requests.

2063

G. Internal Service Fault Injection

These experiments simulate issues within an internally

managed Redis deployment. Redis operates on a master-slave

architecture, with master instances handling read-write
operations and slave replicas handling read-only operations.

The deployment uses Redis Sentinel for high availability by

enabling automatic failovers and master reelection.

a. Terminate different combinations of master/slave pods

to observe the failover process initiated by Redis

Sentinel.
b. Stress the memory of all master/slave pods to test the

system's resilience against memory exhaustion issues.

H. Cloud Provider Service Fault Injection

These experiments simulate issues related to the user-side

MQTT proxy. The first part blocks all network traffic between

the stream-service microservice and the user-side MQTT

proxy. The second part introduces communication delays with

the user-side MQTT proxy. The goal is to verify the system's

stability in case the MQTT proxy is unavailable.

Observable Metrics include Success Rate, Error Rate,

Average Response Time, CPU Usage, Memory Usage, Disk

Usage, Event Messages Sent, and Event Messages Received.

The tool generates workloads through test cases designed to

test the event pipeline, running automatically every ten
minutes through croon scheduling. This setup ensures stable

workloads for evaluating system performance under different

fault injection conditions.

III. RESULT AND DISCUSSION

This section explains the experimental results of External

Fault Injection, Internal Fault Injection, and Cloud Provider

Fault Injection.

A. Result of External Fault Injection

For the external fault injection experiment, we propose two

main hypotheses: success rate and response time. Success rate

hypothesis: during DNS request error injection, the success

rate will drop significantly by more than five percentage

points. Response time hypothesis: during DNS request error

injection, the response time of successful requests will

dramatically change, with a p-value below 0.000001.

1) Experimental Group 1: DNS Injection: We used chaos
engineering tools to inject DNS errors and collected the

following data for the control and experimental groups after

DNS injection. The results showed a significant drop-in

success rate from 97.6% to 87.2% and an increase in average

response time from 788 milliseconds to 1325 milliseconds.

The t-test results support these observations, indicating that

DNS chaos injection significantly affects the system's steady

state (Table 1).

TABLE I

TEST FOR DNS INJECTION EXPERIMENT

Metric T-test Statistic p-value

Success Rate 19.8 2.20E-35
Average Response Time -25.6 8.50E-48

2) Experimental Group 2—Network Partition: In the

network partition experiment, the system’s success rate

dropped from 97.6% to 85.3%, and the average response time

increased from 788 milliseconds to 1400 milliseconds. The t-

test results confirm that network partition failures

significantly impact the system's steady state (Fig. 6).

Fig. 6: Test for Network Partition Experiment

B. Result of Internal Fault Injection

This section presents the design and results of an

experiment conducted using our chaos engineering tool to test

the resilience of Redis deployments, focusing on a master pod

crash. The experiment was run ten times to thoroughly assess

its impact on the system. The hypothesis was that if the master

pod fails, Redis Sentinel should promote a slave pod to the

master, and the system should continue to operate with

minimal disruption.
The chaos engineering tool terminated the master pod for

10 seconds. The results were compared with a control group

running without induced failures (Table 2). In the

experimental group, the success rate dropped to 75%, the error

rate increased to 25%, and the average response time

increased to 450 milliseconds, indicating a significant impact

on system performance due to the master node failure Fig. 7.

TABLE II

COMPARISON OF RESULTS FOR CONTROL GROUP AND EXPERIMENTAL GROUP

Metric
Control

Group

Experimental

Group (Master

Node Failure)

Success Rate (%) 100% 75%
Error Rate (%) 0% 25%
Average Response Time (ms) 200 ms 450 ms
CPU Usage (%) 50% 70%
Memory Usage (%) 60% 80%
Disk Usage (%) 40% 60%
Redis Commands Executed
(commands/sec)

1000 600

Redis Cache Hits 950 700
Redis Cache Misses 50 300

C. Result of Cloud Provider Fault Injection

This section presents the results of two key experiments
designed to evaluate the impact of network faults on an

MQTT-based cloud-native IoT system using Mosquitto as the

MQTT broker with different QoS levels.

