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Abstract— Time headway data generated from different rain conditions were fitted to probability distributions to see which ones best
described the trends in headway behaviour in wet weather. Data was generated from the J5, a principal road in Johor Bahru for two
months and the headways in no-rain condition were analysed and compared to the rain generated headway data. The results showed
a decrease in headways between no-rain and the rain conditions. Further decreases were observed with increase in rainfall intensity.
Thus between no-rain to light rain condition there was 15.66% reduction in the mean headways. Also the mean headway reduction
between no-rain and medium rain condition is 19.97% while the reduction between no-rain and heavy rain condition is 25.65%. This
trend is already acknowledged in the literature. The Burr probability distribution ranked first amongst five others in describing the
trends in headway behaviour during rainfall. It passed the goodness of fit tests for the K-S, A2 and C-S at 95% and 99 % respectively.
The scale parameter of the Burr model and the P-value increased as the rain intensity increased. This suggests more vehicular cluster
during rainfall with the probability of this occurring increasing with more rain intensity. The coefficient of variation and Skewness
also pointed towards increase in vehicle cluster. The Burr Probability Distribution therefore can be applied to model headways in
rain and no-rain weather conditions among others.
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Evidence is growing on the influence of rainfall on traffic
I. INTRODUCTION flow parameters. In particular, rainfall has been proved to

Time headways are fundamental parameters of trafficnegatively impact microscopic traffic flow parameters. [1]
flow. They describe the arrival patterns of vehicles at a The influence of rain on time headways and speed suggests
designated point on the h|ghway and constitute an importantthat drivers mOdlfy their behaviour under rain conditions. It
measure of the quantity and quality of traffic flow. They are can be argued that the value of time headways and speeds
defined as the time difference between the front bumpers Ofderived under rainfall conditions should be different from
two consecutive vehicle arrivals at a point. Quantitatively, hon-rain conditions to justify the change in behaviour. In
they are inverse|y linked to traffic volume and h|ghway view of thiS, the need arises to find the causal link between
capacity. They have considerable usage in microscopicmicroscopic traffic parameters and rainfall. Whereas, these
traffic simulations, traffic safety analysis and merge-diverge parameters have been modeled under normal weather
decisions of drivers at intersections. They can further beconditions, it is much less so in rainy conditions.
used in traffic signal plans for corridor coordination. Speed  The aim of this paper is to explore and fit time headway
is another microscopic traffic flow parameter that is widely data to single probability models under both normal and rain
used as a qualitative service indicator. Whereas drivers havé&onditions and to see which models best describe the data
a choice of speed on free flow facilities and are highly and whether model parameters change under rainfall and
constrained in their choice of speed on other facilities, the With rain intensity. This will be achieved by calibrating the
speed of travel at any time is random. Thus both speed andrequencies of the microscopic data and establishing the
time headways are random variables on any h|ghway faC|||typrObab|||ty denSity functions and cumulative distribution

and their prediction and description can be handled usingfunctions of real data generated from a highway site. The
probabilistic models. rest of the paper is organised as follows; this section is

followed by the Literature review on the subject. The data
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collection is presented in section 1ll, while the probability G(t)
distributions fitted to the data are presented in section IV. f (t) =689 (t)+(1—6’)/1e_ﬁt T
The results comes in section V and the conclusions in g (/1)
section VI

(4)

Since both the combined and the mixed models contain
Il. LITERATURE REVIEW portions of free flow and constrained flow, it is essential to

Much research has been devoted to the concept that traffidiStinguish between the two. This is done by setting the
stream behaviour can be analysed at the microscopic levelP@rametem to zero. The combined case degenerates to an

At this level the behaviour of individual vehicles drivers €XPonential distribution but the mixed model does not.

must be examined and modelled. Microscopic models use

car following laws to describe the behaviour of each driver- p  goodness of fit and Parameter Estimation of
vehicle system in the traffic stream as well as their Distributions

interaction. Microscopic parameters of headway and speed - . .
have been modelled by numerous authors, all of which have Goodnesg of fit is the method _u_sed_to _ven.fy and ascertain
been based on probability theory. Adams,[2] used the the appropriateness of a probability distribution to mo_dellng

