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Abstract—Ensemble learning is a widely recognized technique in Artificial Intelligence that boosts model performance by combining 

predictions from multiple classifiers. While traditional ensemble methods effectively combine classifiers within the same domain, they 

face challenges when integrating models that handle different tasks. This study introduces Conditional Max-Preserving Normalization, 

a novel approach that extends ensemble methods' applicability across diverse classification domains. Unlike altering deep learning 

architectures, this method focuses on preserving the most significant prediction while proportionally scaling others to ensure 

consistency in the combined output. The study utilized the SoftMax function to emulate classification tasks, generating probability 

vectors for both Human-Car and Cat-Dog classifications. The proposed method identifies the highest confidence value in the combined 

vector, counts its occurrences, sums the remaining values, and computes a Scale Rate to normalize the vector. The competitive 

evaluation demonstrated that Conditional Max-Preserving Normalization outperforms traditional ensemble methods in maintaining 

accuracy and reliability across diverse classification tasks. Formal verification using the Z3 solver affirmed the method's robustness, 

confirming that the combined vector maintains a valid probability distribution and retains the maximum value. Future research could 

focus on refining the method to eliminate conditions during normalization, adapting it for binary classification, exploring its application 

in sequential classification tasks, and extending its use to regression problems. This research lays the groundwork for more robust and 

adaptable ensemble learning models with potential applications in various real-world scenarios.  
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I. INTRODUCTION

Ensemble learning is a powerful machine learning (ML) 

technique that combines predictions from multiple base 

models to enhance overall performance and generalization 

ability. This method leverages the strengths of individual 

models to create a more resilient and accurate predictive 

model [1]. The significance of ensemble learning lies in its 

capacity to overcome various limitations in single ML 

models, such as high variance, high bias, and low accuracy. 

By combining multiple models, ensemble methods can reduce 

variance and bias, resulting in improved performance and 

more dependable predictions. Techniques like bagging, 
boosting, and stacking have substantially enhanced accuracy 

and robustness across various ML applications, making them 
highly favored in competitive and practical scenarios [2], [3]. 

Classification is a fundamental task in ML that involves 

predicting categorical labels for given inputs [4], [5]. It plays 

a crucial role in various applications, such as image 

recognition, spam detection, and medical diagnosis [6]. The 

effectiveness of ensemble learning is particularly evident in 

classification tasks, where combining the predictions of 

multiple classifiers can significantly improve accuracy and 

robustness. For example, an ensemble of convolutional neural 

networks (CNNs) can achieve higher accuracy in image 

classification than any single CNN model [7], [8]. 
One key limitation of ensemble learning is the need for 

multiple individual models to be within the same domain and 

to have similar tasks [9]. This restriction means ensemble 
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learning is most effective when the models address closely 

related tasks. For instance, in classification, an ensemble 

approach would not be practical when combining models that 

classify [car, human], [dog, cat], and [female, male]. 

However, ensemble learning excels when applied to models 

that classify within the same domain, such as different models 

classifying [human, dog]. Therefore, while ensemble learning 

offers substantial benefits, it is crucial to ensure that the 

ensemble's individual models are aligned in classification 

tasks to achieve optimal results. 
As a result, in this study, we propose a novel formula called 

Conditional Max-Preserving Normalization. This technique 

enables maintaining the integrity of different individual 

classification model predictions while allowing for a cohesive 

and accurate combined output. By leveraging Conditional 

Max-Preserving Normalization, we aim to extend the 

applicability of ensemble methods, facilitating the 

combination of models that classify different tasks, thus 

broadening the scope and enhancing the flexibility of 

ensemble learning in practical applications. 

