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Abstract— Linked Open Data (LOD) refers to guidelines for publishing and connecting structured data on the internet. Utilizing web 

technologies like HTTP, RDF, and URIs, Linked Data establishes entities across diverse domains and links them through categorized 

connections, thus forming a web of data readable by machines rather than humans. The LOD, often dubbed the Web of Linked Data, 

is an ever-expanding realm of information. Beyond mere data accumulation, the LOD methodology involves establishing connections 

between datasets. LODs and ontologies offer a universal solution that facilitates system interoperability, allowing for the sharing and 

utilizing shared information. However, since not all LODs employ the same ontologies, the use of diverse vocabularies and ontologies 

by organizations and communities across different fields to formalize entities and their relationships poses challenges to interoperability 

between different sets of LODs. When integrating LODs from various ontologies into a single entity, missing links may arise, leading to 

what we refer to as missing link scenarios. This paper examines multiple missing link scenarios primarily stemming from scattered 

ontologies across LODs. Subsequently, we propose feature- and graph-based methods for identifying missing links between LODs, 

significantly leveraging diverse ontologies. This research aims to provide a comprehensive review and introduce missing link 

management in LODs, which can facilitate the discovery of more valuable data by establishing connections with other datasets and 

enabling its more effective utilization through inference and semantic queries and rules. 
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I. INTRODUCTION

Throughout the annals of technology, the Internet stands 
out as one of the most transformative breakthroughs in human 
communication [1]. Over the past two decades, there has been 
an exponential surge in the volume of data. Traditional data 
management systems cannot store and process this vast web 
data. Linked Open Data (LOD) emerges as an extension of the 
current World Wide Web (WWW), offering a standardized 
approach to recycle, exchange, and publish data across 
applications and communities (e.g., Fig. 1) [2].  

By leveraging web technologies like HTTP, RDF, and 
URIs, Linked Data establishes connections between entities 
spanning diverse domains, creating a machine-readable web 
of data [3]. LODs rely on ontologies to structure and organize 
data within their framework. Ontologies serve as machine-
readable depictions of knowledge within a specific 
application domain, typically delineated in a declarative 
knowledge modeling language like OWL (Web Ontology 
Language) [4], which relies on description logic (DL).  

Within ontologies, entities include individuals, classes 
(groupings of individuals), and properties (relationships 
between individuals), with semantics defined through a series 
of logical statements known as axioms. Moreover, ontology 
effectively defines various data objects, potentially finding 
widespread application in big data environments. LODs and 
ontologies offer a universal solution that enables systems to 
interoperate, facilitating the sharing and utilization of 
information. This diminishes or eliminates the need for 
manual information exchange, as system interactions can be 
automated [5].  

LODs foster an ecosystem of interconnected data and 
information, allowing data resources to be explicitly or 
implicitly linked to others [6]. This is possible through shared 
naming and equivalence statements across web repositories 
[7]. LODs enable discovering additional valuable data by 
establishing connections with other datasets. Moreover, they 
empower the more effective exploitation of this data through 
inferencing, semantic queries, and rules [8].  

The potential of LODs is vast: search engines can flourish, 
definitions can be enhanced, and exploratory searches can be 
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facilitated. The connections between datasets enable 
references to similar entities and the reuse of their 
descriptions, consolidating scattered facts and providing a 
broader perspective or accessing additional information 
beyond what a single dataset could offer. With advancements 
in Artificial Intelligence, leveraging such data inputs has 
become feasible, aiding in the generation, curation, sharing, 
and maintenance of corpora and datasets [9]. 

 

 
Fig. 1  Transition from the Web to Web of Linked Data 

 
The LOD cloud encompasses over 1000 available datasets, 

some containing billions of triples. As of 2024, the cloud 
comprises 1314 datasets interconnected by 16308 links, 
spanning domains such as Geography, Government, Life 
Sciences, Linguistics, Media, Publications, Social 
Networking, and User Generated, as shown in Fig. 2.  

There are four prominent cross-domain datasets within the 
LOD ecosystem: DBpedia, Wikidata, Freebase, and YAGO. 
DBpedia serves as a knowledge base to make the wealth of 
information available on Wikipedia (whether unstructured or 
semi-structured) [10]. The user community actively 
contributes by establishing mappings that link information 
representations in Wikipedia with the DBpedia ontology. As 
one of the foundational nodes of the LOD cloud, DBpedia has 
been consistently maintained since its inception. It 
encompasses information in 125 languages, with the English 
segment alone containing over 28 million triples across 
various domains. Wikidata aims to offer a machine-readable 
representation of knowledge within Wikimedia projects [11].  

