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Abstract— Output capacitor in the voltage regulator (VR) circuit ensures stability especially during fast load transients. However, the
capacitor parasitic, namely equivalent series resistance (ESR), may cause unstable VR operation. VR characterization in terms of
ESR suggests stable range of capacitor ESR based on the ESR tunnel graph in the VR datasheet. Specifically, the stable ESR range is
the critical ESR value, which lies on the failure region boundary of ESR tunnel graph. New or updated ESR tunnel graph through
characterization is required for new product development or quality assurance purpose. However, the characterization is typically
conducted manually in industry, thereby increases the manufacturing time and cost. Therefore, this work proposed a
characterization approach that can reduce the time to determine the ESR tunnel graph based on the hybrid system identification and
neural network (SI-NN) approach. This method utilised system identification (SI) to estimate the VR circuit model for certain
operating points before predicting the transfer function coefficients for the remaining points using radial basis function neural
network (RBFNN). Eventually, the critical ESR of failure region boundary was estimated. This hybrid SI-NN approach able to
reduce the number of data that would be acquired manually to 25% compared to manual characterization, while provides critical
ESR estimation with error less than 2%.

Keywords— Voltage regulator; output capacitor; equivalent series resistance; failure region boundary; system identification; radial
basis function neural network.

supplies temporary energy to the loads before the VR
[.  INTRODUCTION feedback able to regulate the VR outpilihis mechanism
can be achieved only if the capacitor has optimum internal
parasitic value [7], [8]. This capacitor parasitic is called
quivalent series resistance (ESR).
Optimum capacitor's ESR compensates the VR instability
fore the internal VR feedback mechanism properly
regulates the VR output. The ESR value compensates the
dfeedback control loop in the power converter circuit such as
VR by adding a zero in its transfer function. However,
variations in age and temperature increase the ESR [9], [10].
Too high or too low ESR value may produce VR output with
unreliable phase margin and eventually cause output

Output capacitor in the VR circuit acts as a temporary oscillation and instability. .
energy storage component to compensate any instability Ther_efore, VR manufacturers provides the stablg ESR
especially during fast load transients [1], [5], [6]. Nowadays, range in a spem_al graph called ESR tunnel graph in their
many electronic systems include a lot of high speed digital dtasheet [1]. This type of graph shows the ESR versus load
signal processing. This high speed requirement requires fasP! CutPut current plot for particular capacitance value. fig.
load switching and transients. In this case, VR must be abIeShOWS an example of ESR tunnel graph for a commercial \./R’
to supply stable output voltage and current to the IoadsmOdeI TPS76301 frqm Tex(_':\s Instr_uments [11]. l.n this
during those conditions. gxample, compensation series resistance, CSR is used

However, the feedback mechanism inside the VR needs 6{nstead of ESR, though it has the same function. For instance,

minimum delay period to regulate its output. Therefore, once the Stable ESR range is located between 0.3 @, ¥0r load
the load transient condition occurred, the output capacitorcurrent from 50 to 250 mA. The ESR tunnel graph indicates

Voltage regulator (VR) circuits with additional output
capacitor are widely used in many electronic systems. VR
converts the noisy and unstable voltage and current inpute
supply to a stable, constant, accurate, and Ioad—independerg
output supply [1]. VR has received much attention recently, €
mainly low dropout voltage type VR, due to the emerging
market of new applications such as system-on-chip an
Internet-of-Things, which require tight power consumption
specification with stable and lower output voltages [2]-[4].
An output capacitor is connected to the VR output terminal
to ensure stability.
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the passing and failure (or instability) regions, where the Therefore, this paper improves the VR characterization
critical ESR lies on its failure region boundary. process by applying hybrid approach of system identification
(SI) and neural network (NN), in short SI-NN. In particular,

the critical ESR values located on the failure region

100

i I boundaries of ESR tunnel graph are determined using this
1\ Region of Instability hybrid SI-NN-based characterization and finally compared
N\ with the manual characterization outcome.

