
Vol.13 (2023) No. 3

ISSN: 2088-5334

Real-Time Bus Arrival Time Estimation API using WebSocket in

Microservices Architecture

Kristian Adi Nugraha a,*
a Faculty of Information Technology, Universitas Kristen Duta Wacana, Yogyakarta, 55224, Indonesia

Corresponding author: *adinugraha@ti.ukdw.ac.id

Abstract—In almost all countries, public transportation is the primary choice for people to make daily trips. One of the main problems

of public transportation is the accuracy of the vehicle arrival schedule information. In some types of public transportation with

particular tracks, such as rapid transit (e.g., MRT), the arrival time can be predicted easily because traffic jams do not affect

transportation. This is different from buses, which use the same route as other vehicles so that traffic jams could affect them. This study

tries to solve this problem by building an API that can be used to get information on the estimated arrival time of the bus. Estimated

time is calculated based on the condition of the bus position and the actual condition of highway traffic from Google Directions API.

The API was built using microservices technology, so it can be done quickly if it is further developed to a larger scale. The test was

conducted on the Trans Jogja Bus by taking two routes, the short and the long routes. Each route could be explored 20 times under

varying time and traffic conditions. Then, the difference between the estimated bus arrival time and the actual bus arrival time could

be calculated on each trip. Based on the test results, the estimated bus arrival time generated by the API can be said to be entirely

accurate because the difference between the estimated time and the actual bus arrival time is less than 30 seconds.

Keywords— API; microservices; software architecture; bus arrival time; WebSocket.

Manuscript received 22 Jul. 2022; revised 7 Nov. 2022; accepted 5 Jan. 2023. Date of publication 30 Jun. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Information is essential and must be obtained quickly

through advanced technologies, primarily smartphone-based

applications because three out of eight billion people today

already have smartphones [1]. Any information related to
public transportation systems, such as routes and schedules, is

an example of an essential piece of information. If someone

has the necessary transportation details, it could help them to

avoid being late. The most needed information related to

public transportation systems is the arrival time of vehicles at

the station so that people can figure out how long it could take

them to get to their destination [2]. Commuters use two kinds

of mass transportation in the city: bus and rapid transit (MRT,

subway). Most regions, particularly Southeast Asia, only have

buses as the primary means of traveling [3]. A problem

appeared when discussing the arrival time of the bus because
it shared the road with other vehicles and did not have any

particular track as rapid transit did. As a result, it is difficult

for any bus to predict its arrival time because it depends on

many factors like traffic jams, traffic diversion, or roadworks

[4]. That seems impossible to make a fixed schedule for the

bus arrival time because the time would be different each time

the bus arrived. The only way to fix this problem is by

periodically measuring bus arrival time estimation to the bus

stop based on road traffic or other obstacles that might slow

down the bus speed. Although this method might not

accurately predict the arrival time, at least the estimated time

result can help compared to none.

The solution above requires a GPS tracker inside the bus
with a communication device to periodically send its location

to the server to estimate the bus arrival time[5]. However, this

approach is costly and challenging to implement because

needs to buy a set of hardware for each bus. A cheaper

alternative to applying that approach is a smartphone-based

application to send its location through cellular networks to

the server. There is no need to buy additional equipment to

implement this approach, assuming each driver already owns

a mobile phone (smartphone). This approach also requires a

web-based server API (Application Programming Interface),

which connects the client and server to store bus location data

from the driver's smartphone and calculate the arrival time to
the next bus stop [6].

1018

Service-oriented architecture is a type of architecture that

is widely used to accommodate applications that have two

sides, called client and server [7]. There are two popular types

of server-based architecture: monolithic and microservices.

Monolithic architecture is a traditional server-based

architecture that can be quickly designed and implemented

since all components are placed in one (mono) computer [8].