This project consolidates all languages from Wikimedia 
projects into a unified, easily accessible interface. Wikidata 
serves as a community-maintained knowledge base where 
users with accounts can contribute by adding, updating, or 
deleting triples. Currently, it contains over 93 million 
interlinked entities. Freebase shares a similar vision with 
DBpedia regarding knowledge extraction from Wikipedia but 
adopts a broader perspective by incorporating data from other 
sources [12]. Despite its similarity to Wikidata regarding 
user-driven updates, Freebase was managed by domain 
experts rather than community members. YAGO positions 
itself as a refined, streamlined version of Wikidata, striving to 
enhance its usability and reliability by enforcing a strict type 
hierarchy with semantic constraints [13]. Initially combining 
data from Wikipedia and Wordnet, YAGO is transitioning to 
its fourth version, which integrates Wikidata and schema.org.   

Various LOD collections maintained by different 
organizations and communities exhibit a diversity of 
ontologies. A significant challenge within the LOD context 
arises from the fragmented nature of ontologies. More 
specifically, one such challenge involves the overlap and 

ambiguity of concepts, exacerbated by inconsistent usage of 
properties like "subclass of" and "instance of" [13].  

For example, the term "Scientist" can represent both a 
profession and an individual practicing science, leading to the 
entity "Scientist" being classified as both a subclass of 
"person" and an instance of "profession." Additionally, 
discrepancies arise in defining terms, as seen with the concept 
of "role" categorized as a subclass of "role" confusing. 
Furthermore, variations in terminology for geographical 
locations (e.g., "geographical location," "location," 
"geographic region," etc.) and inconsistent property usage 
(e.g., "Author," "Composer," etc.) contribute to the challenge.  

Additionally, inconsistent levels of detail and 
overspecialization in hierarchies, such as differing recursion 
depths for concepts like "Human" and "Geographic location," 
and structural issues like circular dependencies and 
underutilization of the "sub property of" property further 
complicate ontology integration. Moreover, the vast number 
of properties, abstract identifier naming, and determining 
when to add new subclasses or utilize existing properties 
presents decision-making challenges. When we merge 
different sets of LOD from other places or fields, we 
sometimes fail to connect related items due to these kinds of 
challenges caused by scattered ontology [14]. This situation 
is referred to as a "missing link." We need strategies to tackle 
this issue. 

 

 
Fig. 2  The Linked Open Data as of March 2024 [15] 

 
This study explores and examines techniques and 

methodologies that facilitate an ontology mapping process. 
We propose integrating machine learning techniques that can 
be applied across various types of LODs. Through importing, 
extracting, pruning, refining, and evaluating ontologies, our 
approach offers a solution for the LOD integration system, 
addressing challenges arising from scattered ontology. The 
subsequent sections of the paper are structured as follows: 
Section Ⅱ reviews two machine learning techniques—feature-
based learning and graph-based learning—that can be 
employed to identify missing links between LOD datasets 
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resulting from scattered ontology. These techniques are 
extensions introduced in [16]. Section Ⅲ elaborates 
extensively on various use case scenarios according to 
different LOD structures, demonstrating where the machine 
learning techniques introduced in Section Ⅱ can be effectively 
employed. Subsequently, Section Ⅳ offers a cumulative 
discussion of our work and outlines potential avenues for 
future research. 

II. MATERIAL AND METHOD 
Integrating LODs involves connecting vast amounts of 

diverse data from various sources characterized by dynamic 
and heterogeneous structures. LODs are packed with a large 
amount of ontology, and each LOD uses a different ontology. 
The complexity of LOD integration is directly proportional to 
the number of vocabularies and ontologies in the LOD [17].  

In general, LOD integration requires the exchange of 
ontologies, and when ontologies vary, a series of steps are 
necessary for integration, including link prediction [18]. Link 
prediction in LOD integration facilitates predictions about 
missing links between entities in different LOD datasets, even if 
LOD does not share the same ontology. It involves identifying 
potential relations that may be logically plausible but cannot be 
deduced directly from the provided ontology [19].  

However, it identifies missing or potential links between 
entities. The cost of performing link prediction between 
entities can be prohibitive. Furthermore, while managing 
small ontologies is relatively straightforward due to the 
limited number of potential relations, the task becomes more 
challenging with larger ontologies. Highly skilled domain 
experts may make mistakes by overlooking certain links or 
mistakenly adding nonexistent ones [20]. Therefore, we 
suggest addressing this issue by employing machine learning 
technologies in LOD integration that can be effective and 
possibly reduce costs.  

