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Abstract— This article reviews one of the non-parametric functions, namely the MARS (Multivariate Adaptive Regression Spline) 

method, a complex combination of recursive partitioning and spline regression. The many advantages of the MARS function over other 

non-parametric regression functions are of interest to researchers. One of them is it can accommodate the additive and interaction 

model to improve the prediction and interpretation of the data. There are some important things in the MARS method, namely, ANOVA 

decomposition and Importance Variable. Decomposition ANOVA is a technique in MARS that is useful for grouping basis function 

based on variables engagement, whether they enter by one variable or interactions with other variables, making it easier to interpret in 

graphical form. In comparison, the important variables are a technique that can be used to determine which predictor variables most 

influence the MARS modeling. This study assesses ANOVA decomposition, and the important variables process in MARS modeling 

based on GCV and MSE criteria. We use the poverty rate modeling data on Java Island to implement the study results. The results 

show that the MARS model's interpretation of the poverty rate can be better done through ANOVA decomposition. Besides that, based 

on GCV and MSE criteria, the result also shows that the biggest variable importance in poverty rate modeling on Java Island is the 

percentage of per capita expenditure for food, while the smallest is the economic growth variable.  
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I. INTRODUCTION

Regression analysis is a method that aims to model the 

relationship pattern between the response and predictor 

variable [1]. Several approaches in regression analysis can be 

used to model the relationship above, and o of them is non-

parametric regression [2]. In some cases, regression modeling 
often cannot be solved with a parametric regression approach 

and must be solved with a non-parametric regression 

approach, namely in cases where the shape of the regression 

curve is/is not still known. Compared to other regression 

approaches, non-parametric regression has many advantages. 

This is because the approach is not limited by the form of a 

certain function, such as linear, quadratic, or cubic [3]. 

This case can be solved because non-parametric regression 

can find the shape of the regression curve model, which is 

not/not yet known. This ability is supported by the presence 

of parameters in each non-parametric regression method, 
which makes the regression curve model more flexible. One 

method in the non-parametric regression approach is 

Multivariate Adaptive Regression Spline (MARS) [4]. This 

method was developed first by Friedman in 1991. This 

method has many advantages because MARS models not only 

the additives effect but also the interaction effect in data 

modeling [5], so it allows better prediction and better 

interpretation than the other function in non-parametric 

regression [6]. 

There are some important things in the MARS method, 

namely ANOVA decomposition [7] and Importance Variable 

[8]. Decomposition ANOVA is a technique in MARS useful 
for grouping basis functions based on variables engagement 

[9], whether they enter by one variable or interactions with 

other variables, making it easier to interpret in graphical form. 

In comparison, the important variables are a technique that 

can be used to determine which predictor variables most 

influence MARS modeling [10]. During this time, the 

research of MARS was limited to data modeling. Several 

studies applying MARS principles that focus only on data 

modeling include 2019 by Kumar and Samui [11], who 

wanted to predict and compare the bearing capacity 

performance of piles embedded in soil without cohesion. In 
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addition, a study to obtain an accurate model for predicting 

nanofluid features was carried out by Maleki using three 

methods, including MARS [12]. Other than that, other 

research is to predict flow patterns in semi-arid areas with a 

new hybrid model called Multivariate Adaptive Regression 

Spline, which is integrated with Differential Evolution 

(MARS-DE). The results obtained in this study are the 

excellent capability of the MARS-DE model for monthly 

runoff fluxes in the semi-arid region [13]. Some of the results 

of the research above and most of the research related to the 
MARS method are still limited to data modeling while 

discussing how many studies have not developed the process 

of obtaining the ANOVA decomposition and importance 

variable, respectively. Based on those descriptions, this 

research aims to study the process of the ANOVA 

decomposition and importance variable in MARS modeling. 

This paper is divided into four parts. The first part is an 

explanation related to the introduction, where the problems 

and objectives of this research are proposed. Furthermore, the 

methodology section, the second section, explains the 

conceptual analysis method used and the data sources as a 
case study in this research. The third section is the analysis 

section and the results of the process to get the importance of 

the variables studied by the researcher, and finally, the last 

section reveals the conclusions reached. 

