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Abstract— Conventional approaches, such as static load testing and synthetic monitoring, typically evaluate system performance under 

controlled conditions but do not fully capture the unpredictable scenarios encountered in real-world operations. For instance, static 

load testing involves applying a predetermined load to the system to measure performance metrics like response time and throughput, 

which may not reflect the variability and chaos of actual usage. Similarly, synthetic monitoring uses scripted transactions to check 

system availability and performance, but these scripts often lack the complexity and variability of real-world interactions. This research 

aims to overcome these limitations by utilizing advanced chaos engineering techniques to simulate a range of faults, including network 

latency, service crashes, resource exhaustion, message loss, and security attacks. The proposed tool integrates components for data 

generation, fault injection, storage, monitoring, and visualization, allowing for a thorough evaluation of system robustness. The 

methodology involves conducting controlled experiments within an AWS-based cloud-native IoT environment to assess the tool’s 

effectiveness. These experiments demonstrate that the tool effectively identifies weaknesses in system resilience and improves overall 

robustness. By replicating real-world disruptions and analyzing system responses, the tool provides critical insights into the behavior 

of IoT devices under stress. The study concludes that this chaos engineering tool significantly enhances the ability to detect and address 

vulnerabilities, supporting creating more resilient IoT systems. Future work will expand the range of simulated faults, validate the tool 

across various cloud platforms, and incorporate additional real-time analysis features.  
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I. INTRODUCTION

In recent years, the resilience of cloud-native IoT 

environments has gained increasing significance due to the 

complex integration of IoT devices across diverse 
applications. Critical infrastructure sectors such as smart 

grids, healthcare systems, and industrial automation 

increasingly rely on IoT. For instance, smart grids use IoT 

sensors for real-time monitoring and control of electrical 

distribution, while healthcare systems employ IoT devices for 

patient monitoring and data collection. Traditional testing 

methodologies often fall short when it comes to continuously 

operating, interconnected systems that require high reliability. 

Chaos engineering emerges as a powerful approach to enhance 

system resilience by intentionally injecting faults to test 

systems' ability to withstand unexpected conditions [1]-[6]. 
This study introduces a chaos engineering tool explicitly 

designed for IoT systems in cloud-native environments, 

employing advanced fault injection techniques to simulate 

real-world disruptions and assess system robustness. 

Conventional methods for testing IoT resilience often involve 

static tests that do not fully represent the dynamic nature of 

real-world operations. For example, standard testing may fail 

to account for sudden network outages or security breaches 
that can significantly impact system performance. The 

proposed tool addresses these limitations by integrating 

comprehensive fault injection capabilities, including network 

latency, service crashes, and security attacks. For instance, by 

simulating a Distributed Denial of Service (DDoS) attack, the 

tool can evaluate how well an IoT system withstands such a 

high-volume attack and recovers from it. 

IoT systems' growing complexity and integration into 

critical infrastructure demand robust testing methods that can 

predict and prevent failures before they occur [7]-[9]. Chaos 

Engineering provides a proactive testing framework, 
contrasting with traditional reactive methods. By adopting 

chaos engineering principles, our tool aims to offer a detailed 

analysis of fault tolerance and resilience, paving the way for 

creating more reliable IoT systems [10]-[12]. For example, 

the tool’s ability to simulate network latency allows it to test 

2059



how IoT devices manage delayed communications, which is 

crucial for maintaining functionality in smart grid systems 

where timely data is essential. 

This paper proposes a structured methodology using a 

chaos-driven testing tool to evaluate IoT devices' resilience in 

cloud-native setups systematically. The tool leverages both 

simulated and real data to create a variety of test scenarios that 

mirror potential operational disruptions. This methodical 

injection of faults and subsequent monitoring allows for 

precisely assessing system capacities and recovery 
mechanisms. 

The primary contributions of this study are threefold: 

a. Innovative Fault Injection Techniques: The tool 

introduces advanced fault simulation methods tailored for 

cloud-native IoT environments, such as simulating 

network latency and service crashes to test system 

resilience under real-world conditions [13]. 

b. Comprehensive System Evaluation: Through continuous 

monitoring and data analysis, the tool provides insights into 

how IoT systems respond to and recover from disruptions 

like service failures and security attacks, thereby 

facilitating a deeper understanding of system 
vulnerabilities [14]. 

c. Enhanced Resilience Strategies: By identifying critical 

weaknesses and testing various fault scenarios, such as 

network partitions and security breaches, the tool helps 

develop effective mitigation strategies, significantly 

improving system robustness against future disruptions [15]. 