10

Il. MATERIAL AND METHOD

el The hybrid SI-NN-based VR characterization proposed in
this work estimates the VR circuit model using system
identification for a number of operating points and then
predicting the VR circuit transfer function coefficients based
01 on the trained radial basis function neural network (RBFNN).
Region of Instability The proposed method performance was compared with the
[ [ benchmark extracted from manual characterization. Fig.
0.01 ‘ | depicts the overall process flow in SI-NN-based
0 %0 oo 1%0 200 2% characterization starting from manual characterization,
lo = Output Current - mA failure region boundary benchmark search, VR circuit model
modelling through SlI, dataset reduction, RBFNN training,
transfer function coefficients prediction using trained
RBFNN, failure region boundary estimation, and finally
However, in practice, VR manufacturers manually validation. Before describing the individual process in detail,

perform VR characterization in terms of ESR by conducting e VR selection and test circuit development will be
time consuming tests on a range of ESR for different load elaborated first.

currents [12]. Even though VR design phase normally

considers the optimum ESR through the stability analysis of

VR output dynamic or transient behaviour in terms of ESR

effect [3], [13], actual VR performance varies for each unit
of manufactured VR due to manufacturing process variation
[12]. Detail VR internal circuit with actual component
values and process variation parameters are required to
analyse the stable ESR range of actual manufactured VR.

CSR - Compensation Series Resistance -
-

Fig. 1 Example of ESR tunnel graph for VR model TPS76301 from Texas
Instruments (Source: Texas Instruments)

Manual characterization

v

Failure region boundary
benchmark search

Thus, exact model for actual VR sample is difficult to obtain v
for post analysis purpose. Hence, the manual VR Model estimation
characterization observes and analyses the actual dynamic or v
transient behaviour of manufactured VR samples and Dataset reduction
simultaneously plot the stability condition on the ESR tunnel v

graph for each operating point. Then, failure region

boundary separating the stability and instability regions can RBFNN training

be extracted from the graph. Eventually, the critical ESR lies v

on the failure region boundaries can be determined. Transfer function
Since the manual characterization consumes a lot of time coefficients prediction

and cost, there is a need to improve the characterization v

process. At the same time, the improved characterization Failure region boundary

method must be able to produce reliable results. Since VR estimation

circuit is an analog circuit, therefore, this issue can be v

categorized as an analog circuit test and analysis issue. Much Validation <

research have been done to test and analyse the analog
circuit without knowing the exact model of the circuit under
test, such as through transfer coefficient based [14]-[16] and
black-box modelling [17]. Some work also have been Fig. 2 Flowchart of the hybrid SI-NN-based VR characterization
conducted to estimate the failure region boundary of analog

circuit [18]-[20]. In addition, most research on capacitor A. VR Selection

ESR only concentrates for the purpose of condition [n this work, VR model series TPS763XX, manufactured
monitoring and fault diagnosis [21]-[23]. However, not by Texas Instruments was selected because its datasheet is
much research has been done on the testing andnore comprehensive indicating two ESR tunnel graphs for
characterization in terms of capacitor ESR for power two different output capacitor's capacitance [11].
converter packaged in integrated circuit form such as voltageFurthermore, the ESR tunnel graph of this VR model has
regulator. three regions as shown in Fig.where the stable region is

