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Abstract — In recent decades, magnetic resonance (MR) brain images have initiated a wide range of image classification and 

segmentation methods. Feature representation is one of the essential aspects of medical image analysis. This paper proposes and 

investigates specific features that address the significance of high-level tasks with little annotation for medical images. Deep learning is 

a futuristic area of research in biomedical image analysis, in which the scope is moving us immediately to the goal of automating tasks 

in intelligent retrieval systems. This approach can incorporate many levels of feature representation to construct recognition of medical 

cells or images. We propose a novel approach based on the deep hierarchical features of two different convolutional neural network 

(CNNs) model choices to achieve competitive performance in the classification task. We explore feature representation through 

discriminative CNN models. The principal study of our proposed work is feature representations, feature-level fusion, and classification. 

Meanwhile, effective fusion frameworks were employed for brain MR image classification by using serial fusion and fusion operator 

strategies. The accuracy of the proposed technique is demonstrated using the Cancer Imaging Archive (TCIA) and Information 

eXtraction from Images (IXI) datasets. To the best of our knowledge, experiment results show that CNNs feature maps as input to the 

classifier and are superior to the original CNNs. The performance of the support vector machines (SVM) classifier has been used to 

evaluate in terms of training performance and classify subjects as either normal or abnormal. 
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I. INTRODUCTION

Medical imaging and computer vision roles are growing 

day by day. Due to deep features learning, the current medical 

image analysis is experiencing a transition. This can be used 

for both learnings of features and classification. Meanwhile, 

objects that cells are characterized by pivotal or decisive 

features, detailed annotation of medical images, creating a 

group of discriminative specific features, etc., are often 

uncertain and tough tasks. Due to the nature of medical 

images, many tasks such as classification, segmentation, and 
detecting objects in clinical images are emerging. As a direct 

consequence of the recent success resulting from its 

application across a wide variety of scientific fields, including 

features design [1],[2] DNA analysis [3] etc., it has attracted 

significant interest from researchers in medical imaging 

techniques.  

Recently, many deep architectures of feature learning 

algorithms have been proposed for segmentation [4],[5], 

classification [6], clustering  [7], speech recognition [8], and 

so on. Deep architecture is a ladder or hierarchical formation 
of multiple layers, with every layer being a process by which 

individual parameters take the initiative to learn from the 

results of its preceding layer, which makes the feature 

learning concrete. Along with this, research of deep 

architecture can exponentially increase the knowledge and 

very successful frameworks for brain image classification. 

CNN's is one of the deep discriminative models and has 

recently become a popular medical image analysis choice. For 

instance, abnormal shapes or volumes of certain anatomical 

structures of the brain must be found in brain disorders like 

cancer or tumors.  

The highest interesting challenges raised by deep 
architectures are learning the right features and how to 

compute its features representation, i.e., feature extraction. 

Deep CNNs are distinguished by utilizing numerous feature 

extraction stages to learn features automatically. Our work 

has addressed the research problem as image-level 

classification using brain MR images. Therefore, the analysis 
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of these images is essential to detect disorders including 

Alzheimer’s [9], Parkinson [10], and so on. However, 

manually classifying the brain is an expensive and time-

consuming process on a larger scale. These drawbacks would 

have sparked considerable interest and enabled the systematic 

classification of brain MRI as soon as images are acquired. In 

medical imaging methods, significant clinical features 

characterize objects like cells of organs, including the brain, 

heart, kidneys, liver, and lungs. Therefore, features 

representation is essential for image classification [11]–[14]. 

We proposed a deep feature representations framework for 
extracting the prominent features of human brain MRI images 

through the proposed deep architectures. 

In the past few decades, many proposed frameworks have 

highlighted the brain tumor analysis phases like classification, 

features detection and representation, features fusion, 

treatment plans, and outcomes predictions.   