II. MATERIALS AND METHOD 

A. Proposed Chaos Engineering Tool 

The proposed chaos engineering tool for IoT systems in 
cloud-native environments leverages fault injection 

techniques to evaluate system resilience. The tool integrates 

various fault scenarios, such as network latency, service 

crashes, and security attacks, to simulate real-world 

disruptions and assess the robustness of IoT devices [16][17]. 
Fig. 1 illustrates the tool's architecture, showing its key 

components: fault injectors, monitoring modules, and 

resilience reporting. The fault injectors introduce disruptions 

into the system, the monitoring modules track the system’s 

performance during these disruptions, and the resilience 

reporting component analyzes the data to provide insights and 
suggestions for improving system robustness. These 

components interact seamlessly within the cloud-native 

environment, ensuring comprehensive resilience testing. 

 
Fig. 1  The Architecture of the Proposed Chaos Engineering Tool 

 

B. Fault Injection Techniques 

In this study, we designed multiple fault injection 

techniques to test IoT systems' resilience comprehensively. 

These techniques include network latency injection, service 

crash simulation, and security attack emulation [18]. Their 

primary task is to create realistic fault scenarios that can 

challenge the system and reveal potential vulnerabilities [19], 

[20]. Fig. 2 illustrates the fault injection process, 

demonstrating how different fault scenarios are introduced 

and monitored within the system. 
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Fig. 2  Fault Injection Process 

 

1) Network Latency Injection: This technique simulates 

delays in network communication to test the system's ability 

to handle slow or disrupted connectivity. By varying latency 
levels, we can assess the impact on data transmission and 

system performance [12], [16]. 

2) Service Crash Simulation: This method involves 

intentionally crashing specific services within the IoT system 

to evaluate the system's ability to detect, isolate, and recover 

from service failures. This helps identify critical dependencies 

and improve fault tolerance [19], [20]. 

3) Security Attack Emulation: This technique simulates 

different types of security attacks, such as Man-in-the-Middle 

(MitM) and Denial of Service (DoS), to assess the system's 

security measures and resilience against malicious activities. 

C. Conceptual Model Design 

This section focuses on designing the workflow for chaos 

engineering tools tailored for MQTT (Message Queuing 

Telemetry Transport)-based cloud-native IoT systems. The 

following diagram (Fig. 3) illustrates this system's primary 

workflow, including preparation, experiment design, and 

result analysis. 

1) Connect IoT Devices: Connect the required devices to 

the cloud-native platform, such as AWS, using the appropriate 
communication protocol (focus on MQTT). For devices still 

in development, load the workload onto the cloud-native 

platform using manual simulation. 

2) Ensure Observability: Integrate monitoring and 

logging components to ensure each IoT device service can be 

monitored. This allows the system to track the impact of chaos 

engineering fault injections in real time. 

3) Define Steady State: According to chaos engineering 

principles, define the system's steady state, which should be 

inferred through measurable indicators such as workload and 

observability metrics. 

4) Design Chaos Experiments: Design chaos experiments 

based on the fault injection models proposed earlier. Inject 

faults according to the fault types and compare the results with 

the steady state defined in step three. 

5) Analyze Results and Generate Reports: Analyze the 

results and generate reports to provide recommendations for 

resilience enhancement. 

D. Model Development 

Fig. 1 illustrates the various system components and their 

interactions, providing a comprehensive overview of how 

different modules collaborate to enhance the resilience of the 

cloud-native IoT environment [21], [22], [23], [24], [25], [26], 

[27], [28], [29], [30]. 

1) IoT Devices & End-users: Generate workloads and 

send them to the cloud-native platform. 

2) Cloud Native Platform: Includes workload processors 

and multiple services (Service A, B, C). 

3) Chaos Toolkit: Contains fault injectors and steady-

state checkers for injecting faults and checking system steady-

state. 

4) Monitoring Module: This includes a log system, 

indicator system, and tracing system, as well as Prometheus 

and Grafana for real-time analysis and monitoring. 