Poisson process to model headways for free flowing traffic. a particular phenomenon. The methods employeq include
Miller [3] used a queuing model to explain the behaviour of Kozlmogorov-Smlr.nov test (K-S test), Anderson Darllng Tegt

slow moving vehicles in the traffic stream. The shifted (A% and the Chi-Square test (C-S). Parameter estimation

: e D thods commonly employed include moment estimator
exponential model and the modified semi-Poisson processme . o .
were both employed by Ashton [4] and Schuhl [5] to model (ME), maximum fikelihood Estimator (MLE) and the

headways of vehicles. Modifications of the Poisson model nyﬁsiag me:rr]\og (BML' V?riar;ts Of_ the r|n|?x|lrr?ur3
resulted in the use of the Erlang [6] and the gammaI elinood methods such as local maximum likelinoo

gy - : timators (LMLE) and the modified maximum likelihood
distributions [7] in the modelling of headways. Another es .
popular model which has stood the test of time is the Log-methOOI (MMLM) have been used by Cohen and Whitten

[12].
normal model proposed by Greenberg [Bhese models are Parameter estimation for the combined and mixed models

called single models because they employ a single model a5 on a combination of the common estimation methods or

a time. . e variants of them to achieve the desired results. Branston [11]
Combined probability distributions have also been used 0 .ombined the ME and the method of maximizing the chi-
model headways of traffic with high flow rates. Traffic is g, areq statistics to estimate the parameters of the general
Fhen divided into two. One group relating to traffic moving queuing model (GQM). Hoogendoorn and Botma, [13] have
in a free flow fashion and another group in a constrained used the mean integrated squared error (MISE) distance in

ﬂOW'..A thresholq IS then gstgbh;hed bgtwe_en th? WO the frequency domain to estimate parameters of the GQM.
conditions resulting in a distribution which is a linear

combination of two components. This is stated as: IIl. DATA COLLECTION

_ _ Data for this study was collected on the J5 Highway in the
f (t) =69 (t) +(1 9)k(t) @) Southern Malaysian State of Johor Bahru. A basic section
devoid of the influence of intersections and other
F (t) =6G (t) + (1— 9) K (t) ) disturbances was selected and has an average traffic volume

of 12000 vehicles per day with 79% of the traffic being cars.
The section is a two-way two-lane facility and has a posted
limit of 60km/hr. The pavement has uniform section and is
well marked.

Data was collected for two months starting from
November 2010 to December 2010 and was filtered to
remove overtaking maneuvers. The data was collected using
These include , the Cowan M3, DDNED and the Hyperlang pneumatic tube detectors which recorded each individual

X ' vehicle detail such as arrival times, instantaneous speed,

distributions HA et al. [9]. .
Also used to describe headways of vehicles are the So_headway, gap, wheel base etc. Also the traffic data were

called mixed models. These emanated from [10] and [11].separated into daylight data and night data. The periods of

Buckley proposed the Semi-Poisson Model which in its the daylight traffic data that coincided with rainfall events

. o . . were identified and filtered. Other traffic data which did not
essence identifies a headway which is greater than a

; L relate with rainfall were also filtered. The rainfall traffic data
threshold value U and follows the exponential distribution. o : . . .
. . " were further classified according to rainfall intensity. The
Branston [11] and [12] working separately used a queuing

. : . rainfall event times were used to select the corresponding

model to explain the headways of following vehicles. The , )
. dry weather traffic data and the headways for both rain and
model proposed by them also has a component of following : . ; : .
; non-rain periods were extracted for analysis. For instance, if
headways and an exponential component. The pdf of the two _. . ;
models are: rain event occurred during the morning peak hour, the

. corresponding morning peak no-rain data was used for
f(t) = 6g (t)+(1— H)Ae'”{'fg(u)e”“du} 3) analysis. Rainfall data was obtained from a nearby rain
0