Chahal et al. [15] exhibit the current state-of-art concerning 

brain tumor detection approaches using MR images. The main 

goal is to aid researchers in medical image processing to 

derive the characteristics and identify different classification 

or segmentation models. Several deep learning approaches, 
namely auto-encoders, CNNs, deep neural networks (DNN) 

etc., are combined with other techniques to improve the 

recognition rate. Additionally, deep learning algorithms are 

self-learning feature representational capacity and enable 

good quantitative analysis. 

Liu et al. [16] present a survey on deep learning 

applications to MRI images. Combining the manifold and 

different architectures can help the model enhance robustness 

and generalization on several categories of images by 

extracting many levels of semantic representations. More 

recently, applying deep learning algorithms to medical 
imaging has led to impressive performance enhancements in 

diagnosing and classifying complicated pathologies such as 

breast cancers, brain tumors, etc. For the most part, in medical 

image processing and computer vision, the exploitation of 

different experimental new ideas in CNN architectural design 

has changed the research direction. Ensemble feature learning 

is also one of the forthcoming research areas on CNNs. 

Hasan et al. [17] proposed a method to enhance the 

recognition rate of magnetic resonance imaging brain scans 

classification from combined deep learning and modified gray 

level co-occurrence matrix features. The design of CNN 

architecture was selected by a trial-and-error method, which 
was used to estimate the optimal number of hyperparameters. 

As a result, the developed model performs as a novel feature 

extraction method. The experimental results showed that the 

dimension of the feature was set at 23, and the support vector 

machines (SVM) classifier was used to achieve the highest 

accuracy based on the collected brain MRI scans. 

Mao et al. [18] proposed a unique feature representation 

approach for lung nodule image classification. It incorporates 

both global and local features. First, Superpixels divide a lung 

nodule image into local patches. Using an unsupervised deep 

autoencoder (DAE), these patches are reconstructed into a 
fixed length of local feature vectors. The global feature 

representation is the bag-of-visual-words model, with the 

visual vocabulary produced. The SoftMax algorithm is 

applied to lung nodule type classification. The experimental 

result shows the effectiveness of the feature representation 

approach based on different parameter settings. 

Due to the complexity of medical image analysis, 

designing a set of definitive features is a natural routine for 

predicting the classification tasks. The detailed interpretation 

of medical images is generally a tedious and indefinite task. 

In the past few years, several challenges faced by deep 

architectures have been extracting the augmented feature set, 

ranging from minor to complicated abstractions, which can 

support learning complex problems. Interestingly, the 

domains of brain tumor analysis under detection or 
classification tasks are becoming challenging and still an open 

research problem due to the diversity of shapes, areas, and 

sizes of tumors. 

From 2015 to 2020, the research studies in deep 

architectures are still moving towards those significant 

performance improvements. Deep architectures are composed 

of feature detector units stacked in layers. Lower layers 

recognize simple features and pass them on to higher-level 

layers, which detect more complex features, and there have 

been various techniques for deep network learning. 

Liu et al. [19] proposed a fully connected CNN-based deep 
learning representation. It has strong global expression ability 

and contains high-level semantic information. It has been 

generated after layers of convolutions with the input image, 

which has a global receptive field. Zheng et al. [20] have 

contributed to the Convolutional representation study. It uses 

activations of convolutional layers, followed by a global-

pooling method. This produces a compact image 

representation with dimensions equal to the number of feature 

mappings of the corresponding layer. 

Yang et al. [21] address the learning of structured and non-

redundant representations with deep neural networks using 
Structured Decorrelation Constraint (SDC). It is flexible and 

can be applied to different types of network layers, including 

3D convolutional layers and 1D fully connected layers, which 

is beneficial for enhancing the network's performance. In 

order to identify how to design effective regularizes for 

multiple deep networks, we will do comprehensive research 

on the effects of various regularizes on different network 

topologies. 