Enc
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located in between two failure or instability regions. So, current was disturbed. In detail, the output voltage level of
there are two failure region boundaries which indicates thatsignal generatorV,, as shown in Fig3, was changed
the ESR value cannot be too low or too high. Some ESRabruptly, firstly from low to high level, and then from high
tunnel graphs from another VR manufacturers only haveto low level. After that, undershoot and overshoot voltages
single failure region boundary. Meanwhile, some of VR output were computed. The undershoot voltage is the
manufacturers only state the stable ESR range withoutdifference between initial and minimum VR output voltage.
showing any ESR tunnel graph in their datasheet [24]. Meanwhile, the difference between maximum and initial VR
o output voltage is called overshoot voltage. Both undershoot
B. Test Circuit Development and overshoot voltages are the main parameters for VR
TPS763XX series VR has various models, differentiated stability judgment.
by the output voltage. The specific VR model selected inthis ~ The final process in the manual characterization is to
work was TPS76301 which is an adjustable-type VR. So, determine whether the VR is stable or not. In this work, the
different output voltages can be tested using single VR. Tostable ESR range from the VR datasheet was used as
set the output voltage, for instance 5 V, resistance of tworeference. The datasheet states that in order to guarantee VR
resistors, Rand R, need to be configured to 549 and 169 stability, the ESR value must be between 0.3 td1(he
kQ, respectively, as shown in the test circuit in BigThe corresponding undershoot and overshoot voltages related to
test circuit includes a resistorg&, connected in series with  this stable ESR range act as the specification during stability
the output capacitor, & In real circuit, Rsg can be a  determination for another operating points [25], [5]. For
combination of the internal ESR of,& and additional example, for load current of 50 mA and ESR of Q,3the
compensation series resistor. There is also a signal generatogndershoot and overshoot voltages &8 and OS% V,
Vs, that disturbs the load current when its level is changed.  accordingly. In the meantimel)S, and OS, V are the
undershoot and overshoot voltages when the ESR is equal to
4 ] 10 Q. Therefore, for each operating point, if the measured
= L“” our ) I undershoot is withinUS, and US,, and the measured
w.| | En 8 = overshoot is betwee@S andOS, then the VR is judged as
e T T I—— T stable. Otherwise, the VR is considered as unstable. Finally,
) v the ESR tunnel graph was plotted for all operating points, i.e.
all load currents and ESR values, with corresponding
1T : stability condition.
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’ D. Failure Region Boundary Benchmark Search

The failure region boundary benchmark was obtained
C. Manual VR Characterization from the plotted ESR tunnel graph. The failure region

After selecting the suitable VR model and constructing bounqlary is defined as the_ESR vall_Jes s_eparating the stable
the test circuit, manual VR characterization was conducted.(Passing) and unstable (failure) regions in the ESR tunnel
The manual characterization purpose is to find the failure 9raph. For each load current in the manual characterization,
region boundary benchmark for each load current. In thisthe failure region boundary was analysed and then became
work, the load current range is between 50 to 150 mA with @S the benchmark for later SI-NN-based VR characterization.
25 mA -incremen.t, meanwhile the ESR range is from 0.1 to E. VR Model Estimation Using Sl
15 Q with 0.1 Q increment. Each combination of ESR and
load current represents an operating point in the ESR tunne{/
graph. Initial ESR and load current were configured as equal
to corresponding minimum values. Manual characterization
was executed until all operating points have been
characterized.

Fig. 3 TPS76301 test circuit

Hybrid SI-NN-based VR characterization begins with the
R circuit model estimation by applying SI method. Sl

method is widely utilized to estimate the unknown system
model, provided input and output data are available. Input
and output data in this work were disturbance volte¥gand

For each operating point, following processes were output voltage V,; respectively. Model estimated using Sl

conducted in manual characterization. The first process waénethOd typically has gone through_ _several procedures
to initialize the input voltage, load current and ESR. starting from preprocessing, dat_a division, moo_lel structure
Simultaneously, the start timé of characterization was selection, model estimation and finally model validation.

recorded. Then the test circuit was simulated in OrCAD with ¢ Fir%tlxhpreprtocezsin% pr:)ge(tjur(_a”r]emot\;]ed.the tmee:jn vatluets
specific ESR and load current. In this case, the OrCAD drotm 0 d'.np(l; ;‘F‘tou F;.u t‘f" a. den, I'det'mpud atm I—(Ijulfpuf
simulation was fully controlled by MATLAB. Particularly, ata was divided Into estimation and validation data. hait o