II. MATERIALS AND METHOD 

This chapter describes several concepts, research findings, 

and theorems that serve as a review of the literature and a 

theoretical basis to support the research. The study begins by 
explaining the regression analysis theory, including non-

parametric regression. The regression study focused on 

discussing one of the non-parametric regression methods used 

in this study, namely MARS. The MARS method, ANOVA 

decomposition, and processes of variables of importance in 

MARS modeling are also described in this chapter. The 

MARS model and the process of variable importance in 

MARS modeling developed in this study will then be applied 

to the modeling of data on the level of well-being of the 

inhabitants of the island of Java, Indonesia, from the database 

of Statistics Indonesia data. 

A. Conceptual of Non-parametric Regression Model 

Regression analysis in statistics explains a causal 

relationship between responses and predictors [14]. Two 

approaches are often used in regression analysis: parametric 

and non-parametric regression. The main difference between 

these two regression approaches lies in the assumption of the 

shape of the regression curve pattern used in the data 

modeling [15]. Regression studies are focused on this 

research, namely the non-parametric regression method. 
The parametric regression approach cannot be used when 

the model of the relationship between the response and the 

predictor is not known for the shape of the regression curve 

because if it is forced and the shape of the curve n is not 

appropriate, it will produce a large error variance. The 

approach that should be used in this condition is a non-

parametric regression approach [16]. Regression studies 

discuss one non-parametric regression method used in this 

study, Multivariate Adaptive Regression Spline (MARS). The 

MARS method is an extension of the truncated spline method 

which is also described in this chapter. 

B. Truncated Spline in Non-parametric Regression 

The spline is a very popular method in the non-parametric 

regression approach. The spline as a data model approach was 

introduced by Whittaker [17], while the spline as an 

optimization problem was developed by Reinsch [18]. Spline 
methods in non-parametric regression can be found in many 

forms, including smoothing splines [19], [20], [21], and 

truncated splines [22], [23], [24]. 

The two spline methods use different parameters to 

estimate the regression curve more flexibly, namely the 

smoothing parameter for the smoothing spline and the knot 

point on the truncated spline [25]. The difference in the types 

of parameters causes the optimization to get an estimator for 

the two spline methods is also different. The difference in the 

types of parameters causes the optimization to get an 

estimator for the two spline methods is also different. A 
smoothing spline estimator that depends on the smoothing 

parameter is obtained by optimization of penalized least 

squares. The difference in the types of parameters causes the 

optimization to get an estimator for the two spline methods is 

also different. The smoothing spline estimator that depends 

on the smoothing parameter is obtained by optimization of 

penalized least squares (PLS) [20], while the estimator of 

truncated spline that depends on knot point is obtained by 

optimization of ordinary least squares (OLS) [26]. 

C. Conceptual of Multivariate Adaptive Regression Spline 

(MARS) 

The truncated spline method, in its application, often has 

limitations in determining the position and number of node 

points used when regression modeling involves many 

predictors. Indeed, the combination of nodes to be chosen is 

very large and complex, namely from the combination of the 

number of predictors, the position of the nodes, and the 

number of nodes [27]. The MARS method makes it possible 

to overcome the weakness of the truncated spline in this case 

because the determination of the nodes in MARS is not sought 
individually from the combination but by an adaptive process. 

The adaptive process in MARS is performed with a stepping 

algorithm including forward and backward stepwise [28]. 

The multivariate adaptive regression spline (MARS) 

method developed by Friedman in 1991 is part of a non-

parametric regression model useful for solving high-

dimensional data problems [29]. This method can produce 

accurate response variable predictions and produce a 

continuous model in knots based on the smallest Generalized 

cross-validation (GCV) value [30]. GCV is a method for 

obtaining optimal knots. At each knot, there is expected to be 

continuity of the base of function from one region to another. 
The function's basis explains the relationship between the 

response variable and the predictor. It was suggested that the 

maximum number of basic functions (BF) is two to four times 

the number of predictor variables while the maximum number 

of interactions (MI) is one, two, or three, knowing that more 

than three results in a very complex model and a minimal 

distance between knots or minimum observation (MO) of 

zero, one, two, three, five, and ten [31]. Multivariate Adaptive 

Regression Spline (MARS) is a non-parametric function that 
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is a complex combination between spline regression and 

recursive partitioning (RPR) [32]. According to Friedman 

[33], MARS model can be expressed in equation form as 

follows.  