Athiwaratkun and Kang [22] introduced a feature 

component of Convolutional Neural Network (CNN) models 

and illustrated various applications of CNN features. They 

designed three CNN1, CNN2, and CNN3 architectures for the 
experiments. In addition, even if the CNNs are not optimum, 

because they are not fully trained, they can nevertheless 

extract useful features that provide comparable prediction 

accuracy when compared to more computationally expensive 

approaches such as CNN trained with Dropout or model 

averaging. In addition, it shows the practice of CNN features 

as input to other models (like SVM etc.,) compared to the 

original CNN. Le et al. [1] proposed a new method for 

automated learning of invariant features of tumor signatures. 

It is a two-layer network having nonlinear responses to 

discover the features from low-cost unlabeled data. The 
results of the experiments show that this method outperforms 

expert-designed representations. 

This research looks into how deep learning (CNNs) models 

may be used to represent features as inputs to other 
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classification models and investigates the effectiveness of 

high-level tasks with automated learning of features. 

The contribution of this paper is summarized as follows:  

 Design and develop a two-stream of deep architectures 

for extracting features of images.  

 Create salient fused feature vectors retrieved by two 

deep convolutional networks of the first fully connected 

layers. 

 To obtain the compact fusion features, principal 

component analysis (PCA) is adopted to reduce the 

dimension. 

 Study the impact of compact fusion features by the 

classifier. 

This paper is organized as follows. Section II presents the 

proposed framework to study the effectiveness of the feature 

representation. Section III demonstrates experimental setup 

results. Then, the conclusion is drawn in section IV 

 
 

 

  Fig. 1  Framework of the proposed Methodology 

 

II. MATERIAL AND METHOD 

Feature representation is a vital building block of image 

classification. We formulate the problem as image-level 

classification. The proposed strategy is shown in Fig1. The 

proposed model comprises five stages. The first stage is pre-

processing of the MR images using a unit-distribution 

transformation approach. The second stage explores the 

designed two-stream deep architecture (CNNs) frameworks 

for extracting the high-level features. The third stage is to 

construct fused features using serial strategy and fusion 

operators. The fourth stage is to apply the principal 
component analysis (PCA) to reduce the dimension of the 

deep fused features and yield a compact fusion feature vector. 

Finally, to obtain the image-level classification results by the 

classifier to predict whether an image is normal or abnormal. 

A. Pre- Processing 

The pre-processing process is generally designed to ensure 

the achievement of classification tasks. We applied intensity 

normalization to the input data using a unit-distribution 

transformation approach to assess brain image processing. 

B. Deep Architecture 

The Convolutional neural network (CNN) models are a 

redesign of traditional neural network (NN) layers that 

include convolution (C), pooling (P), and fully connected (FC) 

layers. As with ANN, it is primarily a hierarchical network 

structure, but the configuration and operation of the layer have 

been modified. The network model is subdivided into two 

parts: feature extraction and classification. The feature 

extraction part includes the convolution and pooling layers, 
whereas the fully connected layer was involved in the 

classification part. The Convolution layers are derived from 

mathematical operations consisting of filters/kernels, i.e., a 

2D matrix of numbers. The filter is then convolved with the 

input to extract the output. The pooling layer plays a part in 

squeezing the spatial size of the feature representation. The 

fully connected (FC) layer gives the capability to map the 

features representation between the input and the output. 

This research aims to provide an effective approach for 

automatically representing features based on hyperparameters 

and building CNN structures for a given specific classification 

task. The CNN architecture was encoded in this study as a 

number of hyperparameters, which are described in Table I, 

Where CNN represents the deep architecture, Hconv represents 

the convolutional layer parameters set, Hpool represents the 

parameters of pooling layer, Hact represents the activation 

function, and Hfc is the set of fully connected layer parameters.  