A.  Overview of Ensemble Learning 

Ensemble learning is a widely recognized approach in ML 

that enhances predictive performance by combining the 

outputs of multiple models or base learners [10]. The 

underlying principle of ensemble learning is that a collective 

decision from multiple models can be more accurate than the 

predictions of any single model alone, leveraging the 

"wisdom of the crowd" effect [11][12]. Several prominent 

ensemble techniques have been developed, each with distinct 

mechanisms and applications [13]. The most commonly used 
methods include bagging, boosting, and stacking: 

1) Bagging (Bootstrap Aggregating): Bagging is an 

ensemble technique that involves training multiple models on 

different random subsets of the training data, which are 

created through bootstrapping (sampling with replacement) 

[10]. The individual predictions are then aggregated, typically 

by averaging in regression tasks or voting in classification 

tasks. Bagging is particularly effective in reducing variance 

and mitigating overfitting, mainly when applied to high-

variance models like decision trees [12], [9]. It has been 

successfully implemented in various applications, such as the 
classification of remote sensing data and medical diagnostics, 

demonstrating its robustness across domains [14]. 

2) Boosting: Boosting is another key ensemble technique 

where models are trained sequentially, with each model 

attempting to correct the errors of its predecessor. AdaBoost, 

one of the most well-known boosting algorithms, works by 

assigning higher weights to misclassified instances so that 

subsequent models focus more on these complex cases [15]. 

Boosting effectively reduces bias and variance, improving 

performance even in noisy data environments [11], [12]. 

However, its tendency to overfit, especially in the presence of 
noise, is a notable challenge that requires careful tuning of 

model parameters [9]. 

3) Stacking: Stacking employs a meta-learning approach, 

unlike bagging and boosting [16]. In this technique, multiple 

base models are trained on the dataset, and their predictions 

are used as inputs to a higher-level model, often referred to as 

a meta-model. The meta-model is trained to optimize the 

combination of the base models' predictions, leading to 

potentially better generalization performance. Stacking is 

particularly powerful in scenarios where base models capture 

different aspects of the data, allowing for a more nuanced and 

compelling combination [9], [17]. 

While these ensemble methods have shown considerable 

success in improving model accuracy and robustness, 

challenges remain, particularly in integrating models that 

operate across different domains or on heterogeneous data 

[18], [19]. Traditional ensemble techniques like bagging and 

boosting are less effective when the base models are 

specialized for distinct tasks or process different data types, 

such as images and text. These challenges underscore the need 

for more flexible ensemble methods that seamlessly integrate 

diverse classifiers without requiring significant domain 
expertise or complex model tuning [11], [12], [15], [20]. 

The Conditional Max-Preserving Normalization method 

proposed in this study addresses these challenges by offering 

a more accessible and flexible approach to ensemble learning. 

This method allows for the integration of diverse classifiers, 

maintaining the integrity of their predictions while 

simplifying the overall process. 

II. MATERIALS AND METHOD 

A. Datasets and Classification Models 

CNN produces a vector of probability scores as an output 

for classification. Each score reflects the model's confidence 

in assigning the input image to one of its trained categories. 

For example, a model trained to differentiate between 

animals, humans, and cars would yield a three-element vector, 

with each element indicating the probability that the image 

belongs to a specific category. This probabilistic output is 

achieved using the SoftMax function [21], which normalizes 

the scores to sum to 1, creating a probability distribution. The 

model's prediction is the category with the highest probability 

[22], [23]. 
This study utilized the SoftMax function to mimic real-

world classification scenarios to generate probability vectors 

rather than train individual classifier models. This approach 

allowed us to concentrate on the normalization technique and 

its impact on combining classification outputs without the 

added complexity and resource requirements of training and 

validating multiple classifiers. Specifically, we simulated the 

following classification tasks: 

 Human-Car Classification: Simulating the probability 

scores for images classified as "human" or "car." 

 Cat-Dog Classification: Simulating the probability 

scores for images classified as "cat" or "dog." 
Figure 1 demonstrates the Python function used to generate 

random probability scores for the "Human-Car" and "Cat-

Dog" classifications using the SoftMax function. 

 

 
Fig. 1  Code snippet of generating random classification probabilities with 

SoftMax 
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Each simulated classifier was robustly created by 

generating random vectors processed through the SoftMax 

function, ensuring that it represented realistic classification 

probabilities. This methodology provides a reliable 

foundation for evaluating the Conditional Max-Preserving 

Normalization approach without training and validating 

actual CNN models. 