 �� = ����� , �	� , . . . , ���� + ��;   � = 1,2, . . . , � (1) 
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The variable notation in eq. (1) and (2) is expressed as 

follows: y and x are the response and predictor variable, 

respectively, f is MARS function, ε is random error, p is the 

number of predictors, α is the coefficient of basis function, M 

is the number of basis function, Km is the kth interaction, skm = 

± 1 is the sign of a pair of basis function, and Bm is the mth 

basis function. In simple form, MARS model in eq. (1) can be 

expressed in matrix form as follows: 
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In order to get parameter estimation in the MARS model, 

we use the ordinary least square (OLS) method by assuming 

random error as a normal distribution with mean 0̰ and 

variance 5	6with result as follows: 

 �̰7��̰� = *�*-*�8�*-�̰ (4) 

According to Friedman, the best model in MARS is 

obtained by stepwise procedure, including forward and 

backward stepwise [34]. The model was built forward 

stepwise by adding the basis function until we obtained the 

model with the maximum number of basic functions. In 

comparison, the backward stepwise aims to get the simplified 

model (parsimonious) [35]. In this stage, we eliminate basis 

functions with a small contribution to the model controlled by 

minimum GCV value [36]. The value of GCV in MARS is 
expressed in the formula as follows [33] 

 9:; = ,</��=̰8>̰7�?̰��@�=̰8>̰7�?̰���
��8A���/,�C  (5) 

Where D�)�
 
is the complexity penalty with the formula: D�)� = )��E/2� + 1� + 1, for M is the number of basis 

functions while d is factor penalty which has the best value on 

interval 2 to 4 [33]. 
 

 

D. ANOVA Decomposition in MARS Modeling 

MARS model in eq. (2) can be classified into some 

functions based on predictor variables that enter into the 

model, whether they contain one variable or interaction 
between variables. The classification makes MARS model 

can be easier to explain the relationship between the response 

variable and predictor variables. ANOVA Decomposition can 

be formulated as follows [37]. 

���� = �� + � �F
%&��

��F�� + � �FG
%&�	

��F� , �G��
+ � �FGA

%&�H
��F� , �G� , �A��+. .. (6) 

Eq. (5) shows that the sum of the first function covers all 

basic functions for one predictor, the sum of the second 

function covers all basic functions for the interaction between 

two predictors, the sum of the third function covers all basic 

functions for the interaction between three variables, and so 

on. The contribution of interaction between two variables in 

Eq. (5) can be expressed in the following equation. 

 �FG∗ ��F� , �G�� = �F��F�� + �G��G�� + �FG��F� , �G�� (7) 

While on the higher level, it can be expressed in the same 

manner as shown in eq. (6). 

Eq. (5) in MARS modeling is known as ANOVA 

decomposition techniques. This technique can be used to 

determine the contribution of each function (ANOVA 
function), which is grouped by one predictor or interaction 

between predictors. The contribution of the ANOVA function 

can be visualized in graphic form. For example, the 

contribution of one predictor can be visualized by plotting 

fa(xa) to xa, whereas the contribution of interaction between 

two predictors can be visualized by plotting fab(xa,xb) to xa and 

xb. 

The ANOVA decomposition in the MARS model can be 

obtained by using algorithm stages as follows [9] 

1. Getting the optimal basis function in MARS model. 

2. Grouping the optimal basis function obtained in first stage, 

based on predictor’s involvement in model, whether it 
involves one predictor or interaction between predictos, 

thus forming some group function called ANOVA 

function. 