TABLE I 

HYPER PARAMETERS 

Parameters Description 

CNN {Hconv, Hpool, Hact ,Hfc } 

Hconv {C0, ..., Cn    } 

Ci {kcount, ksize }* 

Hpool {Pi   } 

Hact {Ai   } 
* COUNT:  Number of filters SIZE: THE Size of filters 

 

However, with CNNs, having more convolutional layers 

decreases the depth of feature maps at the network's end, 

resulting in a coarse classification. To address this issue, we 

expand the architecture of Fig.1 in the proposed framework 

by incorporating the CNN1 and CNN2 designed as features 

extractors described in Tables II and III. There are eight layers, 

ordered as I, C1, P1, C2, P2, C3, P3, and F1 in the sequence 

CNN1 model. Where I, C, P, F are denoted as input layers, 
convolutional layers, pooling layers, and fully connected 

layers. Similarly, eleven layers, I, C1, C2, P1, C3, C4, P2, C5, 

C7, P3, and F1, are sequences of the CNN2 model. The 

architecture design of CNN1 and CNN2 were optimized using 

a trial-and-error approach. 

The effectiveness of CNN depends primarily on the nature 

of the designed network, and how the layers are stacked, and 

kernels/filters are set. Gradient back-propagation represents 

the main method for learning all types of neural networks. To 
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design a CNN1& CNN2 for a specific task, it is necessary to 

understand the prerequisite to be met and how the input image 

slice is set up to the network. The size of every convolutional 

layer or a given input MRI slice can be calculated using 

equations (1) and (2), respectively. 

 Convw= ((MRslicew- cfw+ (2*p))/sw+1 (1) 

 Convh= ((MRsliceh- cfh+ (2*p))/sh+1 (2) 

Where cf represents the convolution filter, p is the number of 

zero padding and s denotes number of strides. 

TABLE II 
ARCHITECTURE OF CNN1 

Layer 

Name 
Type of layer Kernel size 

Feature 

Map/shape 

I Input - 240x240x1 

C1 Conv1+ ReLU 5x5 , 32 filters 240x240x32 

P1 Max- Pooling 2x2, stride 1 120x120x32 

C2 Conv2+ ReLU 5x5 , 48 filters 120x120x48 

P2 Max- Pooling 2x2, stride 1 60x60x32 

C3 Conv3+ ReLU 5x5 , 64 filters 60x60x64 

P3 Max- Pooling 2x2, stride 1 30x30x64 

F1 Fully Connected 

(FC1) 

1x384 1x384 

TABLE III 
ARCHITECTURE OF CNN2 

Layer 

Name 
Type of layer Kernel size 

Feature 

Map/shape 

I Input - 240x240x1 

C1 Conv1+ ReLU 5x5 , 32 filters 240x240x32 

C2 Conv2+ ReLU 5x5 , 32 filters 240x240x32 

P1 Max- Pooling 2x2, stride 1 120x120x32 

C3 Conv3+ ReLU 5x5 , 48 filters 120x120x48 

C4 Conv4+ ReLU 5x5 , 48 filters 120x120x48 

P2 Max- Pooling 2x2, stride 1 60x60x48 

C5 Conv5+ ReLU 5x5 , 64 filters 60x60x64 

C7 Conv3+ ReLU 5x5 , 64 filters 60x60x64 

P3 Max- Pooling 2x2, stride 1 30x30x64 

F1 Fully Connected 

(FC1) 

1x384 1x384 

 

C. Features Fusion Modules 

Feature fusion builds to learn image features completely 

and enhance their rich internal information. We use the 

proposed CNN1 and CNN2 models to extract features from 

the specified layer. The fused feature vectors, which include 

a rich information collection, can contribute to the 

classification process. As a result, fusing two distinct sets of 

characteristics is a critical challenge. We investigate the 

features fusion modules in four different ways. First, we 

employ a serial feature fusion technique [23], which 

concatenates the two feature sets. The dimension of the fused 

features is the sum of the two feature sets' dimensions. The 
output of the fusion feature can be written as: 

 Xconcatfusion= [CNN1_FC1, CNN2_FC1] (3) 