Although it has many benefits, monolithic architecture has

some drawbacks, such as scaling up and maintaining, that are

hard to deal with. We sometimes did not know how many
resources the server needed initially, so it would be a waste if

we set up huge but unused resources. Microservices

architecture was designed to resolve this issue. It consists of

many modules that can communicate to exchange data, and

each module stands for only one loosely coupled service [9].

If a module was processing too many tasks, that module's

resources could be upgraded to handle the job properly

without disturbing another module.

Because bus arrival schedule information must be

presented in real-time, a particular technology, called

WebSocket, is needed to support this solution. WebSocket is
a two-way communication technology that allows the client

or server to send messages first through a single TCP/IP

socket connection [10]. Thus, anyone who wants to send

information can send it directly without waiting for the other

side to call first. Because the data transmission process can be

done quickly, this technology is suitable for application to a

system that requires real-time information. This research aims

to see how accurate the estimated time of bus arrival is from

a socket-based server in a microservice architecture; then, it

can be used to help people by providing real-time bus

schedule information.

II. MATERIAL AND METHOD

In this section, socket server and microservices architecture

are presented.

A. Application Programming Interface (API)

Application Programming Interface or API is an interface
that allows a computer to communicate with other computers

to exchange data [11, 12, 13]. API is usually used for software

built with a service-oriented architecture structure consisting

of a client and a server, where the API acts as a server [14].

All communication between machines is done through the

API, but currently, the word "API" refers more to a web-based

API [15, 16, 17]. Web APIs, often called Web Service [18],

are usually used as the back-end to build applications with

various platforms, such as web-based and mobile applications

because the API is designed not to be tied to the platform type

of client that could access it [19, 20]. One of the most widely

used API types is REST because of its simple scheme [21, 22,
23]. It does not require powerful resources, so server

performance is not too heavy [24]. Only one centralized

database is placed on the web server using the API, as shown

in Figure 1.

While from the client side (web and mobile), it is only

enough to make a request when it needs to send data and

receive a response when it requires specific data from the

database. The entire communication process is generally done

over the Internet using the HTTP protocol.

Fig. 1 Service-oriented architecture diagram

B. WebSocket

Hypertext Transfer Protocol (HTTP) is the most popular

network protocol to distribute information from one machine

to another over a network [25].

Fig. 2 Standard HTTP protocol

WebSocket is a network protocol like HTTP. It is part of a

computer program that allows full-duplex communication
between two programs through the network, usually

implemented in web or mobile applications to communicate

with the web [26, 27]. WebSocket consists of an IP address

and port as an endpoint to listen to any requests sent by the

client. The main distinction between HTTP and WebSocket

protocols is that each request is always replied to with a single

1019

response (handshake), as shown in Figure 2. In contrast, the

WebSocket protocol can reply to each request with many

responses. The server must receive the request first before

responding to the client using the HTTP protocol.

On the other hand, the WebSocket protocol allows the

server to transmit responses at any moment, even if the client

does not initiate a request (bidirectional) [28]. Because the

data transmission process is faster than the standard HTTP

protocol, WebSocket can be used to build a system that

requires real-time information transmission [29]. In this study,
WebSocket could continuously be used to update information

on the location of the bus that is running and could also be

used to obtain real-time bus arrival schedule information at a

bus stop.

C. Microservice

Microservice architecture is a collection of software

components composed of small modules [30]. Microservices

have the advantage of adapting to the system's scale, so it does
not matter if the system scale suddenly needs to be expanded

or reduced [31, 32, 33]. Microservice can divide the work into

small modules, so the load on each module could be lighter

[34, 35]. The main advantage of using microservices is the

ease of maintenance and flexibility when system changes

need to be implemented [36, 37].

Fig. 3 WebSocket protocol

Fig. 4 Example of microservice architecture [38]

D. System Preparation

The system architecture consists of several servers to

process requests and one API Gateway as the application's

endpoint. All client requests could be addressed to the API

Gateway; then, the API Gateway could determine the server

that could process the request. Thus, the server workload can

be divided evenly and not burden only one server, as shown

in Figure 5. Because it uses a microservices architecture, if

the server load is considered too heavy, for example, because

the number of bus fleets or end-users increases, it is enough

to add a new server connected to the existing system. This

architecture also allows the API to be used for similar

1020

transportation systems in other cities by copying existing

services to a new server and connecting them all into a system.