5) Resilience Report: Generates reports and suggestions 

for improving system resilience. 

The interaction flow design section (Fig. 3) outlines the 

system's interaction flow, illustrating how users interact with 

the system and how data moves through different 

components. This flowchart clarifies the roles of each element 

and the sequence of operations that occur during typical usage 
scenarios. 

 
Fig. 3  Interaction Flow Diagram 

 

The sequence diagram (Fig. 4) provides a step-by-step 

illustration of the proposed chaos engineering model's 

activities, detailing the components' interactions during a 
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resilience test. Users generate workloads and send data to the 

cloud platform through IoT devices and end users. 

1) Workload Generation: Users generate workloads 

through IoT devices and end-users, which send data to the 

cloud platform for processing. 

2) Data Processing: The workload processor receives 

and processes the data, distributing it to each service for 

further processing according to their specialized functions. 

3) Monitoring: Each service sends logs, performance 

indicators, and call link data to the corresponding systems 
within the monitoring module. This ensures that all activities 

are tracked and can be analyzed for performance and issues. 

4) Fault Injection: The Chaos Toolkit injects faults into 

the system, simulating different failure scenarios. Steady-state 

checkers within the toolkit monitor the system's response, 

ensuring it continues operating effectively despite 

disruptions. 

5) Data Collection & Analysis: Prometheus collects data 

from the monitoring systems, including logs, indicators, and 

traces. This data is then provided to Grafana for real-time 

analysis and visualization. 

6) Resilience Reporting: Based on the collected data, 

Grafana generates comprehensive resilience reports. These 

reports include detailed analyses of how the system responded 

to the injected faults and provide actionable suggestions for 

improving system resilience. 

 
Fig. 4  Sequence Diagram 

 

E. Validation of Model 

After the model was developed, several experts in cloud 

computing, IoT, and chaos engineering reviewed the model 

[21], [22], [23]. The main steps include: 

1) Model Introduction: Introduce the chaos engineering 

model in detail to the experts. 

2) Expert Feedback: Collect feedback and suggestions on 

the model's rationality, practicality, and innovation. 

3) Problem Discussion: Discuss potential problems and 

deficiencies in the model with experts and seek improvement 

solutions. 

4) Review Summary: Summarize the results of the expert 

review and provide a basis for model improvement. 

The experts involved in reviewing the model are the 

following: 

1) Expert A: Scholar in chaos engineering, Tsinghua 

University. 

2) Expert B: Expert in IoT and cloud computing, Peking 

University. 

3) Expert C: Senior engineer at Alibaba Cloud. 

4) Expert D: Senior researcher at Huawei. 

The feedback from the experts is the following: 

1) Expert A: Suggested further refinement of the fault 

injection methods. 

2) Expert B: Recommended considering more user 

behaviors and usage scenarios when defining the system's 

steady state. 

3) Expert C: Suggested detailed simulation schemes for 

cloud service provider failures. 

4) Expert D: Recommended incorporating more real-time 

analysis tools into the monitoring module. 

From the expert feedback, improvements were made to the 

model (illustrated in Fig 5): 
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1) Enhanced Fault Injection: Tailored fault injection 

methods were refined for specific failure scenarios like 

network partitioning and CPU exhaustion, broadening the 

model's ability to simulate diverse conditions. 

2) Expanded Steady State Definition: The system's steady 

state was expanded to include various user behaviors and peak 

usage scenarios, offering a more accurate baseline for 

resilience assessment. 

3) Detailed Cloud Failure Simulations: New simulation 

schemes for cloud service provider failures, such as database 
outages, were incorporated to test system recovery under 

critical conditions. 

4) Added Real-Time Analysis: The monitoring module 

now includes additional real-time tools like distributed tracing 

and anomaly detection, improving the system’s ability to 

quickly identify and respond to issues. 

Integrating these enhancements posed challenges, such as 

compatibility issues with new fault injection methods and 

complexities monitoring expanded steady-state definitions. 

These were resolved through infrastructure updates and 

refined data processing capabilities. The experiment aims to 

validate the effectiveness of the designed tool through 

simulated workloads. It covers three types of fault injection: 

external faults, internal faults, and cloud service provider 

faults. The experiments will be divided into three groups to 

verify the tool's applicability and effectiveness. 