Second, summation of two sets of features, dimension of 

the fused features is equal to the source of the dimensions of 

the two sets of features 

 Xsumfusion= [CNN1_FC1 + CNN2_FC1] (4) 

The final vectors Xconcatfusion and Xsumfusion are input to the 

PCA to reduce the features, then these features were used as 

a classifier to produce the output. Third and fourth, we 

introduce fusion operators, namely single and multi-operator 

[24]. Fig.2a and Fig.2b show the detailed structures of the 

feature fusion operators. In particular, an input image Z is 

translated into 2 feature spaces using the CNN1-FC1 and the 

CNN2-FC1 feature extractors, represented as Ecnn1 and 

Ecnn2 with the features Ecnn1(z), Ecnn2(z) € ZFo Then, ZFo 

embeds Ecnn1(x) and Ecnn2(x) in a fusion feature space.  

 

 
a. Single operator (Fo-s) 

 
b. Multi operator (Fo-m) 

Fig. 2  Fusion operators. 

 

The single operator (Fo-s)) Using a learned weight scalar, 

compute the weighted sum between the CNN1-FC1 and 

CNN2-FC1 feature maps. 

 Fo-s = βEcnn1 (Z) + (1-β) Ecnn2 (Z) (5) 

CNN1-FC1 and CNN2-FC1 features are scaled from β and 

(1-β) respectively and then merged elementwise, as illustrated 

in figure2a. The multi-operator (Fo-m) computes the 
weighted sum of CNN1-FC1 and CNN2-FC1 feature maps 

using a learned weight vector β. 

 Fo-m = β Ecnn1 (Z) + (1-β) Ecnn2 (Z) (6) 

The weight vector β is first broadcasted to the feature shape 

and then multiplied by the features elementwise, as shown in 

figure 2b.  

D. Dimensionality Reduction and Classification 

The principal component analysis (PCA) is a technique and 

useful for classification tasks. After feature fusion, there exist 
higher-dimensional features and increased computation 

complexity. Consequently, to minimize dimensionality, we 

utilized principal component analysis (PCA). We adopted the 

support vector machines (SVM) classifier for classification in 

this work. The fusion features, whose dimension is reduced 

using PCA, are utilized for training a binary classification 

classifier. In addition, after comparing RBF and polynomial 

kernel functions, we choose the RBF kernel function with the 

best classification results. We extract the score feature from 

each image using a trained SVM model. Based on the score 

of the model has predicted the outputs. 
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III. RESULTS AND DISCUSSION 

A. Dataset 

The proposed method applied on both the IXI and TCIA 

dataset of human brain T2-weighted MRI images. The IXI 

dataset images were collected from computational analysis of 

brain development website (https://brain-development.org), 

and TCIA data were gathered from the cancer imaging 

archive website (https://cancerimagingarchive.net). The IXI 
dataset involves MR images from normal, healthy subjects, 

whereas the TCIA MR images from abnormal, unhealthy 

subjects. All images were selected from 20 subjects. The MR 

slices are used in this work were acquired from Philips 3T / 

1.5 T system. Each of the volumes studied is made up of 5 or 

6 separate slices. The 200 image slices (100 abnormal slices 

and 100 normal slices) of subject volumes were considered in 

this work. Fig 3a and 3b are shown as a normal and an 

abnormal T2 –weighted MR brain image, respectively. 

  

a. b. 

Fig. 3  Axial T2- weighted MR brain images: (a) Normal brain; (https://brain-

development.org) (b) Abnormal brain (https://cancerimagingarchive.net). 

B. Experimental setup 

In this study, we attempted two- deep network 

experimental setups to evaluate the efficiency of the proposed 

model. These networks were optimized based on a trial-and-

error method. In both networks, the fully connected (fc1) 

layer features are denoted as in-depth features. The evaluation 

of the proposed method was carried out in three different sets 

of experiments. First, we report all the experiments based on 

each network. Then, experiments with the fused features. 

Finally, we performed experiments on PCA. Moreover, 

experimental results reported the impact of the fusion pattern 
on classification strategy. 