Where f, g, k and F, G, K are the PDF and CDF of the
variables H, U, and V respectively. The probability that a
vehicle is a follower is given by the parameter The

function k representing the free flow regime is widely taken
to be the exponential distribution but a variety of
distributions could be used for the constrained portion.
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gauge station located 750m away from the data collectionlimit distribution of properly normalized maxima of a
site. sequence of independent and identically distributed random
variables. It is therefore used as an approximation to model
the maxima of long (finite) sequences of random variables.
IV. METHOD The distribution has continuous shape parameter (k > 0),

continuous scale parameterX 0). The pdf and CDF of this

Computer software was used to explore available - " ™=
distribution is stated as follows:

probability distributions and candidate distributions were 1
identified for goodness of fit tests. Six distributions that 4 (_ + —1/k) 4 k) Tk

fitted the frequency distribution were ranked in order of best exp (1 kz) (1 kz) k#0
fit. For the headways data, the following distributions f(X)=

provided the best fit. %exp(—z— exp(—z)) k=0

A. Burr Distribution

€)
The Burr Type Xl Distribution is a continuous ] o .
probability distribution for a non-negative random variable Cumulative Distribution Function:
sometimes also called the generalized log-logistic —1-1/k
distribution. It is commonly used to model household 1-] 1+ k X—H k%0
income. It has continuous shape parameters (k @ 0;0) o
continuous scale parametgr ¥ 0) and continuous location
parametery(> 0) with a pdf and CDF given by: F (X) exp(— exr(—z))
Probability Density Function (PDF):
where
X a-1 X—/J
“{3) o
— k=0 (10)
f(x)= —o (5)
4 1+(;j D. Generalized Pareto Distribution
The Generalized Pareto distribution has continuous shape
) S ) parameter (k>0), continuous scale parameter (0) with
Cumulative Distribution Function (CDF): probability and cumulative distribution functions as follows:
X “\*
F(x)=1-|1+| = (6) 1 x— VY
() (ﬁ} 2 1+k[ X2H k%0
g g
: _]1 X=U
B. Frechet or Maximum Extreme Value Type f (X) =i Zexp ——F£ k=0 (11)
Distribution g g
This distribution is used in hydrology to model annual
maximum one-day rainfalls and river discharges. It has

continuous shape parameten (0), continuous scale
parameter { >0) and continuous location parameter>Q)
but reduces to the 2-parameter function whenO. It has Cumulative Distribution function.
PDF and CDF as follows:
Probability Density Function:

a+l a 1-| 1+k X—/,Ij_llk k#0
f (X) :E(LJ ex _(ij 7 ( g

B\ x-y X-y F(x)= Ny (12)
1- exy{— j k=0
Cumulative Distribution Function: o
a
B
F (X) ex (X— % ® E. Log-Normal Distribution
) o The Lognormal three parameter distribution has
C. Generalized Extreme Value Distribution. continuous shape parametes ¢ 0), continuous scale

parameter (1 > 0) and continuous location parameterQ).

developed from extreme value theory. Thus, it is used as a
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The probability density and cumulative distribut

functions are given by:
Probability Density Function;

p —;('”(X‘V)—ﬂf

f(x)= ) oTon

(13)

Cumulative Distribution Function

(14)

F(x) :{m .

F. Pearson Type 6 Distribution

Pearson type 6 distribution is apdrameter distributio
with a continuous shape parametey & 0), continuou:
shape parametesf> 0), continuous scale parametgr> 0)
and continuous location parameter> 0). This transform
to the 3parameter distribution wheny=0. The twc
distribution functions are stated as:

Probability Density Function:

((=n)18)"

f(x)= — (15)
BB(a,,a,)(1+(x-y) 18)" "

Cumulative Distribution Function:

F(x)=1(x=y)/(x-y+B)= (16)

V. RESULTS

Six probability distributions presented as above were
to fit the headway data. The fit of each distribution cal
seen from the probability density andppplots for each
weather condition shown from fig. 1 to 4/isually, all the
distributions provided a good fit. However. the E
distribution provided the best fit for all weather condition:
passed both the 95% and 99% goodness of fit tes
Kolmogorov-Smirnov (KS),but failed the Andersc
Darling (AD) and Chi-squared (6} tests. All the othe
distributions failed the goodness of fit tests at 95% and
for all the three tests. The Lomrmal model, The Gamn
model , The Rayleigh model, displaced negative expone
model all performed poarlgiven the direction pointed t
the litereature about their appropriateness in mode
headway data [14].
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(a): Probability Density Plot for No-Rain Condition
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(b): P-P Plot for No-Rain Condition