1) Experiment Group 1- Network Partition: This

experiment blocked traffic to the user-facing MQTT broker

for 1 minute and 30 minutes. The hypothesis was falsified, as

the connection was reestablished after the partition, but events

during the disruption were lost. The results showed a drop-in

success rate and an increase in error rate and average response

time across all QoS levels (as shown in Fig. 7).

2064

Fig. 7 Line chart of the comparison of results for control group and experimental group

2) Experiment Group 2-Network Latency: This

experiment introduced network latencies of 5 seconds and 10

seconds to the traffic to the user-facing MQTT broker. The

hypothesis was partially verified. With 5-second latency, the

connection remained stable, and no events were lost.

However, with a 10-second latency, some events were lost.

The results indicated significant impacts on success rate, error

rate, and average response time across all QoS levels (as

shown in Fig. 8).

The experimental results from the three key fault injection
scenarios-external service faults, internal service faults, and

cloud provider faults—provide valuable insights into the

resilience of the MQTT-based cloud-native IoT system.

1) External Service Fault Injection: The experiments

injecting DNS errors and simulating network partitions

significantly impacted system performance. During DNS

request errors, the success rate dropped from 97.6% to 87.2%,

and the average response time increased from 788

milliseconds to 1325 milliseconds. Network partitions

reduced the success rate to 85.3% and increased the average

response time to 1400 milliseconds. These results validate the

hypothesis that external service faults significantly affect
system stability, highlighting the need for robust fault

tolerance mechanisms to handle such disruptions.

2) Internal Service Fault Injection: In the internal fault

injection scenario, focusing on Redis master pod crashes, the

experiments demonstrated a notable decrease in system

performance. The success rate dropped to 75%, and the error

rate increased to 25%, with the average response time
increasing from 200 milliseconds to 450 milliseconds. These

findings underscore the critical role of internal service

stability in maintaining overall system performance and the

effectiveness of tools like Redis Sentinel in mitigating such

faults.

3) Cloud Provider Fault Injection: The experiments

involving network partitions and network latencies on MQTT

brokers showed that these faults significantly affect system

performance. Network partitions resulted in a success rate

drop to 65% for QoS 0 and an error rate increase to 35%, with

an average response time of 550 milliseconds. Network
latencies caused the success rate to drop to 75% with a 10-

second latency for QoS 0, and the average response time

increased to 450 milliseconds. These results validate the

hypothesis that network faults substantially impact system

stability and response times, especially under higher latency

conditions.

2065

Fig. 8 Line graph of the result of cloud provider fault injection experiment

IV. CONCLUSION

This study investigates the application of a chaos

engineering-based assessment model and tools in MQTT

cloud-native IoT systems by evaluating the impact of external

fault injection, internal fault injection, and cloud service

provider fault injection on system performance. Despite

limitations such as specific cloud-native environments (e.g.,

AWS) and a focus on MQTT protocols, the developed chaos

engineering model and toolkit were validated through

extensive empirical research, demonstrating their

effectiveness in revealing system vulnerabilities and
enhancing fault tolerance, resilience, and adaptability. The

contributions include developing a comprehensive chaos

engineering assessment model, designing and implementing

assessment tools, validating tool effectiveness, and providing

actionable improvement suggestions. Future work aims to

expand fault types and scenarios, validate tools across

multiple cloud platforms, enhance automation, and apply the

tools to other protocols and system architectures. These

efforts will further improve the robustness and reliability of

cloud-native IoT systems.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support provided

by Universiti Putra for financial assistance.

REFERENCES

[1] Z. Shu and G. Yan, “IoTInfer: Automated Blackbox Fuzz Testing of

IoT Network Protocols Guided by Finite State Machine Inference,”

IEEE Internet of Things Journal, vol. 9, no. 22, pp. 22737–22751,

Nov. 2022, doi: 10.1109/jiot.2022.3182589.

[2] D. Silva, L. I. Carvalho, J. Soares, and R. C. Sofia, “A Performance

Analysis of Internet of Things Networking Protocols: Evaluating

MQTT, CoAP, OPC UA,” Applied Sciences, vol. 11, no. 11, p. 4879,

May 2021, doi: 10.3390/app11114879.