MATLAB generated the circuit netlist file in a text file the data was allocated as the estimation data while the rest

format before executing the OrCAD simulation. This circuit Wa%]forf\/?lhda_non purpose. ; lect th itabl del
netlist file contains all circuit configurations such as the € foflowing process 1S 1o select ihe suitable mode

nodes, connection and component values. After the circujtStructure _that able to represent the VR circuit. Mo_del
simulation has been successfully executed, MATLAB structure is the mathematical expression that relates the input

imported the circuit raw data file for further analysis. and output variables. This model structure consists of

The subsequent process analysed the VR dynamicunknown model parameters that need to be estimated.
behaviour in terms of load transient response. During circuitTyp'CaI model structures available in S are Autoregressive

simulation, after specific delay, for example 1.5 s, the load with  Exogenous Input  (ARX), Output Error (OE),
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Autoregressive Moving Average with Exogenous Input  Further processes have been conducted to obtain the ESR
(ARMAX) and Box-Jenkins (BJ) model structures. OE tunnel graph based on the transient response from the prior
model structure was chosen in this work because it has lesgstimated model simulation. As in the manual
number of model parameters compared with other modelcharacterization, undershoot and overshoot voltages were
structures. Equation (1) describes the OE model structurealso computed from those transient responses. Then, VR
equation, stability was determined for each operating point before
plotting the ESR tunnel graph. At this stage, a dataset
B(q) comprises of transfer function coefficients based on the
Y(k)zm U k= n) +ek) @) estimated model using Sl for all operating points was
q completely developed.

wherey andu are the input and output respectively, while F. Dataset Reduction

e(k)is the white noise with zero mean, amds the number The next stage was to train the RBFNN structure before it
of delay, with k is the sample instant. Furthermore, .4y pe used for transfer function coefficients prediction.
polynomial B(q) and F(q) can be described in terms of pefore training the RBFNN structure, the Sl-based dataset
backward shift operatog as stated in (2) and (3) as follows, peed to be reduced first. This dataset reduction purpose is to
reduce the number of operating points that need to be
BQ=h+hqg'+--+h g™ (2 manually acquired, so eventually it will reduce the VR
characterization time. In detail, the dataset was reduced
based on a dataset reduction factor. For example, initial
configuration of ESR range was from 0.1 to ©5with
increment step of 0.Q producing total 150 ESR values. If
with n, is the order of polynomia(q) andry is the order of  the dataset reduction factor was configured to 2, the next
polynomialF(q). ESR was the next two ESR value from the current ESR. In
The subsequent process is the model estimation. Thishis case, the ESR was skipped one point. Therefore, the
process, which can be analysed as a least square problem f@SR range of the reduced dataset was configured from 0.1 to

F(@ =1+ fg7 +-+ £, " ©

linear regression, can be written as, 14.9 Q with 0.2 Q increment step. The new dataset then
contains only 75 ESR values, which was 50% reduced
y(k,8)=®d(K)"8=£E(k,6) 4) compared to the original manual characterization dataset.

G. RBFNN Training

As mentioned earlier, the SI-NN-based VR
characterization in this work predicted the transfer function
@ (K= [u(k=1, u(k=2),...,u(k—ny), ) coefficients after estimating the VR circuit model, which can
-&k-10)-Ek-206),....~&(k-n,,0)] be viewed as a function approximation or regression

problem. Other research uses optimization approach to select
the optimal SI model structure [26]. RBFNN has been
chosen since its structure is simpler than another type of

'neural network such as multilayer perceptron neural network.
RBFNN structure basically contains input, hidden and
output layers as depicted in Figure 4. The input layer