Individuals typically devote more time to reformatting and 
integrating data than the analytical process itself [21]. Our 
proposed approach involves predicting the connection 
between non-linked entities during the integration of LOD, 
even when missing links arise from scattered ontologies. In 
this section, we review the machine learning technologies that 
can be used to predict links for LOD integration using 
similarity-based heuristics: feature-based learning and graph-
based learning. These methods can be implemented using 
relationships between entities based on their ontology. We 
believe that the capability to effectively predict missing links 
between LOD datasets significantly impacts the 
dissemination of information. 

A. Link Prediction with Feature-based Learning 
Feature-based learning is a machine learning approach 

where the model learns patterns or relationships in data by 
focusing on specific features or attributes. In this approach, the 
input data is represented as a set of features, and the model learns 
to make predictions or classifications based on these features. To 
apply feature-based learning to identify missing links among 
RDF triples in LOD, we can utilize Word2Vec [22].  

The Skip-Gram model within Word2Vec has effectively 
captured semantic relationships and contextual information 
within large datasets [23]. Skip-Gram is especially adept at 
embedding rare or infrequent words and is recognized for 

handling diverse ontologies [22]. This model works by 
mapping words and phrases from a given vocabulary or 
corpus into continuous vector spaces, which enables more 
efficient processing and analysis. Leveraging Skip-Gram, we 
can predict surrounding entities given a target entity, allowing 
us to identify missing links between entities. 

 

 
Fig. 3  An overview of a framework for feature-based learning for link 
prediction in LOD datasets 

 
With consideration to the structure of Linked Data, 

comprised of RDF triples denoted as Subject - Predicate - 
Object, we can adapt the framework shown in Fig. 3 to deploy 
the skip-gram model for link prediction:  

1)   Data collection:  Collect RDF triple data from linked 
sources, extracting each Subject, Predicate, and Object. 

2)   Data transformation:  Convert RDF triples to fit the 
input format of the skip-gram model. Set the Subject as the 
center word and use the Predicate and Object as context 
words. 

3)   Model training: Train the skip-gram model using the 
transformed data. The model receives the center word 
"Subject" as input and predicts the "Predicate" and "Object" 
as surrounding words. During training, the skip-gram model 
aims to minimize the loss function by predicting surrounding 
words based on the input center word “Subject,” with the goal 
of reducing the disparity between expected and actual context 
words. Negative sampling is utilized as a loss function, 
emphasizing the understanding of the relationship between 
the “Subject” and its surrounding words “Predicate” and 
“Object,” thereby maximizing the probability between correct 
“Predicate” and “Object” and a subset of negative samples. 

4)   Embedding learning: The skip-gram model learns 
embeddings (vector representations) for "Subject" based on 
the given RDF triple data, understanding the relevance of 
"Subject" to surrounding words. 

5)   Link prediction: Utilize the trained embeddings to 
compute similarities with other RDF triples and discover 
other words (e.g., “Predicate” and “Object”) related to the 
"Subject." 

1482



 
Fig. 4  Illustrative Example: Link Prediction Using Skip-gram in LOD 
Integration 

 
Fig. 4 provides a straightforward illustration of link 

prediction using skip-gram. Once the skip-gram model is 
trained, it generates word embeddings for entities within 
LOD. We can anticipate missing connections using these 
embeddings and the trained skip-gram model. In this example, 
the prediction of missing links between "Subject_X’" and 
"Predicate_Y Object_Y" is made based on the similarity 
scores calculated. 

The skip-gram model learns the association between 
“Subject” and surrounding words, “Predicate” and “Object,” 
generating embeddings that encapsulate semantic similarities. 
Through negative sampling, the model strives to maximize 
the disparity in probability between surrounding words and 
negative samples while training word embeddings [22]. 

 

B. Link Prediction with Graph-based learning 
In recent years, graph-based machine learning has surged 

in popularity, attributed to its ability to handle intricate data 
structures [24]. In the realm of graph structures, link 
prediction endeavors to forecast future connections between 
nodes, with edges symbolizing interactions among them [25]. 
Within the domain of LOD, subjects and objects correspond 
to nodes, while predicates can be likened to edges that link 
subjects to objects. Therefore, we can represent LOD as 
graphs and employ link prediction methods.  