 
Fig. 5  Improvement of the proposed model after expert review 

 

F. External Service Fault Injection  

This experiment tests the tool's ability to inject faults from 

external services. User and gateway services handle user 

requests through an API gateway and communicate with an 

external database service. The primary goal is to demonstrate 

the tool's impact on the system's steady state by injecting DNS 

failures and blocking traffic to the external database service. 

The simulation of user requests is the following: 
a. Configured to send requests at a rate of two user threads 

per second. 
b. Maximum request throughput set to two requests per 

second. 
c. Each user thread executes 300 requests each time, for a 

total of 600 requests. 
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G. Internal Service Fault Injection 

These experiments simulate issues within an internally 

managed Redis deployment. Redis operates on a master-slave 

architecture, with master instances handling read-write 
operations and slave replicas handling read-only operations. 

The deployment uses Redis Sentinel for high availability by 

enabling automatic failovers and master reelection. 

a. Terminate different combinations of master/slave pods 

to observe the failover process initiated by Redis 

Sentinel. 
b. Stress the memory of all master/slave pods to test the 

system's resilience against memory exhaustion issues. 

H. Cloud Provider Service Fault Injection 

These experiments simulate issues related to the user-side 

MQTT proxy. The first part blocks all network traffic between 

the stream-service microservice and the user-side MQTT 

proxy. The second part introduces communication delays with 

the user-side MQTT proxy. The goal is to verify the system's 

stability in case the MQTT proxy is unavailable. 

Observable Metrics include Success Rate, Error Rate, 

Average Response Time, CPU Usage, Memory Usage, Disk 

Usage, Event Messages Sent, and Event Messages Received. 

The tool generates workloads through test cases designed to 

test the event pipeline, running automatically every ten 
minutes through croon scheduling. This setup ensures stable 

workloads for evaluating system performance under different 

fault injection conditions. 

III. RESULT AND DISCUSSION 

This section explains the experimental results of External 

Fault Injection, Internal Fault Injection, and Cloud Provider 

Fault Injection.  

A. Result of External Fault Injection 

For the external fault injection experiment, we propose two 

main hypotheses: success rate and response time. Success rate 

hypothesis: during DNS request error injection, the success 

rate will drop significantly by more than five percentage 

points. Response time hypothesis: during DNS request error 

injection, the response time of successful requests will 

dramatically change, with a p-value below 0.000001. 

1) Experimental Group 1: DNS Injection: We used chaos 
engineering tools to inject DNS errors and collected the 

following data for the control and experimental groups after 

DNS injection. The results showed a significant drop-in 

success rate from 97.6% to 87.2% and an increase in average 

response time from 788 milliseconds to 1325 milliseconds. 

The t-test results support these observations, indicating that 

DNS chaos injection significantly affects the system's steady 

state (Table 1). 

TABLE I 

TEST FOR DNS INJECTION EXPERIMENT 

Metric T-test Statistic p-value 

Success Rate 19.8 2.20E-35 
Average Response Time -25.6 8.50E-48 

2) Experimental Group 2—Network Partition: In the 

network partition experiment, the system’s success rate 

dropped from 97.6% to 85.3%, and the average response time 

increased from 788 milliseconds to 1400 milliseconds. The t-

test results confirm that network partition failures 

significantly impact the system's steady state (Fig. 6). 

 
Fig. 6: Test for Network Partition Experiment 

B. Result of Internal Fault Injection 

This section presents the design and results of an 

experiment conducted using our chaos engineering tool to test 

the resilience of Redis deployments, focusing on a master pod 

crash. The experiment was run ten times to thoroughly assess 

its impact on the system. The hypothesis was that if the master 

pod fails, Redis Sentinel should promote a slave pod to the 

master, and the system should continue to operate with 

minimal disruption. 
The chaos engineering tool terminated the master pod for 

10 seconds. The results were compared with a control group 

running without induced failures (Table 2). In the 

experimental group, the success rate dropped to 75%, the error 

rate increased to 25%, and the average response time 

increased to 450 milliseconds, indicating a significant impact 

on system performance due to the master node failure Fig. 7. 