6=[.b,,---.b, , . fpres £, I’ (6) receives the external input signals and redistributes these

signals to the hidden layer. The hidden layer has neurons or

In detail, the model estimation estimates the parameternodes with radial basis function. Commonly used radial
vector, @ by minimizing the error between the estimated basis function is Gaussian function described as follows,
model output and actual measured output data through the
cost function manipulation. The best estimate of parameter lk=sIf
vector was obtained when the cost function was minimum. P(xu)=e > (7)

After the VR circuit model has been estimated, the model
need to be validated. Therefore, the validation data waswherex is the inputw is the mean or centre gfandd is the
applied to the estimated model, in particular, the estimateddistance from the centre g{x, ) to the outer of Gaussian
transfer function. Then, the model fitness was computed. Inbell curve which also represents the spread of the Gaussian
this work, the model was simulated by applying two types of function. So, two important parameters are associated to
step signals to obtain the transient responses. The first steghese RBFNN neurons, which related to the Gaussian
signal was executed when changMglevel from 2 to 5V,  function properties, namely the centreand spreadd. The
whereas the second step signal changed/ghevel from 5 Gaussian function indicates that the hidden neuron
to 2 V. In addition, the optimum,, ny andn, configuration  sensitivity can be adjusted by manipulating thearameter.
were defined after conducting iterative search and thenThis means that the hidden neurons are more sensitive to the
evaluating the model fitness when applying the validation data points towards the centre of the Gaussian curve. In
data. addition, the radial basis function is also widely used in
other machine learning algorithm such as in support vector

with the regressor vectofP(k) , can be defined as,

Meanwhile, the parameter vectof, which consists of
unknown model parameters or transfer function coefficients
can be stated as,
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machine [27]. Lastly, the output layer produces a weightedin the manual VR characterization, which were not included
sum of its input taken from the output of hidden layer. in the training dataset. Each transfer function coefficient was
predicted independently since it was trained individually.
Then, all predicted transfer function coefficients were
combined in the transfer function form, same as the
estimated transfer function obtained in prior SI method.

After that, two step signals as used in the validation phase
of SI method previously were applied to the transfer function
that incorporates RBFNN-predicted coefficients for each
operating point. The transient responses were obtained from
the transfer function simulation. Then, from the transient
responses, undershoot and overshoot voltages were
measured. These voltages were evaluated whether the VR
was in stable condition or not before plotting the ESR tunnel
Input Hidden Output graph of SI-NN-based VR characterization.
layer layer layer

Radial basis function

I. Failure Region Boundary Estimation

Fig. 4 RBFNN structure Based on the ESR tunnel graph of SI-NN-based
characterization, the critical ESR lies on the failure region

In this work, the RBFNN structure was trained with ESR boundary for each load current were estimated. Then, failure
and initial load current as the inputs, while individual region boundary, together with passing and failure regions
transfer function coefficients as the outputs. ESR and initial Were estimated.
load current were selected as the RBFNN inputs becaus% Validation
each operating point in the ESR tunnel graph must has these" - . ] ]
two variables. ESR was not selected as the RBFNN output, Finally, the critical ESR of estimated failure region
even though the main aim of this work is to estimate the boundary obta}lned from SI-NN-based characterization was
critical ESR. The critical ESR can only be estimated after compared  with the benchmark from manual VR
plotting the stability condition for all operating points in the Characterization. Five performance metrics were used in
ESR tunnel graph. In order to obtain the stability condition, ev_aluatlng_ the predicted critical ESR values that lie on the
transient response need to be simulated first using théef@ilure region boundary, namely mean squared error (MSE),
transfer function. Therefore, the individual transfer function f00t mean squared error (RMSE), mean absolute error
coefficients were selected as RBFNN outputs. Each transfe{MAE), correlation coefficient (R and relative error (RE).
function coefficient in (2) and (3) was configured in FoIIo_Wlng equation (8) to (12) describe these performance
individual RBFNN structure, as depicted in Fig. For metrics.
example, if the Sl-estimated VR model has six transfer
function coefficients consists of two poles and four zeros, 1 . ]2
then there will be six RBFNN structures need to be trained. MSE= Niz_l“[y(l) _yp(l)] ®)