This approach can be a scalable tool for link prediction, 
enhancing the error-prone LOD integration process. We can 
explicitly employ subgraph-based methods to apply graph-
based learning to identify missing links among RDF triples in 
LOD. Subgraph-based methods involve extracting local 
subgraphs surrounding each target link and learning subgraph 
representations through Graph Neural Networks (GNNs) for 
link prediction. In other words, the approach entails extracting 
subgraphs surrounding each target link and then classifying 
whether these subgraphs contain missing links [26]. 

 

 
Fig. 5  An overview of a framework for graph-based learning for link 
prediction in LOD datasets 

 
We can adopt the framework [27] shown in Fig. 5 to deploy 

the subgraph-based method for link prediction: 

1)   Data collection: Gather RDF triple data from the LOD 
sources. Each RDF triple consists of a subject, a predicate, 
and an object, representing a relationship between entities. 

2)   Subgraph extraction: For each target link (e.g., 
subject-predicate-object triple), extract a local subgraph from 
the LOD dataset. This subgraph should include neighboring 
entities and their relationships surrounding the target link. 

3)   Double radius node labeling (DRNL): Apply DRNL 
to each extracted subgraph to assign integer labels to nodes 
based on their relative positions and distances to the target 
entities within the subgraph. 
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4)   One-hot encoding: Convert the DRNL labels into one-
hot encoding vectors, where each node's label is represented 
as a binary vector. 

5)   Feature vector formation: Concatenate the one-hot 
encoded labels with the original node features (e.g., entity 
attributes or properties) to create new feature vectors for each 
node in the subgraph. 

6)   Graph neural network (GNN) training: Utilize the 
labeled subgraphs and their associated feature vectors to train 
a GNN using supervised learning techniques. The GNN learns 
to predict missing links between entities based on the 
structural and feature information encoded in the subgraphs. 

7)   Link prediction: Once the GNN is trained, it is applied 
to predict missing links between entities in the LOD dataset. 
The GNN assigns likelihood scores to potential links, 
indicating the probability of a link between pairs of entities 
within the LOD dataset. These predicted links represent 
potential relationships not explicitly defined in the original 
LOD data but are inferred based on the learned patterns and 
associations within the dataset. 

 
Fig. 6 Illustrative Example: Link Prediction Using subgraph -based method 
in LOD Integration 

 

Fig. 6 illustrates the extraction and prediction process 
based on subgraphs surrounding target links. Nodes with 
different roles are distinguished by applying node labeling 
within these subgraphs, and labeled subgraphs are supplied to 
GNNs for supervised learning-based link prediction. 

III. RESULTS AND DISCUSSION 
In this section, we delve into real-world scenarios 

illustrating the practical application of machine learning 
techniques introduced in Section 2 on LOD datasets. We 
specifically concentrate on their effectiveness in tackling 
present missing link scenarios [13], which we briefly 
introduced in Section Ⅰ, using link prediction methodologies. 
We show both skip-gram and subgraph-based learning 
methods offer practical strategies for predicting links between 
different LOD datasets with varying ontologies, addressing 
challenges such as ambiguous concepts, inconsistent 
properties, and variations in terminology. By leveraging the 
semantic and structural information encoded in these 
methods, we can enhance the integration and interoperability 
of heterogeneous LOD datasets. For clarity and coherence, we 
will employ the terms "LOD_A" and "LOD_B" to denote two 
distinct LOD datasets intended for integration.  

A. Scenario 1: Ambiguous concepts  
A scenario arises wherein ambiguous terms are utilized 

across diverse LOD datasets. In this context, skip-gram helps 
determine how these words are used in different situations by 
creating representations that capture their meanings and 
contexts. These representations help predict connections 
between things based on similar contexts, regardless of which 
set of data you're looking at. Similarly, subgraph-based 
learning looks at the nearby connections and patterns of 
confusing words to understand what they mean. By studying 
the patterns in the connections between different things 
labeled with ambiguous words, DRNL can find common 
themes or groups, showing us what these ambiguous words 
are all about. 

For instance, in LOD_A, "Scientist" may be linked with 
research publications, while in LOD_B, it could be associated 
with academic affiliations, as shown in Fig. 7. Skip-gram 
adeptly captures such semantic variations, facilitating the 
prediction of entity links based on shared contexts. Subgraph-
based learning encodes the local structural characteristics 
surrounding ambiguous concepts to discern their intended 
meanings. It looks closely at the nearby connections and 
structures around the words "Scientist" to determine their 
meaning. By examining the neighboring nodes and 
relationships of instances labeled "Scientist," DRNL can 
identify common patterns or clusters indicative of the roles or 
professions associated with these Scientists. 