Figl: Probability Density and-P Plots for No-rain Condition

From table 1, the Burr Distribution is the overall bes
for headway data both under rain and -rain conditions.
The Frechet Model follows closely as the second best n
to describe headway data. The Pearson 6 surpassedt
under norain, light rain and medium rain conditions as
third best model . However, the Generalised Pareto (GP
a better fit under heavy rain using th-S test criteria. There
is no consistent performance by a particular model u
heavy rain onditions, for Generalised Extreme Value \
rated third best using the Ki8st while at the same time the
GEV was second best using Anderson Darling and third
again under the Ctsquared tes

The Generalise@areto (GP) model has a better fit to
headway data than the Lognormal and Generalised Ex
Value (GEV) models under -rain, light rain and heavy rain
conditions. The lognormal model was the least gooi
under all rain conditions for all the gcness of fit tests
carried out. Ironically, it has been the model most appli¢
time headway distribution of vehicles. Whereas HA e
(2010) has confirmed that the LNM model provided the
fit among single distribution models; nevertheless it dit
satisfy the goodness of fit { some traffic in the slow lane
on R118.
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(b):P-P Plots for Light Rain Condition

Fig.2: Probability Density and P-Plots for Light Rain Conditic
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(b): P-P Plots for Medium Rain Condition

Fig.3: Probability Density and P-Plots for Medium Rain Conditi
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Fig.4: Probability Density and-P Plots for Heavy Rain Condition

A. Headway Characteristics

The headwaycharacteristics for both rain and I-rain
conditions are summarised in tal2. The mean headway
decreases between rain and rain conditions and decrea
further with increase in rainfalntensity. The variance and
the standard deviation also behave in a similar fashion.
trend in the coefficient of variation suggests that there
cluster of headways on the facility and this increase with
and rain intensity. Even though the fficient of variation
under heavy rain is the lowest of the three categories
higher than the no rain condition. The skewness
kurtosis of the time headway variable are all posi
indicating that the bulk of the headway distribution is to
left of the mean value which presupposes smaller head
or localised clusters on the facility. Thus to 50% of the
vehicles were travelling with time headways less |
2.20secs under n@in condition, 2.00secs under light ¢
medium rain, and again Decs under heavy rain conditic

B. Probability Distribution Parameters

The distributionditted to the time headways have var
parameters. Of these, only the Frechet and the Logn
have two parameters. The rest have three parameters
These paranters are the shape, scale and the loci
parameters. For the Burr model, the shape parameter {
a) and the scale paramet@rincreases with rain and wi
increase in rain intensity. The-Value increases duly with
rain and rain intensity. Thus if o rain conditions with the
same headways are considered, there will be contractic
the headways skewed further to



TABLE 1
PERFORMANCE OF THEPROBABILITY MODELS

Weather Condition Kolmogorov Smirnov Anderson Darling Chi Squared
1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD

No-Rain Burr Frechet PT6 Burr Frechet PT 6 Burr Frechet PT6
Light Rain Burr Frechet PT6 Burr Frechet PT 6 Burr Frechet PT6
Medium Rain Burr Frechet GP Burr Frechet PT6 Burr Frechet PT6
Heavy rain Burr Frechet GEV Burr GEV Frechet Burr Frechet GEV

4TH 5TH 6TH 4TH 5TH 6TH 4TH 5TH 6TH
No-Rain GP LNM GEV LNM GEV GP LNM GEV N.A.
Light Rain GP GEV LNM GEV LNM GP GEV LNM N.A.
Medium Rain PT6 GEV LNM GEV LNM GP GEV LNM N.A.
Heavy rain GP PT6 LNM PT6 GP LNM PT6 LNM N.A.

