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Abstract— One of the possible problems for a mobile robot is the localization. This is due to GPS systems' difficulty in detecting the 

location of a moving robot and the effects of weathering on sensors, such as the light sensitivity of RGBs sensors. In addition, mapping 

techniques in severe environments requires time and effort. This research seeks to enhance the localization of mobile robots by merging 

3D LiDAR data with RGB-D images and using deep learning techniques. The suggested method entails using a simulator to design a 

four-wheel mobile robot controlled by a LiDAR sensor and testing them in an outdoor environment. The proposed localization system 

works in three steps. The first step is the training step, in which the 3D point cloud LiDAR sensor scans the entire city and then uses 

the PCA method to compress the dimensions of the 3D LiDAR data to a 2.5D image. The testing data stage is the second step. First, the 

RGB and depth images have merged using the IHS technique to create a 2.5D fusion image. Next, Convolution Neural Networks are 

used to train and test these datasets to extract features from the images. Finally, the K-Nearest Neighbor method was used in the third 

step. The classification step allows high accuracy while also reducing training time. The experimental findings show that the suggested 

technique is better in yielding results up to an accuracy of 98.15 % and a Mean Square Error of 0.25, and the Mean Error Distance is 

1.36 meters. 
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I. INTRODUCTION

A key challenge in autonomous mobile robot navigation is 

mobile robot localization, which involves estimating the 

location and orientation of a mobile robot in an unknown 

environment [1]. Localization is critical in the autonomous 

behavior of mobile robots because a set of tasks must be 

completed, where a robot must properly recognize its position 
as it navigates [2]. With the growing worldwide interest in 

robotics, mobile robots may replace humans in various sectors 

due to their capabilities in doing tedious works. At the same 

time, they have a wide range of applications, including 

medical care, personal care, industrial automation, and 

monitoring [3]. However, events such as disease outbreaks 

have the potential to change timelines. For example, the 

coronavirus illness (COVID-19) breakout in 2020 accelerated 

the process and created new autonomous robots and 

automation opportunities in various industries [4]. 

Because of the availability of low-cost, compact, and high-
resolution cameras, vision-based localization is one of the 

most common approaches in a mobile robot. A camera 

captures a wide range of information about the surroundings, 

including color, texture, and shape [5]. Changes in lighting in 

outdoor scenes are a severe issue for visibility since 

illumination is highly dependent on the environment 

(sunshine, rain, clouds, etc.). However, RGB cameras alone 

may not be enough. Current sensors, such as portable Light 

Detection and Ranging (LiDAR) and RGB-Depth cameras, 

supplement RGB images with depth information, opening up 

new options for developing robust and practical applications 

[6], [7]. For example, Li et al. presented a strategy for 

increasing the precision of pose prediction of 3D point clouds 
using LiDAR and Iterative Closest Point (ICP) by precisely 

segmenting the surface point and point cloud. However, in 

challenging environments such as complex environments and 

highways, ICP cannot achieve accurate point-cloud 

registration efficiency, which is limited to meeting real-time 

requirements, mainly when dealing with large-scale point-

cloud data, and computation is an expensive phase in the ICP 

algorithm [8]. 

There has been an increase in interest and effort in 

developing Deep Learning (DL) approaches for robotics 

systems that use computer vision. Atsuzawa et al. [9] 

1403



employed two suggested methods, the odometer-based and 

visual-assisted algorithms by Convolution Neural Network 

CNN. However, many factors can cause high orientation 

errors because the proposed localization algorithms were 

created and evaluated using small data. It is also probable that 

CNN's architecture and preparation choices are not yet well-

suited to using the dataset for translation. To conduct 

successful robot localization, Sinha et al. suggested a CNN 

architecture that employs an Extended Kalman Filter (EKF). 

The existing framework has several flaws in integrating 

information from a single monocular camera's pictures with 
low-cost sensors from a mobile robot. It becomes more 

difficult to accurately estimate the robot's position in 

situations with repetitive sceneries or visual elements. Also, 

position regression performance drifts a lot during sharp 

corners [10]. 

Some approaches failed to properly categorize a mobile 

robot's position because of changing weather circumstances 

such as rain and snow. For example, Debeunne and Vivet [11] 

offered the Visual-LiDAR Simultaneous Localization and 

Mapping SLAM of a highly accurate environment of 3D 

information, relatively few research deals with 3D details. 
However, a disadvantage for Visual-LiDAR SLAM is that it 

does not work well under rain or in textured environments. 