B. Scenario 2: Inconsistent Properties  
There are instances of LOD employing inconsistent 

properties. In such scenarios, both skip-gram and subgraph-
based learning offer effective strategies. Skip-gram involves 
analyzing co-occurrence patterns of entities and properties 
across diverse datasets to capture the semantics of 
inconsistent properties. This includes identifying contextual 
differences in property usage and enabling the prediction of 
links between entities based on shared properties. Similarly, 
subgraph-based learning with DRNL examines structural 
inconsistencies in property usage by analyzing subgraphs 
surrounding entities with inconsistent properties. By detecting 
common subgraph patterns across datasets, DRNL infers the 
underlying semantics of properties and predicts links between 
entities based on structural similarities. 
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Fig. 7  An illustrative example of how machine learning techniques work in scenarios with ambiguous concepts

 
Fig. 8  An illustrative example of how machine learning techniques work in scenarios with inconsistent properties 

 

For instance, if "Author" in LOD_A signifies a writer of 
books while in LOD_B it denotes a creator of software, Skip-
gram can discern these contextual differences and predict 
links between entities based on their shared properties as 
shown in Fig. 8. Similarly, subgraph-based learning can 
analyze the structural inconsistencies in property usage by 
analyzing the subgraphs surrounding entities with 
inconsistent properties. By identifying common subgraph 
patterns across datasets, DRNL can deduce the underlying 
semantics of properties and forecast links between entities 
based on their structural similarities. 

C. Scenario 3: Variations in terminology 
There are instances where LOD employs diverse 

terminology to convey similar semantics. Skip-gram focuses 
on capturing semantic similarities between terms with 

variations in terminology. By learning representations 
encapsulating these similarities, Skip-gram facilitates link 
prediction between entities labeled with different terms yet 
representing similar concepts. Similarly, subgraph-based 
learning exploits structural similarities among entities labeled 
with varying terminology variations. DRNL predicts links 
between entities labeled with distinct terms but sharing 
similar structural contexts by analyzing local subgraphs and 
identifying common patterns corresponding to analogous 
concepts. 

For instance, in LOD_A, the term 'geographical location' is 
used. At the same time, LOD_B employs 'geographic region' 
as shown in Fig. 9. Skip-gram can learn representations, 
enabling link prediction between entities labeled with 
different terms yet representing similar concepts. Subgraph-
based Learning can capitalize on structural similarities among 
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entities labeled with varying terminology variations by 
analyzing their local subgraphs. By identifying common 
subgraph patterns corresponding to analogous concepts, 

DRNL can predict links between entities labeled with distinct 
terms yet sharing similar structural contexts. 

 

 
Fig. 9  An illustrative example of how machine learning techniques work in scenarios with variations in terminology 

 

IV. CONCLUSION 
This paper has comprehensively explored the challenges 

posed by scattered ontology management in the context of the 
LODs and proposed innovative methodologies leveraging 
machine learning techniques to address these challenges. The 
integration of LOD datasets from diverse sources, each 
utilizing different ontologies, often results in difficulties in 
link prediction between entities, hindering effective data 
utilization and interoperability [28], [29], [30]. Through the 
application of feature-based learning and graph-based 
learning, explicitly using skip-gram and subgraph-based 
methods with DRNL, we have demonstrated promising 
strategies for predicting missing links and enhancing LOD 
integration. 

The efficacy of these methodologies has been illustrated 
through various real-world scenarios, showcasing their ability 
to handle ambiguous concepts, inconsistent properties, and 
variations in terminology across different LOD datasets. Skip-
gram and subgraph-based learning techniques offer 
complementary approaches, focusing on capturing semantic 
similarities and structural patterns to predict missing links 
between entities. These machine-learning techniques 
facilitate more efficient and accurate LOD integration 
processes by encoding semantic and structural information 
embedded within LOD datasets. 

The proposed methodologies hold significant potential for 
advancing the interoperability and utilization of LODs across 
diverse domains. Future research endeavors may explore 
further optimization and refinement of these techniques, 
considering the evolving landscape of LODs and emerging 
challenges in ontology management. Additionally, integrating 
other machine learning approaches and hybrid models could 
offer enhanced capabilities for addressing complex LOD 
integration scenarios, ultimately contributing to realizing 
more interconnected and accessible LODs. 
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