left of the mean. Further increase in the scale parameter will TABLE 3

lead to cluster of vehicles with smaller headways. This aptly PROBABILITY DISTRIBUTION PARAMETERS
describes the situation under rainfall conditions on the

facility. The parameters of the fitted distributions are shown

@n table 3. With Fhe Frechet_ mode_l, the shape parametergirst?i'b_ Weather P;frg?r?eeter Pasr(;?]lfeter ;‘;f;mg?er
increases with rainfall intensity while the scale parameter Condition
Qecrease_s,. r‘:’he heavy rain moﬂelbpararr?eterrs] shqw (.j. SorT NR 0172 1872 0942 -
increase in tdg_two parameters well above the other rain an R 0211 1726 1037 -
non-rain conditions. MR 0214 5003 1076 -
HR 0.270 4.737 1.331 -
TABLE 2 Frechet NR 1138 ; 1.772 ;
HEADWAY CHARACTERISTICS
LR 1.263 - 1.667 -
Statistic Weather Condition MR 1.324 - 1.656 -
No Light Medium Heavy HR 1.515 - 1.848 _
Rain  Rain Rain Rain GEV NR 0.523 - 2.220 2.092
Sample size 4975 4905 3189 2504 LR 0.583 - 1.607 1.803
Range 77.70  90.80 109.40 62.00 MR 0.604 - 1.412 1.745
Mean 5.81 4.90 4.65 4.32 HR 0.593 - 1.232 1.868
Median 2.20 2.00 2.00 2.20 GP NR 0.425 3.186 0.266
Variance 69.14 56.55 59.03 41.65 LR 0.506 2.149 0.549
Std. Dev. 8.31 7.52 7.68 6.45 MR 0.534 1.858 0.654
Coefficient of 1.43 1.53 1.65 1.50 HR 0.512 1.636 0.911
Variance Pearson NR 138.30 1.249 0.017 -
Std. Error 0.12 0.11 0.14 0.13 6 LR 146.79 1.504 0.019 -
Skewness 2.86 3.50 4.99 4.11 MR 229.46 1.654 0.013 -
Excess Kurtosis 10.46 16.31 38.59 20.3p HR 127.76 2.015 0.033 -
Lognor NR 1.094 - 1.086 -
mal LR 0.996 - 0.971 -
. . MR 0.952 - 0.945 -
The Generalised Extreme Value and the Generalised TR 0.641 - 0.966 -

Pareto have decreases in the shape parameter for increase
rain intensity and decrease in the scale parameter with

decreasing_ rain intensity. There are no consistent trendS,are rated as the best models to apply to headway data
observed in the Pearson 6 model parameters. — Th&nger rainfall conditions. The Burr model was rated first by
Logn_ormal parameters of ghape and scale both have all the goodness of fit tests and for all conditions; rain and
consistent trend. Decrease in ?hap_e parameters V?‘!“es Withon-rain. The Frechet model performed second under all
rainfall and further decreases with higher rain intensities. tests except the heavy rain condition where the Generalised
Extreme Value (GEV) model performed better under the
V1. CONCLUSIONS Anderson Darling (A test. The Pearson type 6 model was
consistently the third best model under theatd C-S tests
This study explored continuous probability distributions for no-rain, light rain and medium rain respectively. Under
that best describes vehicle time headways under rainfallthe K-S test it out performed the others in no-rain and light
conditions. Six models were initially selected from rain conditions. There was a mixture of performance for the
numerous others and were further tested for goodness of fitremaining three models under the prevailing conditions.
The Burr model, the Frechet model and the Pearson type 6
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However, the highly rated lognormal model performed
poorly among the remaining models.

The Headway characteristics showed decreased headwayé]
values with increase in rain intensity. Thus between no-rain
to light rain condition there was 15.66% reduction in the
mean headways. Also the headway reduction between noj]
rain and medium rain condition is 19.97% while the
reduction between no-rain and heavy rain condition is [
25.65%. About 50% of the headways were less than they,
mean values, an indication of tis&ewness of the headways
to the left of the mean. This trend increased with increase in[5]
rain intensity. The Skewness and coefficient of variation
showed that clusters of vehicles headways increased as thfg]
rain intensified.

The model scale parameters could be related to the rain
and no-rain conditions as well as the various rainfall 7]
intensity regimes explored. Threshold values would need torg
be established for each rain condition and this will require
more time headway rain-conditioned analysis for confidence[9]
to be built into them.

The Burr model lends itself to model headway data under[lo]
rainfall conditions.

(11]
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