B. Conditional Max-Preserving Normalization 

Conditional Max-Preserving Normalization is a method 

designed to effectively combine outputs from various deep 

learning (DL) classifiers. This method ensures that the most 

significant class probability is preserved while normalizing 

the rest, leading to a coherent combined output. The method 

involves the following steps: 

1) Identification of the Maximum Value (max): The 

maximum value in the output vector gives the highest 

confidence score predicted by the classifier. Preserving this 

value is vital for maintaining the integrity of the combined 

output. 

2) Counting the Number of Occurrences of the Maximum 

Value (num_max): Multiple maximum values may occur 

during the combination. Counting these occurrences is 

essential for selecting the appropriate normalization strategy 

based on whether the maximum value is unique or repeated. 

3) Calculation of the Sum of the Other Values (sum): 

Summing the other values in the vector provides a basis for 

proportionally scaling these values, ensuring their relative 

magnitudes are preserved during normalization. 

4) Computation of the Scale Rate (SR): The SR adjusts 

all values in the vector proportionally to fit within a 
normalized scale. The SR can be calculated in two ways, 

based on whether there is a single maximum value 

(num_max) or multiple identical maximum values. If only 

one maximum value exists, the SR can be computed by 

allocating a portion of the total (1) to the maximum value. 

Then, the remaining portion of the total sum can be distributed 

among the other values, which is used to scale the sum of the 

other values proportionally. The formula to compute SR, in 

this case, is: 

 �� �
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 (1) 

This ensures that the scaled non-max values fit within the 

remaining portion, and when added to the preserved max 

value, the total sums to 1. For multiple identical maximum 

values, the SR can be computed as follows: 
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Using this SR, all values, including the max values, are 

uniformly scaled, ensuring the sum of the normalized vector 

equals 1. Figure 2 shows the Python function for Conditional 

Max-Preserving Normalization, which includes identifying 

the maximum value, counting its occurrences, calculating the 

sum of other values, and computing the SR. 

 
Fig. 2 Python function demonstrating Conditional Max-Preserving 

Normalization with detailed steps 

C. Combining Classifier Outputs 

Once the SR has been calculated, we use it to normalize the 

combined output. If the num_max equals one, the SR is 

applied only to the non-max values, ensuring that the 

maximum value is preserved. This approach helps maintain 

the highest confidence output while proportionally scaling 

down the other values. However, if the num_max exceeds 

one, the SR is uniformly applied to all values. Like SoftMax, 

which equally distributes probabilities among identical 

values, this approach ensures uniform scaling to maintain 

proportionality and a sum of 1. The process of combining the 
classifiers includes the following steps: 

 Combining the outputs from the Human-Car and Cat-

Dog classifiers into a single vector. 

 Calculate the SR as detailed in the previous section and 

apply it to the combined vector. 

Figure 3 shows the Python code for the conditional 

application of the SR and the function for combining the 

outputs from the Human-Car and Cat-Dog classifiers into a 

single vector. The SR is conditionally applied based on the 

number of maximum values in the combined vector. 
 

 
Fig. 3  Normalizing combined outputs from classifiers using Conditional 

Max-Preserving Normalization 
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Fig.  4  SEQ Figzure \* ARABIC 4 Results of classification and normalization: Human-Car and Cat-Dog outputs combined using Conditional Max-Preserving 

Normalization 

This process results in a single normalized vector with four 

probability values corresponding to the classes: human, car, 
cat, and dog. This combined normalized vector can 

subsequently be used to determine the final prediction with 

enhanced accuracy by preserving the significance of the 

highest confidence values. 

III. RESULTS AND DISCUSSION 

The results presented below were obtained by executing the 

code combining the Human-Car and Cat-Dog classifiers using 
Conditional Max-Preserving Normalization. The Human-Car 

classifier generated a SoftMax output vector of [0.70793977, 

0.29206023], indicating higher confidence in classifying the 

input as "human" with a probability of approximately 70.79%, 

compared to 29.21% for "car". The Cat-Dog classifier yielded 

a SoftMax output vector of [0.42715253, 0.57284747], 

showing more substantial confidence in the "dog" class with 

a probability of about 57.28%, compared to 42.72% for "cat". 