3. Calculate the standard deviation and the contribution of 

each ANOVA function to MARS model based on GCV 

value. 

4. Presenting the ANOVA function in graphical form so the 

model interpretation becomes easier. 

E. Importance Variable in MARS Modeling 

One of the important things in MARS modeling is the 

important variable. Based on the important variable, we can 

know which predictor variables provide the biggest impact on 

the data modeling. In order to get the value of the important 

variable in MARS, we need the algorithm proceeds as follows 

[12]. 

1. Getting the optimal basis function from the MARS 

modeling. 

2. Remove basis functions from the set of optimal basis 

functions obtained from step 1. We start from the basis 

function with the smallest contribution to the model 
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according to the Mean Squared Error (MSE) value and 

GCV. 

3. Calculate the difference in mse value (dif-mses) and GCV 

value (dif-gcvs) respectively from each step in the 

elimination process in step 2 compared to the condition of 

mse and GCV value before the elimination is done. 

4. Calculate the cumulative value from the dif-mses and dif-

gcvs obtained in step 3, for each predictor variable 

involved in the elimination step. 

5. Determine the maximum value of the cumulative dif-mses 
and dif-gcvs obtained in step 4. 

6. Determine the value of the importance variable by 

obtaining the square root of the division between each 

value in dif-mses and dif-gcvs with the maximum value of 

dif-mses and dif-gcvs, respectively, obtained in step 5 for 

each predictor variable. 

F. Data Analysis Steps 

The steps followed to analyze the method used are as 
follows: 

1. Form a plot matrix between the response variables (Y) and 

each predictor variable (X) which is used as the initial 

detection of the pattern of relationships between these 

variables. 

2. Develop data modeling on modeling well-being indicators 

in Java using the MARS method. The steps of analysis 

using the MARS method are the following: 

a. Combination of basis function (BF), maximum 

interaction (MI), and minimum observation (MO) 

b. Determine the best model with the minimum GCV 

value. Based on the results of the best model in step 
(2b). Furthermore, the analysis steps use the ANOVA 

decomposition method and the important variable. 

3. The analysis steps using the ANOVA decomposition 

method are as follows to obtain the value of the ANOVA 

decomposition. 

a. Obtain the optimal basis function from the MARS 

modeling in step (2b). The MARS model equation in 

step (2b) can be grouped into several ANOVA 

functions based on the involvement of the variables 

that enter the model. 

b. Group the basis of the optimal functions obtained in 
step 3a, according to the involvement of the variables 

in the model, involving either one variable or 

interactions between variables, to form several groups 

of functions called ANOVA functions. 

c. Calculation of the standard deviation and contribution 

of each ANOVA function to the MARS model based 

on the GCV value. 

d. Presentation of the ANOVA function in a graphical 

view for easier interpretation. In addition to the 

ANOVA decomposition, the MARS model also 

provides functionality for the important variable which 
is used to determine which predictor variable has the 

greatest influence on the MARS model. 

4. To obtain the variable importance value of each predictor 

as follows: 

a. Obtain the optimal basis function from the MARS 

modeling in step (2b). 

b. Remove the basic functions one by one from the set of 

optimal basis functions obtained in step (4a), starting 

with the basic functions that have the smallest 

contribution to the model according to the Mean 

Squared Error (MSE) and generalized cross-validation 

(GCV) values. 

c. Calculate the difference in the value of MSE (dif-

mses) and the difference in the value of GCV (dif-

gcvs), from each step of removing the basis function 

performed in step (4b) with the condition of the MSE 

values and GCV before the deletion step is performed. 

d. Calculate the cumulative value of the dif-mses and dif-
gcvs values obtained in step (4c), for each predictor 

variable involved in the base function deletion phase. 

e. Determine the maximum value of the cumulative dif-

mses and dif-gcvs obtained in step (4d). 

f. Determining the importance variable value of each 

predictor variable by obtaining the square root of 

dividing each value of dif-mses and dif-gcvs with the 

maximum value of dif-mses and maximum dif-gcvs 

obtained at step (4e) for each variable predictor. 