Furthermore, mapping-based methods require high 

computational costs in complex environments such as 

complex highways [12].  

Specific techniques fail to accurately determine the mobile 

robot's position due to various weather conditions such as rain 

and snow. In addition to the fact that some sensors, such as 

RGB, do not perform well in an outside setting because they 

are light-sensitive. The SALM technique and other systems 

cost time and effort to localize mobile robots in challenging 
environments, complicated surroundings, and roads. In the 

field of DL, if the CNN design isn't proper, it affects the 

robot's location accuracy. 

As a basis, a proposed system based on 3D data from 

LiDAR and RGB-D with a Deep Learning algorithm to 

achieve precision and resilience in determining the right 

position of the mobile robot is suggested. The proposed work 

has three stages training, testing, and classification. These are 

just a few of the tasks that make up each level. The Principal 

Component Analysis (PCA) method transforms a 3D LiDAR 

point cloud scan into a 2.5D image during the training stage. 

To extract features from the 2.5D pictures, the (CNN) method 
has been employed. Image fusion has been accomplished at 

the testing stage by combining RGB and Depth (D) images 

into a single RGB-D image and then extracting features from 

the RGB-D image using CNN. Finally, the tested image has 

been classified using the K-Nearest Neighbors algorithm in 

the classification stage to find the position of the mobile robot. 

II.  MATERIALS AND METHODS 

A. The Training Stage Uses a LiDAR Sensor with PCA 

Method  

LiDAR produces 3D models and maps of structures and 

surroundings to train the deep learning network and acquire 

the 3D dataset. As signals bounce off surfaces and return to 

the scanner, LiDAR identifies the shape. After processing and 

arranging the individual signals, LiDAR data produces point 

cloud data. 3D elevation points with X, Y, and Z coordinates 

comprise the point clouds [8]. However, rain, fog, dust, air 

particles, light scattering, and other influencing variables 

would often negatively affect signals generated by LiDAR 

sensors during transmission, producing noise in point cloud 

pictures. To solve this issue, a proposed noise reduction 

approach based on PCA has been developed to filter LiDAR 

point clouds [13]. 

PCA is a technique for extracting data's major feature 

components. The noise is frequently connected to the 

eigenvector corresponding to the weakest eigenvalue and 
eliminating this eigenvector can aid with noise reduction. 

Assuming that there are m 3D data points, they are first 

organized into a matrix � with three rows and m columns. By 

subtracting the means, each row of the matrix � is zero-

centered, ensuring that the average value of each row is zero. 

The covariance matrix C is then obtained [14]: 

 � = �
� ���  (1) 

The following equation must be completed once three 

eigenvectors are placed in the matrix E=(e1,e2,e3) [14]: 

 ���� = 	   (2) 

Λ is a diagonal matrix. As a result, three eigenvectors and 

their eigenvalues have been discovered. The eigenvectors 

have been placed in a matrix in decreasing eigenvalue rows, 
with the first two rows of eigenvectors being used to form 

matrix P. The third row has been deleted since it offers 

minimal information. The original 3D data has transformed to 

2.5D using the following formula [14]: 

 ��×� = ��×� × ��×� (3) 

These data points are then projected onto a new axis, the 

U-V coordinate system. The Z-values that represents the 

height or depth utilizing the 3D point cloud have been 

observed in the point cloud. Positive Z-value points are visible 

on the map, whereas negative Z-value points are invisible 

belowground. The PCA technique is used to rotate about the 
Z-axis, coordinate the point cloud around the X-axis, and 

eliminate negative Z-values in this case. 

B. Testing Stage Using RGB-D Sensors and Intensity Hue 
Saturation (IHS) 

Many robotic systems are now employing inexpensive 

RGB-D sensors. The depth data, in particular, offers extra 

information on object shape and is unaffected by changes in 

lighting or color. As a result, it may improve the performance 

of mobile robots in the challenging task of object detection. 
In addition, image fusion is a method for extracting valuable 

data from several input images and merging it into a new 

output image that is more descriptive and helpful than the 

input images alone. For example, the IHS color is created by 

mathematical formulae to transform RGB values into 

matching points [15]: 

The Hue H is given by: 

 � = � �  if � ≤ �360 − �  if � > �� (4) 

Where: 
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 � = �����  !
"[(%�&)((%�))]

+(%�&)"((%�))(&�)), (5) 

 The Saturation S: 

 - = 1 − �
(%(&()) [/01(2, �, �)] (6) 

The Intensity I is given by: 

 4 = �
� (2 + � + �) (7) 

C. Convolution Neural Network CNN 

The CNN is a deep learning approach that combines 

artificial neural networks with deep learning techniques [16]. 