C. Results 

1)  Feature Extraction: For our experiments, we use two 
CNN architectures, namely CNN1 and CNN2, as feature 

extractors. The detailed description of these networks is 

shown in section II. The configuration of the network's 

architecture is a difficult and problem-specific task, which can 

significantly impact the performance of the model. We 

involved two distinct deep CNN architectures in this research. 

After developing CNN models, each model complies with the 

Adaptive Moment Estimation optimizer, convergence is 

faster, and results of the model training properties are shown 

in the Table II and III. To fit the training data with the model, 

the batch size of 128 and 20 epochs is used. Figs 4a and 4b 

illustrate the training set's loss and accuracy. These two 

architectures have one fully connected layer (FC1), composed 

of 384 deep CNN features, followed by a final classification, 

which outputs whether an image is normal or abnormal. In 
this research, the last fully connected layer is a feature 

representation of images and is considered a feature fusion 

operation. This is not a conventional approach in the literature. 

We are interested to see if the higher-level layer features fuses 

with fusion domains are more suitable for classification. Fig 

5 shows the illustrations of the CNN1and CNN2 of the first 

30 features representation maps. 
 

 
a. Training 

 
b. loss 

Fig.4  Illustrates the (a) accuracy and (b) loss of the training set. 

2)  The CNN Features for classification: we trained the 

proposed network configuration with a pre-processed data 

sample (N=200), yielding different trained features, resulting 

in two differently trained networks. Unless stated otherwise, 

we use the first fully connected layer of the CNN1 and CNN2 

networks as our feature vectors for all experiments. We have 

two settings: First, the 384-dimensional feature vectors 

combined with fusion operators with a SVM to solve the 

classification task. Second, we further add dimensionality 

reduction by PCA and report the individual results. To further 

study this, we trained an RBF and polynomial SVM for all 
classes using the output of each features fusion module. 

TABLE IV 
SVM CLASSIFIER PERFORMANCE 

Classifier Features Fusion Modules 
Accuracy (%) Dimension of features with PCA 

50 100 150 200 250 300 350 

RBF SVM 

Concat 64.0 61.0 59.5 58.0 58.0 58.0 58.0 

Sum 60.5 60.5 58.5 61.5 57.5 56.5 55.5 

Single 64.0 63.0 62.0 60.5 54.0 53.5 53.0 

Multi 60.0 56.5 56.5 55.5 55.0 54.0 54.0 

Polynomial SVM 

Concat 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Sum 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Single 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Multi 50.0 50.0 50.0 50.0 50.0 50.0 50.0 
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a. CNN1 features map    b. CNN2 features map    

Fig. 5  Illustrates the first layer features representation maps. 

 

3)  Effectiveness of Feature Fusion: In the experiments, we 

investigate the fusion modules in four different ways, namely, 

concat, sum, single and multi-operators strategy. Fig.6 

demonstrates the performance analysis by SVM and PCA 

with different dimensions. Using the CNN1 and CNN2 off-

the-shelf representation with RBF support vector machine 

training significantly outperforms 50 features. We use the 

CNN1 and CNN2 architectures as a baseline. This is shown 

as a comparison of each classification model to see how they 
perform with features from CNN1 and CNN2. Table IV 

shows the proposed approach's performance by using the 

most common kernel functions, including polynomial and 

RBF. The proposed technique is evaluated using performance 

metrics, namely accuracy, sensitivity, recall, and F-measure. 

The performance metrics are examined based on the 

confusion matrix. This can be described by the terms as True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN) as follows: 

 True Positive (TP) - abnormal class images are 

predicted correctly from the model, 

 True Negative (TN) – normal class images are 

predicted correctly from the model, 

 False Positive (FP) - normal class images are predicted 

incorrectly as an inclusion to the abnormal class from 

the model, and 

 False Negative (FN) - abnormal class images are 
predicted incorrectly as an inclusion to the normal class 

from the model. 