There are two types of clients who could use the API: bus

drivers and end-users. The bus driver's application (client)

updates the bus's latitude and longitude (geolocation)

coordinate continuously with time intervals of 10 seconds

through the background (asynchronous) process. The location

could be sent and stored on the server via the location service

bus using the socket protocol. The 10-second break was

chosen with consideration so as not to burden the driver's
cellphone too much, especially in terms of power and

bandwidth. In addition, if the bus travels at a standard speed

of 40 kilometers per hour, then in 10 seconds, the bus can

move the maximum distance of 111 meters. This value could

be the maximum value of the location difference between the

latest bus location data and the actual bus location still within

the tolerance limit.

Fig. 5 System architecture

In the end-user application, there is a feature to view the

estimated time of bus arrival at a bus stop via bus schedule
service. As a client, the end-user application could send a

request to the server (API) to get the estimated arrival time

data, as shown in Figure 6 Estimated arrival time is calculated

based on previous mileage data compared to current traffic

conditions obtained from the Google Directions API. There

are three traffic density categories: light, medium, and heavy.

All three are stored separately on the database in JSON format,

as in the example in Figure 7. JSON can produce smaller file

sizes than other formats (e.g., XML), so it's less burdensome

on the server [39].

Fig. 6 Flowchart of estimated arrival time request

"4-5" : {

 "light": 163,

 "medium": 381,

 "heavy": 597

},

"9-10" : {

 "light": 215,

 "medium": 430,

 "heavy": 679

},

Fig. 7 Example of traffic data

Each data is stored in seconds with a key in the form of the
origin and destination stop id, connected with a '-' sign. If the

current traffic conditions are heavy, then the data that could

be used for estimation is when the traffic conditions are heavy.

Thus, the estimated bus arrival time calculation is expected to

produce a more accurate value.

1021

Fig. 8 Example of API usage for end-user apps

Every time the bus moves from one stop to another, the
server could save the current travel time and traffic conditions

to update the data for calculating the next estimated arrival

time. Considering the estimated arrival time of the bus could

be more accurate because the road conditions are not much

different from the previous trip. An example of an application

user interface that could use this service is shown in Figure 8.

III. RESULT AND DISCUSSION

The test was conducted using the Trans Jogja Bus public

transportation service by riding the bus directly. There are two

routes that are the object of the test: a short route that passes

through 8 stops and a long route that passes through 15 stops.

Each route could take 20 trips on different days with varying

times and traffic conditions.

TABLE I

ESTIMATED ARRIVAL TIME DIFFERENCE FOR SHORT ROUTE

Bus

Stop

Distance

(m)

Time Difference (in seconds)

Min Max Average

1 700 1 40 19.7
2 1500 1 42 14.6
3 2100 3 82 34.7
4 1300 -9 47 22.7
5 950 -15 58 27.35
6 1200 1 59 23.95
7 1000 -7 47 27.25

8 1200 -11 57 24.7

Average -4.5 54 24.37

Every time the bus departs from one stop to the next, the

estimated time shown by the application could be compared

with the actual time to the next stop. Thus, each stop could

have as many as 20 estimated times varying from light to

heavy traffic. The results of these tests are shown in Table 1

for the short route and Table II for long route.

From Table 1 above, we can conclude that the average

overall difference between the estimated bus arrival time and

the actual time is under 30 seconds, to be exact, 24.37 seconds.

There is only one bus stop with an average time difference of

more than 30 seconds, namely at bus stop #3, with a value of

34.7 seconds. At that stop, the highest time difference is 82

seconds, where this value has a fairly large gap when
compared to other stops with a shorter distance. It can happen

because the distance between bus stop #3 and the previous

stop (#2) is quite far compared to the distance between other

stops, which is 2100 meters (2.1 km). Because the journey

taken is getting farther, the possibility of obstacles could also

be greater, which delays the bus arrival time.