TABLE II 

COMPARISON OF RESULTS FOR CONTROL GROUP AND EXPERIMENTAL GROUP 

Metric 
Control 

Group 

Experimental 

Group (Master 

Node Failure) 

Success Rate (%) 100% 75% 
Error Rate (%) 0% 25% 
Average Response Time (ms) 200 ms 450 ms 
CPU Usage (%) 50% 70% 
Memory Usage (%) 60% 80% 
Disk Usage (%) 40% 60% 
Redis Commands Executed 
(commands/sec) 

1000 600 

Redis Cache Hits 950 700 
Redis Cache Misses 50 300 

C. Result of Cloud Provider Fault Injection 

This section presents the results of two key experiments 
designed to evaluate the impact of network faults on an 

MQTT-based cloud-native IoT system using Mosquitto as the 

MQTT broker with different QoS levels. 

1) Experiment Group 1- Network Partition: This 

experiment blocked traffic to the user-facing MQTT broker 

for 1 minute and 30 minutes. The hypothesis was falsified, as 

the connection was reestablished after the partition, but events 

during the disruption were lost. The results showed a drop-in 

success rate and an increase in error rate and average response 

time across all QoS levels (as shown in Fig. 7). 
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Fig. 7  Line chart of the comparison of results for control group and experimental group 

 

2) Experiment Group 2-Network Latency: This 

experiment introduced network latencies of 5 seconds and 10 

seconds to the traffic to the user-facing MQTT broker. The 

hypothesis was partially verified. With 5-second latency, the 

connection remained stable, and no events were lost. 

However, with a 10-second latency, some events were lost. 

The results indicated significant impacts on success rate, error 

rate, and average response time across all QoS levels (as 

shown in Fig. 8).  

The experimental results from the three key fault injection 
scenarios-external service faults, internal service faults, and 

cloud provider faults—provide valuable insights into the 

resilience of the MQTT-based cloud-native IoT system. 

1) External Service Fault Injection: The experiments 

injecting DNS errors and simulating network partitions 

significantly impacted system performance. During DNS 

request errors, the success rate dropped from 97.6% to 87.2%, 

and the average response time increased from 788 

milliseconds to 1325 milliseconds. Network partitions 

reduced the success rate to 85.3% and increased the average 

response time to 1400 milliseconds. These results validate the 

hypothesis that external service faults significantly affect 
system stability, highlighting the need for robust fault 

tolerance mechanisms to handle such disruptions. 

2) Internal Service Fault Injection: In the internal fault 

injection scenario, focusing on Redis master pod crashes, the 

experiments demonstrated a notable decrease in system 

performance. The success rate dropped to 75%, and the error 

rate increased to 25%, with the average response time 
increasing from 200 milliseconds to 450 milliseconds. These 

findings underscore the critical role of internal service 

stability in maintaining overall system performance and the 

effectiveness of tools like Redis Sentinel in mitigating such 

faults. 

3) Cloud Provider Fault Injection: The experiments 

involving network partitions and network latencies on MQTT 

brokers showed that these faults significantly affect system 

performance. Network partitions resulted in a success rate 

drop to 65% for QoS 0 and an error rate increase to 35%, with 

an average response time of 550 milliseconds. Network 
latencies caused the success rate to drop to 75% with a 10-

second latency for QoS 0, and the average response time 

increased to 450 milliseconds. These results validate the 

hypothesis that network faults substantially impact system 

stability and response times, especially under higher latency 

conditions. 
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Fig. 8  Line graph of the result of cloud provider fault injection experiment 

 

IV. CONCLUSION 

This study investigates the application of a chaos 

engineering-based assessment model and tools in MQTT 

cloud-native IoT systems by evaluating the impact of external 

fault injection, internal fault injection, and cloud service 

provider fault injection on system performance. Despite 

limitations such as specific cloud-native environments (e.g., 

AWS) and a focus on MQTT protocols, the developed chaos 

engineering model and toolkit were validated through 

extensive empirical research, demonstrating their 

effectiveness in revealing system vulnerabilities and 
enhancing fault tolerance, resilience, and adaptability. The 

contributions include developing a comprehensive chaos 

engineering assessment model, designing and implementing 

assessment tools, validating tool effectiveness, and providing 

actionable improvement suggestions. Future work aims to 

expand fault types and scenarios, validate tools across 

multiple cloud platforms, enhance automation, and apply the 

tools to other protocols and system architectures. These 

efforts will further improve the robustness and reliability of 

cloud-native IoT systems. 
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