 
Fig. 6  Performance of SVM with various Dimensions. 

 

The Comparative model performance analysis-1 and 

analysis-2 of the proposed approach are shown in Fig 7. In 

fact, classification accuracy varies from 50.00 % to 64.00 %, 

with polynomial and radial basis function based on the 

selected features fusion dimensions after PCA. Table V shows 

that concatenation and single fusion methods have better 

accuracy (64.0%) compared to the original models, 50.00% 

for CNN1 and 52.55% for CNN2. 

Finally, we apply our proposed method in two ways to test 

the classification accuracy for the entire test data set. First, 25% 

of the input images are for training, and 75% of the input 
images are for the test data set. Second, 50% of the input 

images are used to create each test and training data set. 

Further, SVM classifier achieved a classification accuracy of 

fusion approaches better than that of approaches, which use 

only CNN1 features or only CNN2 features. The best results 

obtained on different methods are tabulated in Table V. The 

experimental results demonstrated that fusion feature learning 

is superior. 

 

 

 

Fig. 7  Proposed model performance analysis. 

 

In order to compare with state-of-the-art methods, we 

selected a reference paper [22], which had designed 

convolutional neural network (CNNs) models. We have used 

both CNN1 and CNN2 models in our proposed work. In 

0 0,2 0,4 0,6 0,8

Concat

Sum

Single

Multi

Concat Sum Single Multi

FMeasure 0,7067 0,6734 0,6757 0,6849

Recall 0,5464 0,5076 0,5102 0,5208

Sensitivity 0,5464 0,5076 0,5202 0,5208

Performance Metrics Analysis-1

FMeasure Recall Sensitivity

0 0,2 0,4 0,6 0,8

Concat

Sum

Single

Multi

Concat Sum Single Multi

FMeasure 0,7353 0,7168 0,4375 0,7143

Recall 0,5814 0,5208 0,28 0,5556

Sensitivity 0,5814 0,5587 0,5814 0,5556

Performance Metrics Analysis-2

FMeasure Recall Sensitivity
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addition, fusion strategies [23],[24] were also added and made 

an experimental setup. As a result, experiments carried out by 

feature-level fusions yield up to 64.00% (see table IV and V), 

which is competitive results without using many additional 

computational resources. The comparison is tabulated in 

Table VI. 

TABLE V 
COMPARISON OF BEST PERFORMANCES 

Methods #Feature Acc (%) 

CNN1_SVM 384 50.00 

CNN2_SVM 384 52.55 

Fusion: concat 768 58.50 

Fusion: sum 384 51.50 

Fusion: Single 384 55.00 

Fusion: Multi 384 56.50 

Concat_Fusion_PCA 50 64.00 

Sum_Fusion_PCA 50 60.50 

Single_Fusion_PCA 50 64.00 

Multi_Fusion_PCA 50   60.00 

TABLE VI 

STATE-OF-THE-ART-METHOD COMPARISON 

Method Accuracy (%) 

Proposed: Concat Fusion 64.00% 

Proposed: Single Fusion 64.00% 

Ref [22] CNN1 model  52.63% 

Ref [22] CNN2 model  55.97% 

Ref [22] CNN3 model  57.96% 

IV. CONCLUSION

This paper proposes a technique for automatically 

classifying MRI slices as normal or abnormal with deep 

features extraction through designed discriminative CNN 
models and feature level fusion strategy. This approach 

combines CNN1 and CNN2 models used for feature 

extraction, and then we employed serial fusion and fusion 

operator’s strategies. In addition to that, the principal 

component analysis (PCA) for diminishing the features and 

classifying MR images, the Support Vector Machine binary 

classifier, has been used. The experimental results provide a 

good classification accuracy of 64.00% by utilizing only as 

low as 50 features for the classifier input. Although the 

approach was created for only axial T2-weighted images, the 

same method can reasonably be applied to other types of MR 

images in the future. 
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