The network was trained until convergence, which is until
the training mean squared error (MSE) has met its goal, for T
instance, MSE should be nearly zero. On the other hand, this _ NN -

work also analysed the best spread of the Gaussian function. RMSE= \/ N ;:[y(l) yp(l)] ©
After completing the training process, the RBFNN structure

was available for subsequent transfer function coefficient

e 13 .. .
prediction process. MAE = N;‘y(l) - yp(l)‘ (10)
Transfer function
p| RBFNN. [—> coefficientul | Zn:[( 0 ,())( () — ())]
YU)=ympy,) =y,
ESR -
»  RBENN, |—» Transfer function R* = nlﬂ - )
Load coeffitent2 \/Z ) -yOF 2. ly, () -y, 0)F
current i=1 i=1
2] ReRN e e RE = [W i )Jloo 12)

Fig. 5 Individual RBFNN structure for each transfer function coefficient . .
wherey andy, are the actual and predicted critical ESR

H. Transfer Function Coefficients Prediction corresponding to the failure region boundary,is the

The trained RBFNN was then used for predicting the humber of observations amds the load current instant. SI-
transfer function coefficients for all operating points same as NN-based characterization has better performance if MSE,
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RMSE and MAE values are closer to zero. Meanwhile, the B. SI-NN-Based VR Characterization Results

2 . .
R® must closer to one to indicate that the SI-NN-based opce the failure region boundaries benchmark has been
characterization has better performance. Lastly, RE iSgefined, the SI-NN-based VR characterization was
computed to measure the relative accuracy of the SI-NN-conducted. The VR circuit transfer function coefficients

based characterization.

I1l. RESULTS ANDDISCUSSION

A. Manual VR Characterization Results

The main aim of this work is to improve the VR

were predicted using trained RBFNN structure including the
operating points that have been removed during Sl-based
dataset reduction stage. Fig. 7 displays the ESR tunnel graph
of SI-NN-based characterization as proposed in this work
with optimum Sl and NN configuration. It can be seen that
there are also three distinct regions similar as manual

characterization by providing reliable estimation of VR characterization result. Meanwhile, Fig. 8 indicates that the
failure region boundary and its critical ESR. The improved cjiical ESR lies on the failure region boundaries of manual
method is only considered reliable if it is able to produce the 54 S|-NN-based characterization are similar for each load
critical ESR near or equals to the failure region boundary ¢ \rrent. This best SI-NN-based characterization result was
benchmark. obtained after selecting the best SI and NN configurations.

A benchmark based on the ESR tunnel graph of manual
VR characterization was obtained as displayed ind-igig.
6(a) shows that there are three distinct regions, where the
passing region (stable region) on the middle part of the graph
resides between two failure regions (instability regions) at
the lower and upper parts of the ESR tunnel graph. In
addition, Fig.e(b) which depicts a portion of the overall
results, for load current of 50 mA and ESR from 9.8 to 10.1
Q with 0.1Q increment, indicates clear boundaries between
passing and failure regions. For each operating point, which
is the pair of load current and ESR, the circle mark indicates
the stable VR output, whereas the cross mark represents VR
instability. Therefore, there are two failure region boundaries,
namely upper and lower boundaries. These boundaries are

o
T i T
I I

the benchmark for SI-NN-based characterization later.
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Fig. 8 Comparison of critical ESR on the failure region boundaries between
manual and SI-NN-based VR characterization

VR circuit model was estimated using Sl with the best
configurations including the best model structure and its
order of polynomial. After iteratively testing various Sl
configurations, it was found that the best model structure
was OE model withn,, iy and n, set to 4, 2, and O
accordingly. The best S| configuration was determined based