TABLE II

ESTIMATED ARRIVAL TIME DIFFERENCE FOR LONG ROUTE

Bus Stop
Distance (m)

Time Difference (in seconds)

Min Max Average

1 900 4 58 24.25
2 800 6 59 32.4
3 1100 2 58 29.0
4 1000 -24 28 11.2
5 450 -1 20 9.35
6 1350 9 89 51.95
7 500 3 55 28.7
8 550 1 54 23.6

9 500 -5 53 25.35
10 900 1 54 23.4
11 900 8 54 30.15
12 1100 2 58 20.25
13 750 1 36 15.15
14 700 -18 56 23.9
15 950 5 45 18.3

Average -0.4 51.8 24.46

Similar results also occur in the test for long routes, where

the average difference between the estimated arrival time and

the actual time is 24.46 seconds. There are several stops with

an estimated bus arrival time of more than 30 seconds, but the

most significant is at stop #6, where the average time

difference is 51.95 seconds. Stop #6 has the longest distance

to the previous stop compared to other stops, resulting in a

significant time difference.

The relationship between the distance to the difference

between the estimated arrival time and the actual time can be

seen as a plot in Figure 9. The figure shows that the farther

the distance between the stops, the higher the difference in
time difference could be, although the increase is not

significant. It happens because the farther the bus travels from

one stop to the next, the higher the chance of problems

hindering bus travel. On the other hand, if the bus mileage is

relatively short, the bus could reach the next stop faster, so the

chance of obstacles appearing is also relatively small.

Based on the overall test results, the average difference

between the estimated arrival time and the actual time is under

30 seconds. Because the error value is relatively small, the

results can be tolerated so that the estimated bus arrival time

can still be said to be accurate enough to be widely used.

1022

Fig. 9 Relations between distance (x) with difference between estimated and

actual arrival time (y)

IV. CONCLUSION

Overall, it can be concluded that the estimated bus arrival

time information can be given accurately with an error rate of

under 30 seconds. If there is a difference between the

estimated time and the actual arrival time, then the difference

could not be more than 30 seconds, which can be said to be a

good result. Some steps that can be taken in the future to

improve accuracy are by enriching traffic information from

sources other than the Google Directions API. Since road

traffic is unpredictable, it would be better if there were many
other sources of information to determine the estimated bus

arrival time in real-time.

ACKNOWLEDGMENT

We thank Universitas Kristen Duta Wacana for providing

the sponsorship to do this research.

REFERENCES

[1] S. O'Dea, "Smartphone users worldwide 2016-2021," Statista, 10

December 2010. [Online]. Available:

https://www.statista.com/statistics/330695/number-of-smartphone-

users-

worldwide/#:~:text=How%20many%20people%20have%20smartph

ones,in%20the%20next%20few%20years.. [Accessed 12 February

2021].

[2] B. Yu, W. H. K. Lam and M. L. Tam, "Bus arrival time prediction at

bus stop with multiple routes," Transportation Research Part C:

Emerging Technologies, vol. 19, no. 6, pp. 1157-1170, 2011.

[3] R. Hassan, H. I. A. Jabar, M. K. Hasan, M. C. Lam and W. M. H. W.

Hussain, "Cloud Based Performance Data Analysis and Monitoring

System for Express Bus in Malaysia," International Journal on

Advanced Science, Engineering and Information Technology, vol. 9,

no. 6, pp. 1959-1967, 2019.

[4] Z. Y. Xie, Y. R. He, C. C. Chen, Q. Q. Li and C. C. Wu, "Multistep

Prediction of Bus Arrival Time with the Recurrent Neural Network,"

Mathematical Problems of Applied System Innovations for IoT

Applications, vol. 2021, 2021.