The stages of data analysis in this study can be described in a 

flow chart, as shown in Figure 1 below. 
 

 
Fig. 1  Research flow chart ANOVA decomposition and importance variable 

process in multivariate adaptive regression spline model 
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G. Data Source 

To implement the ANOVA decomposition and importance 

variables process in MARS, then this research uses the data 

about welfare indicators modeling in Java Island, Indonesia, 
sourced from the Statistics Indonesia database. As a response 

variable (y), we use the data of poverty rate, while for the 

predictor variable (x), we use the data of percentage per capita 

expenditure for food (x1), economic growth (x2), and 

unemployment rate (x3), respectively. Furthermore, to 

identify the relationship pattern between the response and 

predictor variable, then we present a scatter plot of the 

research variables as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2  Scatter plot between the response variable “y” and the predictor 

variable “x” (a) variable “y” with variable “x1” (b) variable “y” with variable 

“x2” (c) variable “y” with variable “x3” 

 
Based on Fig.2 (a-c), the relationship pattern between the 

response and predictor variables appears to show an unknown 

pattern, or there is a tendency to have behavior change in 

some sub-interval data. These conditions cause non-

parametric regression, as MARS is more appropriately used 

to model the poverty rate data than parametric regression. 

III. RESULTS AND DISCUSSION 

Based on data processing in MARS, the estimate of the 

optimal function basis is obtained in the regression equation 

as follows. 

 

�7 = 9.93 − 0.53 ∗ BF� + 3.49 ∗ BF	 − 1.58 ∗ BFH+ 8.89 ∗ BFQ − 2.44 ∗ BFR+ 0.93 ∗ BFS 

(8) 

The MARS function in eq. (8) can be grouped into several 

ANOVA functions based on predictor involvement which 

enter into the model, whether they enter as one predictor or 

interaction between predictors. Contributions of the ANOVA 
function can be expressed in the ANOVA decomposition 

table as follows. 

TABLE I 

VARIABLE ANOVA DECOMPOSITION IN MARS MODELING 

ANOVA 

Function 
Std.dev GCV 

The Number 

of Basis 
Variable 

f1 32.60 12.71 1 x1 
f2 32.15 9.34 1 x2 
f3 29.42 30.89 2 x3 
f4 31.73 8.97 1 x1, x2 
f5 32.09 9.94 1 x2, x3 

 
Table 1 shows that the largest contribution to the MARS 

model (poverty rate) is given by ANOVA function f3 with 

impairment contributions to GCV model is 30.89. While the 

smallest contribution is given by ANOVA function f4 with 

impairment contribution to GCV model is 8.97. Both plot 

representations by the additive and interaction are presented 

in Fig. 3 and Fig. 4. 

Interpretations that can be obtained from the plot of the 

ANOVA function in Fig. 3 are as follows: The additive model 

(ANOVA function f3) shows that the lower unemployment 

rate (x3) tends to impact the increasing poverty rate. This 
phenomenon usually occurs in the district/city where their 

jobs are dominated by the agricultural sector, where their 

labor involves almost all the family members but with low 

income. So even though the unemployment is low in this 

region, they are still poor. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3  Plotting the ANOVA function with one predictor additively (ANOVA 

function f3) 

 

The additional interpretation is shown by ANOVA 

function f5 (function of interaction), which shows that the 

unemployment rate does not always affect the poverty rate 

increase under certain conditions. However, it rather affects 
the poverty rate decrease with high economic growth in this 

region. Interpretation for this interaction is not found in other 

non-parametric models, which model data by additive only, 

so the interpretation of the model is incomplete. 
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Fig. 4  Plotting the ANOVA function f5 (function of interaction) with 

interaction between two predictors in poverty rate modeling.  