Various image detection tasks have been performed using this 

artificial neural network. CNN has lately caught the attention 
of experts worldwide, as it has extreme performance in a 

range of computer vision and machine learning challenges. 

Convolution, pooling, and fully linked layers are the three 

types of layers that make up CNNs [17]. Convolution and 

pooling are the first two layers that extract features, whereas 

the third, a fully connected layer, transfers specific 

characteristics into the final output, such as classification. A 

convolution layer is a component of CNN that consists of a 

series of mathematical operations such as convolution, a type 

of linear operation [18]. 

A convolution, polling, and a fully connected layer were 
used to design a robust CNN network in extracting 

characteristics from images. It consists of 12 layers using 

classifier K-Nearest Neighbors in the last classification layer 

sensor to choose the correct position of the mobile robot, 

where Network design details is explained in Section Ⅱ-K. 

D. Classification Stage by K-Nearest Neighbors 

The K-NN classification is one of the most commonly used 

distance-based techniques that evaluate the distances between 

the testing and the training data to determine the final 
classification performance. The Euclidian space calculates the 

distance between the test sample and all training samples in 

the normal K-NN classification method [19] : Euclidean 

Distance between two points [20]. 

 +(6� − 6�)� + (�� − ��)�  (8) 

E. Open Source Webots Simulator  

Cyberbotics Ltd developed Webots, an open-source three-

dimensional mobile robot simulator [21]. Webots allows users 

to build dynamic landscapes for mobile robot simulations. 

The controller's activities in Webots are based on a continuous 

process. The inputs given by the sensors are gathered and then 
processed to create outputs delivered to the actuators at each 

iteration [22]. A mobile robot must promptly manage 

uncertain and inaccurate, or incomplete, information about 

the surroundings to travel safely in an unfamiliar area. A 

controller must be assigned to the robot to perform the 

specified behavior. The controller is programmed in various 

languages, including C, C++, Java, Python, and Matlab, and 

the source code is displayed in a window in the Webots 

simulator interface and can be modified [22]. 

F.  Suggested Outdoor Localization System 

To increase the efficiency and reliability of a localization 

system, the suggested technique uses 3D data to identify the 

position of a mobile robot. Fig.1 demonstrates how the 

proposed system collects the dataset for training and testing 

using two sensors (LiDAR and RGB-D) placed on a mobile 

robot. This paper proposed a technique that splits into three 

stages. These are training, testing, and classification stages. 

The LiDAR sensor performs a scan to acquire 3D point cloud 

data during training. Using the PCA technique, a 3D point 

cloud is converted to a 2.5D picture. The feature is extracted 

from 2.5D images using the CNN method. It uses a matrix 
format to contain all featured data, point cloud data, and pre-

processing data. It employs the RGB and Depth sensors to 

obtain two pictures of the same place during the testing level. 

Merge two RGB and Depth (D) into an RGB-D fusion image 

using the IHS technique to generate a single 2.5D image. The 

features are retrieved from a 2.5D RGB-D picture using the 

CNN method. All of the feature data is then arranged in a 

matrix. To identify the proper position of the mobile robot, 

the test data is categorized with the training data stored in the 

classification level of the K-NN classifier. Its third stage will 

reduce training time and give high classification accuracy 
because this algorithm does not need training, so it is fast in 

locating the robot. 

 

 
Fig. 1 Suggested outdoor localization system 

G. Design proposed outdoor mobile robot 

To realize efficient and smooth navigation for a mobile 

robot in an unfamiliar environment, a robot control algorithm 

based on the Braitenberg vehicle concept is developed. The 
robot has a box-shaped body, four cylindrical wheels, four 
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rotation motors, two sensors Kinect, and 360 Lidar. The 

details of the design dimensions are shown in Fig. 2. 