[5] Q. Han, K. Liu, L. Zeng, G. He, L. Ye and F. Li, "A Bus Arrival Time

Prediction Method Based on Position Calibration and LSTM," IEEE

Access, vol. 8, pp. 42372 - 42383, 2020.

[6] D. Sebastian, Restyandito and K. A. Nugraha, "Developing of

Middleware and Cross Platform Chat Application," International

Journal of Advanced Computer Science and Applications, vol. 12, no.

11, pp. 79-85, 2021.

[7] V. A. Wardhany, H. Yuliandoko, Subono, M. U. H. A and I. G. P.

Astawa, "Smart System and Monitoring of Vanammei Shrimp Ponds,"

International Journal on Advanced Science, Engineering and

Information Technology, vol. 11, no. 4, pp. 1366-1372, 2021.

[8] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou and X. Shen, "Delay-

Aware Microservice Coordination in Mobile Edge Computing: A

Reinforcement Learning Approach," IEEE Transactions on Mobile

Computing, vol. 20, no. 3, pp. 939 - 951, 2021.

[9] Y. Y. F. Panduman, M. R. U. Albaab, A. R. A. Besari, S. Sukaridhoto,

A. Tjahjono and R. P. N. Budiarti, "Implementation of Data

Abstraction Layer Using Kafka on SEMAR Platform for Air Quality

Monitoring," International Journal on Advanced Science, Engineering

and Information Technology, vol. 9, no. 5, pp. 1520-1527, 2019.

[10] M. G. Son, K. S. Park and Y. H. Kong, "An Improvement of Hospital

Reception System using Web Socket," Journal of the Korea Society of

Computer and Information, vol. 20, no. 1, pp. 185-195, 2015.

[11] J. Zhang, H. Jiang, Z. Ren, T. Zhang and Z. Huang, "Enriching API

Documentation with Code Samples and Usage Scenarios from Crowd

Knowledge," IEEE Transactions on Software Engineering, vol. 47, no.

6, pp. 1299 - 1314, 2019.

[12] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella and H. Gall,

"Automatic Detection and Repair Recommendation of Directive

Defects in Java API Documentation," IEEE Transactions on Software

Engineering, vol. 46, no. 9, pp. 1004 - 1023, 2020.

[13] C. Chen, Z. Xing, Y. Liu and K. O. L. Xiong, "Mining Likely

Analogical APIs Across Third-Party Libraries via Large-Scale

Unsupervised API Semantics Embedding," IEEE Transactions on

Software Engineering, vol. 47, no. 3, pp. 432 - 447, 2021.

[14] L. Qi, Q. He, F. Chen, X. Zhang, W. Dou and Q. Ni, "Data-Driven

Web APIs Recommendation for Building Web Applications," IEEE

Transactions on Big Data, vol. 8, no. 3, pp. 685 - 698, 2022.

[15] L. Li, W. Chou, W. Zhou and M. Luo, "Design Patterns and

Extensibility of REST API for Networking Applications," IEEE

Transactions on Network and Service Management , vol. 13, no. 1, pp.

154 - 167, 2016.

[16] X. Wang, Q. Sun and J. Liang, "JSON-LD Based Web API Semantic

Annotation Considering Distributed Knowledge," IEEE Access , vol.

8, pp. 197203 - 197221, 2020.

[17] L. Shen, M. Pan, L. Liu, D. You, F. Li and Z. Chen, "Contexts Enhance

Accuracy: On Modeling Context Aware Deep Factorization Machine

for Web API QoS Prediction," IEEE Access, vol. 8, pp. 165551 -

165569, 2020.

[18] J. M. Z. Mohd Hariz Naim, K. A. Jalil and L. Salahuddin, "Segmented

Network Architecture for Promoting High Availability in Fog

Computing through Middleware," International Journal on Advanced

Science, Engineering and Information Technology, vol. 11, no. 6, pp.

2509-2517, 2021.