[3] S. V. Mukherji, R. Sinha, S. Basak, and S. P. Kar, “Smart Agriculture

using Internet of Things and MQTT Protocol,” 2019 International

Conference on Machine Learning, Big Data, Cloud and Parallel

Computing (COMITCon), Feb. 2019,

doi:10.1109/comitcon.2019.8862233.

[4] S. Qazi, B. A. Khawaja, and Q. U. Farooq, “IoT-Equipped and AI-

Enabled Next Generation Smart Agriculture: A Critical Review,

Current Challenges and Future Trends,” IEEE Access, vol. 10, pp.

21219–21235, 2022, doi: 10.1109/access.2022.3152544.

[5] M. Pyingkodi et al., “Sensor Based Smart Agriculture with IoT

Technologies: A Review,” 2022 International Conference on

Computer Communication and Informatics (ICCCI), pp. 1–7, Jan.

2022, doi: 10.1109/iccci54379.2022.9741001.

[6] A. Basiri et al., “Chaos Engineering,” IEEE Software, vol. 33, no. 3,

pp. 35–41, May 2016, doi: 10.1109/ms.2016.60.

[7] P. Dedousis, G. Stergiopoulos, G. Arampatzis, and D. Gritzalis,

“Enhancing Operational Resilience of Critical Infrastructure Processes

Through Chaos Engineering,” IEEE Access, vol. 11, pp. 106172–

106189, 2023, doi: 10.1109/access.2023.3316028.

[8] S. Nikolovski and P. Mitrevski, “Data Protection and Recovery

Performance Analysis of Cloud-Based Recovery Service,” 2023 58th

International Scientific Conference on Information, Communication

and Energy Systems and Technologies (ICEST), Jun. 2023,

doi:10.1109/icest58410.2023.10187249.

[9] X. Tang, “Reliability-Aware Cost-Efficient Scientific Workflows

Scheduling Strategy on Multi-Cloud Systems,” IEEE Transactions on

Cloud Computing, vol. 10, no. 4, pp. 2909–2919, Oct. 2022,

doi:10.1109/tcc.2021.3057422.

[10] A. S. Shaikh, “A Survey on Exchanging Data Using MQTT Protocol

in Arduino,” International Journal for Research in Applied Science

and Engineering Technology, vol. 9, no. VII, pp. 3081–3082, Jul.

2021, doi: 10.22214/ijraset.2021.37007.

2066

[11] A. R. Alkhafajee, A. M. A. Al-Muqarm, A. H. Alwan, and Z. R.

Mohammed, “Security and Performance Analysis of MQTT Protocol

with TLS in IoT Networks,” 2021 4th International Iraqi Conference

on Engineering Technology and Their Applications (IICETA), pp.

206–211, Sep. 2021, doi: 10.1109/iiceta51758.2021.9717495.

[12] A. Awajan, “A Novel Deep Learning-Based Intrusion Detection

System for IoT Networks,” Computers, vol. 12, no. 2, p. 34, Feb. 2023,

doi: 10.3390/computers12020034.

[13] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic Task Allocation

and Service Migration in Edge-Cloud IoT System Based on Deep

Reinforcement Learning,” IEEE Internet of Things Journal, vol. 9, no.

18, pp. 16742–16757, Sep. 2022, doi: 10.1109/jiot.2022.3164441.

[14] E. Gómez-Marín, L. Parrilla, G. Mauro, A. Escobar-Molero, D. P.

Morales, and E. Castillo, “RESEKRA: Remote Enrollment Using

SEaled Keys for Remote Attestation,” Sensors, vol. 22, no. 13, p. 5060,

Jul. 2022, doi: 10.3390/s22135060.

[15] G. Peralta, P. Garrido, J. Bilbao, R. Agüero, and P. M. Crespo, “On the

Combination of Multi-Cloud and Network Coding for Cost-Efficient

Storage in Industrial Applications,” Sensors, vol. 19, no. 7, p. 1673,

Apr. 2019, doi: 10.3390/s19071673.