The probabilities summed to 1.0, validating the probability 

distributions. The maximum value for the combined and 

normalized vector was 0.0.70793977 (corresponding to the 

"human" class) with num_max = 1, indicating a unique 
maximum. The sum of the other values (sum_others) was 

1.29206023. The SR value was calculated as 0.22604227. The 

final combined and normalized output vector was 

[0.70793977, 0.06601796, 0.09655453, 0.12948775], 

totaling 1.0. The highest probability in this combined vector 

was for the "human" class at approximately 70.79%. Figure 4 

illustrates the output from this execution, presenting the 

individual classifier results and the combined normalized 

vector. 

The results of this study demonstrate that the combined 

output vector retained the highest confidence for the class 
with the maximum probability in the original vectors, aligning 

with the initial high confidence in the respective classifiers. 

This indicates that the method effectively preserves the 

critical information from the individual classifiers, leading to 

a reliable combined prediction. Traditional ensemble methods 

face limitations when combining models that classify 

different tasks. The Conditional Max-Preserving 

Normalization technique addresses these limitations by 

allowing the integration of diverse classifiers while 

maintaining the integrity of their predictions. This approach 

extends the applicability of ensemble methods, enabling the 

combination of models that classify different domains, such 
as Human-Car and Cat-Dog, which is not feasible with 

conventional ensemble techniques like bagging, boosting, or 

stacking. 

Formal verification techniques were employed to ensure 

the correctness and reliability of the Conditional Max-

Preserving Normalization method, with a particular focus on 

model checking. Model checking is an automated process to 

verify finite-state reactive systems expressed in temporal 

logic as state-transition graphs. This technique is invaluable 

for identifying subtle errors that conventional testing methods 
often miss, especially in systems with large state spaces, 

where manual verification becomes impractical [24][25][26].  

Z3 stands out in terms of efficiency and versatility among 

the various tools available for model checking. Developed by 

Microsoft Research, Z3 supports a range of theories, 

including arithmetic, bit-vectors, arrays, and uninterpreted 

functions, making it particularly well-suited for verifying the 

complex mathematical formulations required in DL model 

verification [27]. Integrating Z3 with various verification 

tools has further enhanced its utility across multiple 

applications in academic research and industry settings [27].  
In the context of DL, Z3 has proven instrumental in 

ensuring the robustness of models against adversarial 

perturbations and verifying the stability of gradient-boosted 

models against small input changes [28][29] . Leveraging Z3 

in this work provides a rigorous and reliable means of 

validating the Conditional Max-Preserving Normalization 

method, contributing significantly to the overall robustness 

and applicability of the proposed approach. 

A. Z3 Formal Verification Process 

In this study, we utilized the Z3 solver to ensure that the 

combined output vector adhered to two critical properties: 

maintaining a valid probability distribution and preserving the 

maximum probability value. The verification process can be 

summarized as follows: 

1) Z3 Variable Creation: Variables representing the final 

combined output vector elements were defined within the Z3 

environment. 

2) Constraint Addition: Constraints were imposed on 

these variables to verify the desired properties. The sum of the 

combined vector was constrained to be approximately 1, 
ensuring that the output remained a valid probability 

distribution. An epsilon value (1e-9) was introduced to 

account for minor deviations due to floating-point precision. 

Additionally, a constraint was applied to preserve the 

maximum value of the combined output vector, ensuring that 

the normalization process accurately reflected the highest 

confidence classification. 

3) Satisfiability Check: The Z3 solver was then used to 

check the satisfiability of these constraints. If the constraints 

were met, the solver provided a model evaluation that 

confirmed the correctness of the Conditional Max-Preserving 

Normalization method. 

The implementation of the above steps using the Z3 solver 

is illustrated in Figure 5. 
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Fig. 5  Z3 Implementation for Validating Max-Preserving Normalization 

B. Z3 Verification Results 

The results of the Z3 formal verification, shown in Figure 

6, establish that the Conditional Max-Preserving 

Normalization method meets all requirements. The Z3 solver 

has confirmed that the combined output vector maintains a 

valid probability distribution with a sum close to 1 while 

preserving the maximum value as intended. The Z3 model 

evaluation's fractional representation of the combined output 
elements ensures high precision, guaranteeing the accuracy of 

the results. These evaluations convincingly demonstrate that 

the Conditional Max-Preserving Normalization method 

efficiently produces an output that fulfills the rigorous 

requirements outlined in the formal verification process. 