Fig. 6 ESR tunnel graph of manual VR characterization acts as benchmarkon the highest model fithess percentage. The estimated
(a) All results (b) A portion of the overall results

models for all operating points using this best configuration



has fitness mean of 99.8%. Fig.compares the transient

TABLE 1

responses from manual characterization and Sl-estimated COMPUTED PERFORMANCE METRICS FOR DIFFERENRBFNN SPREADS

VR circuit model for ESR of 1@ and load current of 50

mA. At 2 s, the load current was changed abruptly and at the
same time the output voltage was observed. Both overshoot

voltages shown in Fig are similar, which indicates that the
Sl-estimated model was reliable.

Manual

4.9928 - s

4.9926

4.9924 -

4.9922

Output voltage (V)

4.992 -

4.9918 -

| I I I I I
2 2.002 2.004 2.006 2.008 2.01
Time (s) x 10°

RBFNN Performance metric

spread MSE RMSE MAE R? RE
0.10 39.80 6.31 451 0.0000 51.67
0.15 27.34 5.23 3.61 0.3938 422 .57
0.20 58.48 7.65 6.13 0.0795% 547.97
0.25 0.05 0.23 0.14 0.9987 1.43]
0.30 0.07 0.27 0.16 0.9984 1.63]
0.35 0.07 0.27 0.16 0.9984 1.63
0.40 0.08 0.29 0.20 0.9981 5.48
0.45 0.08 0.27 0.19 0.9730 5.38
0.50 4.05 4.83 1.43 0.378$ 166.12

In addition, the maximum dataset reduction factor was
also determined. Fig.1 shows the RE mean of critical ESR
prediction for various dataset reduction factors. In this case,
the RBFNN spread of 0.25 was applied. If the dataset
reduction factor is greater than 4, then the RE mean becomes
higher than 5% indicating unreliable results. So, the
maximum reduction factor is 4 with RE mean of critical ESR
prediction of 1.43%. In this work, the critical ESR prediction
error was set to be less than 5%. This result concludes that
even though the number of manually acquired data was
reduced up to 75%, SI-NN-based VR characterization still

Fig. 9 Transient responses from manual characterization and Sl-estimatedha gple to estimate reliable failure region boundary, which

model simulation for ESR of 1Q and load current of 50 mA

After obtaining the best SI configuration, the optimum

eventually will reduce the characterization time. The reduced
dataset used to train the RBFNN structure was only 190 data
points or 25% from the original 750 data points in the

RBFNN spread and maximum dataset reduction factor weremanual VR characterization.

analysed to find the best SI-NN-based characterization
results. Fig.10 shows that RBFNN spread less than 0.25
contributes high critical ESR prediction MSE. Furthermore,
Table 1 depicts all computed performance metrics for
different RBFNN spreads. It can be concluded that RBFNN
spread of 0.25 yields the best performance with MSE,
RMSE, MAE, R and RE mean are 0.05, 0.23, 0.14, 0.9987
and 1.43, respectively.
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Fig. 10 MSE of critical ESR prediction on failure region boundary for
various RBFNN spread
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Fig. 11 MSE of critical ESR prediction on failure region boundary for
different dataset reduction factors

IV. CONCLUSION

An improved VR characterization in terms of finding the
critical ESR lying on the failure region boundary based on
hybrid SI and RBFNN approach was investigated in this
work. This work has developed a method that initially
estimates the VR circuit model using SI method for reduced
number of operating points and subsequently predicts the
transfer function coefficients for the remaining operating
points using RBFNN. In the end, the critical ESR value on
the failure region boundary obtained from the improved SI-
NN-based method was compared with the benchmark
extracted from the manual VR characterization. The critical
ESR comparison result shows good correlation. Furthermore,
the result was achieved after describing the best



configuration of SI and RBFNN. In conclusion, hybrid SI-
NN-based VR characterization has shortened the VR

. 14
characterization process. [14]
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