 
Fig.2  Designed Mobile robot with details in Webots simulator (open-source 

simulator [21]) 

H. Obstacle Avoidance Control by Lidar 

The goal is to build a navigation system for the mobile 

robot based on the Braitenberg vehicle, allowing it to navigate 

in an unfamiliar area and avoid obstacles by replicating the 

Braitenberg 3b Vehicle's behavior [22]. The tuning technique 

is based on sensor data from the robot's Lidar sensor for this 

purpose. The angle coordinates and the object distance 
acquired from the sensing device are utilized as references in 

this system. However, there must be some sensor data 

processing because of the nature of the stimulus and detecting 

hardware between sensing and motor actuation [23]. 

After finishing setting up the world scene and the four 

wheels' mobile robot, there is a need to create the controller 

code to simulate the behavior of a Braitenberg 3b vehicle. 

Fig.3 explains the calculation of cumulative obstacles for both 

left and right sides. A specific threshold (d > 1m) is applied to 

the measured range values, and particular weights are 

assigned to the measured range values. In these calculations, 

obstacles farther than a certain threshold (d > 1m) are not 
considered [22]. 

 

 
Fig. 3 Collision-avoidance algorithm flowchart [22] 

I. Design for Outdoor Environment 

An outdoor environment is built on the Webots simulation 

platform, where many items are placed, including buildings, 

trees, and a mobile robot, as seen in Fig. 4. The design area is 

about 10,000 m2. 

 

 
Fig. 4 Top view of outdoor proposed design environment with four streets by 

Webots simulator (open-source simulator [21]) 

 

The LiDAR sensor must scan the region in front of the 

robot, spanning a 360° horizontal field of view. Other 

technical parameters, such as the minimum and maximum 

ranges, the number of transmitted beams, and the sensor 

resolution, are initialized to mimic the characteristics of a 

simple device. Four streets shown in Fig. 4 have been 

identified where the robot is moving to collect data on these 
streets. 

J. Collecting the Dataset 

In most cases, supervised learning data is required to train 

a neural network. A dataset containing RGB images, depth 

images, and high-resolution LiDAR scans with associated 

mode designations is required to train and test the designed 

device. A mobile robot can be equipped with a Kinect sensor 

that captures images at a predefined frame rate. As shown in 

Fig. 5, the Kinect sensor provides RGB and depth pictures. 
 

    
 

Fig. 5 Explain the RGB image and the Depth image (These images were 

saved when we ran the open-source simulation [21]) 

 

There were two sets of training data, each with 200 RGB 

and Depth images and 100 LiDAR frames, where the data was 

recorded and saved when the robot moved every minute by a 

Python program. 

K. Design CNN Localization 

Localization CNNs have 12 layers. Therefore, 12-layer 

CNN with 224 ×224 input pixels was structured for brief 

training to improve precision and minimize error. As a result, 

this network was optimized using Stochastic Gradient 

Descent with Momentum (SGDM). Fig. 6 and Table Ⅰ 

analyzed the network design. 

(a) RGB image   (b) Death image  
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Fig. 6 Twelve layers and a K-NN classifier in CNN localization 

TABLE Ⅰ 

 ANALYZED NETWORK FOR CNN DESIGN 

 Name Activations Learnables 

1 Image input 224×224×3 
image with  zero center 
normalization  

224×224×3 - 

2 CONV_1 

16 3×3×2 convolutions with 
stride [1 1] and padding [1 1 
1 1] 

224×224×16 Weights 

3×3×3×16 
Bias 
1×1×16 

3 Batchnorm_1 
Batch normalization with 16 
channels 

224×224×16 Offset 
1×1×16 
scale 
1×1×16 

4 Relu_1 224×224×16 - 

5 Maxpool_1 
4×4 max pooling with stride 
[4 4] and padding [0 0 0 0] 

56×56×16 - 

6 CONV_2 
32 3×3×16 convolutions 
with stride [1  1] and 
padding [1  1  1  1] 

56×56×32 Weights 
3×3×16×32 
Bias 
1×1×32 

7 Batchnorm_2  

Batch normalization with 32 
channels 

56×56×32 offset   

1×1×32 
scale 
1×1×32 

8 Relu_2 56×56×32 - 
9 Maxpool_2 

4×4 max pooling with stride 
[4 4] and padding [0 0 0 0] 

14×14×32 - 

10 FC 4  

fully-connected layer 

1×1×4 Weights 

4×6272 
Bias 4×1 

11 Softmax 1×1×4 - 
12 Class output - - 

 

For training, a PC with Intel(R) Corei5-8250U CPU 

running at 1.60GHz and UHD Graphics 620 with 8GB of 

RAM is used, and the code of the program is written in 

MATLAB. The 100 LiDAR frames were processed 

throughout four epochs. Three iterations in each epoch, with 

a maximum of 12 iterations and a learning rate of 3*10-4. The 

data is divided into 70% for training and 30% for testing. This 
achieves 98.15% accuracy, as shown in Fig. 7. 