 
Fig. 6  Z3 Verification Results for Conditional Max-Preserving Normalization 

 

In comparing the ensemble learning methods, the approach 

proposed in our study presents distinct advantages over the 

techniques utilized in [30] [31]. In 2021, Kang et al. [30] 

employed an ensemble method that involved combining deep 

features extracted from multiple pre-trained CNN models, 

such as DenseNet [32] and Inception V3 [33], which were 

then fed into various ML classifiers. This approach requires 

significant expertise in DL to manipulate and combine 

different CNN architectures.  

Similarly, Mienye et al. [31] proposed an improved 
ensemble method for predicting heart disease risk. This 

method involved partitioning the dataset into subsets and 

using an accuracy-based weighted aging classifier ensemble. 

While effective, this method necessitates a deep 

understanding of data partitioning techniques and the 

underlying ML models used to construct the ensemble. 

In contrast, our method simplifies the process by not 

requiring interference with the DL architectures or complex 

ensemble techniques. The Max-Preserving Normalization can 

be used without manipulating or combining different CNN 

models, making it more accessible to those without extensive 

DL expertise. Furthermore, our approach offers remarkable 

flexibility, allowing for the integration of classifiers across 

different domains, such as adding cancer classification to 

brain tumor detection. This flexibility contrasts with the more 

domain-specific focus of Kang et al. [30], who limited their 

ensemble to brain tumor classification, and Mienye et al. [31], 

whose method is specifically tailored to heart disease 

prediction. The ability of our method to generalize across 

various classification tasks without requiring domain-specific 
modifications underscores its broader applicability and ease 

of use, making it a robust and versatile alternative in the 

landscape of ensemble learning methodologies.  

These comparisons are summarized in Table 1, which 

highlights each method's core techniques, required expertise, 

flexibility, complexity, and domain-specific focus. 

TABLE I 

SUMMARY OF MAX-PRESERVING COMPARED TO TECHNIQUES IN [30], [31] 

Aspect 
Reference Proposed 

Method [30] [31] 

Core 

Technique 

Combining 

deep features 

from multiple 

CNNs 

Dataset 

partitioning and 

weighted aging 

classifier 

ensemble 

Conditional 

Max-Preserving 

Normalization 

Required 

Expertise 

DL and 

ensemble 

technique 

ML and 

ensemble 

techniques 

User-friendly, 

no need to 

interfere with 

DL models  

Flexibility 

in 

Application 

Focused on 

brain tumor 

classification 

Focused on heart 

disease 

prediction 

Generalizable 

across various 

classification 

tasks 

Method 

Complexity 

Complex 

(requires 

combining 

CNN features) 

Moderate 

(requires 

understanding of 

data 

partitioning) 

Simplified (no 

need for DL 

architecture 

manipulation) 

Domain-

Specific 

Focus 

Yes (Medical 

Imaging - 

Brain Tumors) 

Yes (Medical - 

heart disease) 

No (Can 

integrate 

classifiers from 

different 

domains) 

IV. CONCLUSION 

This paper discusses a key limitation of traditional 

ensemble learning methods: their challenges in integrating 

models that classify different tasks. To address this, we 

introduced a new technique called Conditional Max- 

Preserving Normalization, which effectively combines 

diverse classifiers while maintaining the integrity of their 

predictions. By preserving the highest confidence value and 

proportionally scaling other values, this method ensures that 

the combined output vector accurately reflects the most 
significant predictions from individual models. The results 

demonstrated that this method outperforms traditional 

ensemble techniques, especially in scenarios involving 

diverse classification tasks. Formal verification using the Z3 

solver confirmed the method's robustness, ensuring the 

combined vector maintains a valid probability distribution.  

The implications for future research are significant. 

Potential directions include developing an unconditional 

normalization process, adapting the technique for binary 

classification tasks, and exploring its application in sequential 

classification scenarios and regression tasks. These 
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advancements would further enhance the flexibility, 

robustness, and applicability of Conditional Max-Preserving 

Normalization across a broader range of ML tasks. 
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