TABLE II 

THE VALUE OF MSES , DIF(MSES), GCVS AND DIF (GCVS) ON EACH STAGE OF 

BASIS  FUNCTION ELIMINATION WHICH CONTAIN THE CORRESPONDING 

PREDICTOR VARIABLE 

Sourc

e 

The stage of basis function elimination 

1st 2nd 3rd 4th 5th 6th 7th 

Basis 

Functi

on 

constant constant constant constant constant constant constant 

x1 x1 x1 x1 x1 x1 - 

x3 x3 x3 x2,x3 x3 - - 

x2 x2,x1 x2,x3 x3 - - - 

x2,x1 x2,x3 x3 - - - - 

x2,x3 x3 - - - - - 

x3 - - - - - - 

mses 5.35 5.67 5.91 6.44 7.36 8.84 18.64 

dif 

(mses) 
0.32 0.24 0.53 0.92 1.48 9.80 - 

gcvs 7.17 7.23 7.19 7.48 8.17 9.39 18.96 

dif 

(gcvs) 
0.06 -0.04 0.29 0.69 1.22 9.57 - 

remark: dif(mses(i)) = mses(stage-i + 1) – mses(stage-i) 

             dif(gcvs(i)) = gcvs(stage-i + 1) – gcvs(stage-i) 

 

In addition to ANOVA decomposition, MARS model also 

provides important variable technique which serves to 

determine the predictor variables which have the greatest 

influence on the MARS model. To determine the variable 

importance from its equation model, we can start by removing 

the basis function one by one until the only remaining basis 
function constant is reached. We use mse and GCV criteria to 

remove basis function above. Furthermore, in each 

elimination of the basis function, we calculate the difference 

value of mse (dif-mses) and GCV (dif-gcvs) compared to the 

condition before the elimination is done, as shown in Table 2. 

The next step is calculating the cumulative value of dif-mse 

and dif-GCV for each elimination stage containing the 

corresponding predictor variables. Based on this stage, we 

obtain the importance variable value from each predictor, as 

shown in Table 3. Furthermore, based on Table 3, we can 

determine which of predictor variables which have highest to 

lowest value in variable importance according to mses and 
gcvs criteria, variable x1 (percentage of per capita 

expenditure for food) is a predictor variable which has the 

highest importance value in modeling data response, namely 

poverty rate (y) variable with gcvs and mses value are 100 

percent respectively. While x2 (economic growth) is a 

predictor variable with the lowest level with gcvs and mses 

value of 12.29 percent and 38.89 percent respectively. 

Besides, based on nsubsets criteria shows that x1 variable is 

still survive (not removed) until the 6th stage of basis function 

elimination. It means that the contribution of these variables 

is the most influence for the model formation. While for x2 

variable is only survive until the 4th stage of basis function 

elimination and is removed on the 5th elimination. It shows 

that the contribution of this variable to the overall model is the 

smallest than the other predictor variables. 

TABLE III 

CUMULATIVE VALUE OF DIF (MSES) ON EACH STAGE OF BASIS FUNCTION 

ELIMINATION IN CALCULATING IMPORTANCE VARIABLE ON CORRESPONDING 

PREDICTOR 

The stage of 

basis function 

elimination 

Variable of dif(mses) 

x1 x2 x3 

1st 0.32 0.32 0.32 
2nd 0.24 0.24 0.24 
3rd 0.53 0.53 0.53 

4th 0.92 0.92 0.92 
5th 1.48 - 1.48 
6th 9.80 - - 
7th - - - 

Total 13.29 2.01 3.49 
importance 100.00 38.89 51.24 

remark: importance = sqrt(./max)*100 

IV. CONCLUSION 

Based on results and discussion, it is known that the 

ANOVA decomposition and importance variable has 

respective roles in MARS modeling. ANOVA decomposition 

is good for interpreting the MARS model, whereas the 

importance variable is good for determining each predictor 

variable's contribution. The results on real data (poverty rate 

data) show that the interpretation of MARS model through 

decomposition ANOVA is advantageous because MARS 

explains the additive effect and the predictors' interaction 
effect on the response. It is not found in other non-parametric 

methods because other non-parametric only interpret data for 

additives alone. Based on the implementation of MARS on 

real data, it can be seen that the largest important variable in 

poverty rate modeling is the percentage per capita food 

expenditure (x1), whereas the smallest importance is the 

economic growth (x2). 
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