To calculate the error in distance, Mean Error of Distance 

(MED) and Mean Square Error (MSE) is used. The error of 

Distance (ED) is defined as the difference between the 

estimated and actual sums S* and S [24]:   

 

 
Fig. 7  Training progress with details of accuracy result 

 �7 = |-∗ − -| (9) 

The average of all error distances is the (MED). The total 
error distances are computed using the Mean Squares of 

Error (MSE) method [24]: 

  :�7 = �[�7] = ∑  =>?∈A �7B�(�7B) (10) 

 :-� = �[�7�] = ∑  =>?∈A �7B��(�7B) (11) 

Where Ω is the set of all errors. 

III. RESULT AND DISCUSSION 

A. Testing results by IHS Transformation 

The IHS method has an influence when merging RGB and 

Depth images. An individual pixel's intensity fluctuates with 
its brightness in a depth image. Fig. 8 illustrates how Hue, 

Saturation, and Intensity are mixed in the 2.5d fusion image. 

 

         
 

 

         
 

 

         
  

Fig. 8 Image created by combining RGB and Depth images (photos from 

open-source simulator [21]) 

B. Evaluation Results 

A high-quality and accurate localization sample that can be 

compared with reality is required to test the performance of 

the PCA technique utilizing the K-NN algorithm. Four 

instances were tested at random places throughout the city, 

the correct location was known, and the Mean Square Error 

MSE calculated as an equation can be evaluated [25]: 

 :-� = �
C ∑  CBD� E�FB − �BG�

 (12) 

+ = 

+ = 

+ = 

(a) From street 1 

(b) From street 3 

(c) From street 4 
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and are shown in Table Ⅱ. 

TABLE Ⅱ  

MSE FOR THE TEST IMAGES 

Case Predict the correct location MSE 

1 Street 1 0.3519 
2 Street 2 0.2222 
3 Street 3 0.3148 
4 Street 4 0.1111 

                             Mean error  0.25 

 
To calculate MED according to equation (10 and 11), 

Webots simulator recorded 60 Frame Per Second (FPS), then 

MED = 1.36 meter. Several research methodologies are 

compared to the proposed method, as listed in Table Ⅲ. 

TABLE Ⅲ 
COMPARISON BETWEEN THE PROPOSED METHOD WITH OTHER METHODS 

Data  Algorithms Accuracy  
Mean 

Error 

Amount 

of data  

RGB + GPS+ 
Compass [26] 

Faster R-
CNN & 
FFNN 

Not 
mention  

28.47 
m 

1625 data   

RGB-D and 
Conditional 
Random Field 
(CRF) [27] 

ORB-
SLAM2 

91.2% 4.41 m 
500 3D 
object 
models  

Proposal work  
RGB-D & 
LiDAR 

CNN + PCA 
+KNN 

98.15 % 1.36 m 300 data  

 

It can be noticed that the proposed method achieved high 

accuracy with less training time in addition to a low average 

error compared to the two methods mentioned in Table Ⅲ. 

Even though the dataset included 100 LiDAR frames, the 

accuracy was 98.15%, MSE was 0.25, MED 1.36 m, utilizing 

the PCA technique and the K-NN classifier, and the IHS to 

correct the localization for a mobile robot. The K-NN 

classifier's findings show that it takes less time to train with 

higher accuracy and lower error rates. 

IV. CONCLUSION 

The problem of robot location loss in the outside 

environment is addressed by the mobile robot localization 

system presented in this work. The location is determined 

incorrectly due to a variety of elements in the environment 

that influence the sensors attached to the robot. Thus, the 

utilization of 3D sensors obtains better precision using Deep 

Learning algorithms. The three stages of the intended 

architecture are training, testing, and classification. PCA is 
used to decrease dimensions and rotate the point cloud 3D 

LiDAR, and the IHS technique is used to create the 2.5D 

RGB-D fusion signal image. The K-NN method provided 

high-accuracy results in a short amount of time. Findings are 

improved with 98.15% accuracy, MSE of 0.25, and MED 

equal to 1.36 m. 
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