[16] F. Poltronieri, M. Tortonesi, and C. Stefanelli, “ChaosTwin: A Chaos

Engineering and Digital Twin Approach for the Design of Resilient IT

Services,” 2021 17th International Conference on Network and

Service Management (CNSM), Oct. 2021,

doi:10.23919/cnsm52442.2021.9615519.

[17] M. Rozsíval and A. Smrčka, “NetLoiter: A Tool for Automated

Testing of Network Applications using Fault-injection,” 2023 53rd

Annual IEEE/IFIP International Conference on Dependable Systems

and Networks Workshops (DSN-W), pp. 207–210, Jun. 2023,

doi:10.1109/dsn-w58399.2023.00057.

[18] L. Nurfiqin, “Analisis Quality Of Service (QoS) Protokol MQTT dan

HTTP Pada Sistem Smart Metering Arus Listrik,” Jurnal Repositor,

vol. 3, no. 1, Dec. 2020, doi: 10.22219/repositor.v3i1.1084.

[19] R. Zitouni, J. Petit, A. Djoudi, and L. George, “IoT-Based Urban

Traffic-Light Control: Modelling, Prototyping and Evaluation of

MQTT Protocol,” 2019 International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), pp. 182–189, Jul.

2019, doi: 10.1109/ithings/greencom/cpscom/smartdata.2019.00051.

[20] D. Borsatti, W. Cerroni, F. Tonini, and C. Raffaelli, “From IoT to

Cloud: Applications and Performance of the MQTT Protocol,” 2020

22nd International Conference on Transparent Optical Networks

(ICTON), Jul. 2020, doi: 10.1109/icton51198.2020.9203167.

[21] D. Eridani, K. T. Martono, and A. A. Hanifah, “MQTT Performance

as a Message Protocol in an IoT based Chili Crops Greenhouse

Prototyping,” 2019 4th International Conference on Information

Technology, Information Systems and Electrical Engineering

(ICITISEE), pp. 184–189, Nov. 2019,

doi:10.1109/icitisee48480.2019.9003975.

[22] B. Mishra, B. Mishra, and A. Kertesz, “Stress-Testing MQTT Brokers:

A Comparative Analysis of Performance Measurements,” Energies,

vol. 14, no. 18, p. 5817, Sep. 2021, doi: 10.3390/en14185817.

[23] S. Arora and A. Ksentini, “Dynamic Resource Allocation and

Placement of Cloud Native Network Services,” ICC 2021 - IEEE

International Conference on Communications, Jun. 2021,

doi:10.1109/icc42927.2021.9500276.

[24] D. Breitgand, V. Eisenberg, N. Naaman, N. Rozenbaum, and A. Weit,

“Toward True Cloud Native NFV MANO,” 2021 12th International

Conference on Network of the Future (NoF), Oct. 2021,

doi:10.1109/nof52522.2021.9609908.

[25] W. Liao, & J. Draper, “Cloud Computing and Docker

Containerization: A Survey”, Proceedings of the 2019 Pacific Rim

International Symposium on Dependable Computing (PRDC), 2019,

doi:10.1109/PRDC47759.2019.8997375

[26] H. Jernberg, “Building a Framework for Chaos Engineering”, LU-CS-

EX, 2020.

[27] D. Craveiro, & J. Barreiros, “Chaos Engineering Tool Analysis”, 2023.

[28] A. Gangolli, Q. H. Mahmoud, and A. Azim, “A Systematic Review of

Fault Injection Attacks on IoT Systems,” Electronics, vol. 11, no. 13,

p. 2023, Jun. 2022, doi: 10.3390/electronics11132023.

[29] A. Pierce, J. Schanck, A. Groeger, R. Salih, and M. R. Clark, “Chaos

engineering experiments in middleware systems using targeted

network degradation and automatic fault injection,” Open

Architecture/Open Business Model Net-Centric Systems and Defense

Transformation 2021, p. 8, Apr. 2021, doi: 10.1117/12.2584986.

[30] L. Zhang, “ Application-Level Chaos Engineering”. PhD thesis, KTH

Royal Institute of Technology, 2022.

2067