[19] M. Lamothe, W. Shang and T.-H. P. Chen, "A3: Assisting Android

API Migrations Using Code Examples," IEEE Transactions on

Software Engineering , vol. 48, no. 2, pp. 417 - 431, 2020.

[20] W. Rafique, X. Zhao, S. Yu, I. Yaqoob, M. Imran and N. U. N. C.

Wanchun Dou Department of Computer Science and Technology and

the State Key Laboratory for Novel Software Technology, "An

Application Development Framework for Internet-of-Things Service

Orchestration," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4543

- 4556, 2020.

[21] A. Neumann, N. Laranjeiro and J. Bernardino, "An Analysis of Public

REST Web Service APIs," IEEE Transactions on Services Computing,

vol. 14, no. 4, pp. 957 - 970, 2021.

[22] G. Vega-Gorgojo, "CRAFTS: Configurable REST APIs for Triple

Stores," IEEE Access , vol. 10, pp. 32426 - 32441, 2022.

[23] L. Jiang, H. Liu, H. Jiang, L. Zhang and H. Mei, "Heuristic and Neural

Network Based Prediction of Project-Specific API Member Access,"

IEEE Transactions on Software Engineering, vol. 48, pp. 1249 - 1267,

2022.

[24] N. Laranjeiro, J. Agnelo and J. Bernardino, "A Black Box Tool for

Robustness Testing of REST Services," IEEE Access, vol. 9, pp. 24738

- 24754, 2021.

[25] Y. Go, H. Noh, G. Park and H. Song, "Hybrid TCP/UDP-Based

Enhanced HTTP Adaptive Streaming System With Multi-Homed

Mobile Terminal," IEEE Transactions on Vehicular Technology, vol.

68, no. 5, pp. 5114 - 5128, 2019.

[26] Q. Liu and X. Sun, "Research of Web Real-Time Communication

Based on Web Socket," International Journal of Communications,

Network and System Sciences, vol. 5, no. 12, pp. 797-801, 2012.

[27] C. U. o. P. a. T. C. C. Wenbo Mei School of Computer Science and

Technology and Z. Long, "Research and Defense of Cross-Site

WebSocket Hijacking Vulnerability," in 2020 IEEE International

Conference on Artificial Intelligence and Computer Applications

(ICAICA), Dalian, China, 2020.

1023

[28] B. C. Li and S. Z. Yu, "Keyword Mining for Private Protocols

Tunneled Over WebSocket," IEEE Communications Letters, vol. 20,

no. 7, pp. 1337 - 1340, 2016.

[29] C. Pintavirooj, T. Keatsamarn and T. Treebupachatsakul, "Multi-

Parameter Vital Sign Telemedicine System Using Web Socket for

COVID19 Pandemics," Healthcare, vol. 9, no. 3, 2021.

[30] H. Calderón-Gómez, L. Mendoza-Pittí, M. Vargas-Lombardo, J. M.

Gómez-Pulido and J. Luis, "Telemonitoring System for Infectious

Disease Prediction in Elderly People Based on a Novel Microservice

Architecture," IEEE Access, vol. 8, pp. 118340 - 118354, 2020.

[31] N. C. Coulson, S. Sotiriadis and N. Bessis, "Adaptive Microservice

Scaling for Elastic Applications," IEEE Internet of Things Journal, vol.

7, no. 5, pp. 4195 - 4202, 2020.

[32] A. Ali and M. M. Iqbal, "A Cost and Energy Efficient Task Scheduling

Technique to Offload Microservices Based Applications in Mobile

Cloud Computing," IEEE Access, vol. 10, pp. 46633 - 46651, 2022.

[33] Y. Liang and Y. Lan, "TCLBM: A task chain-based load balancing

algorithm for microservices," Tsinghua Science and Technology , vol.

26, no. 3, pp. 251 - 258, 2021.

[34] K. Fu, W. Zhang, Q. Chen, D. Zeng and M. Guo, "Adaptive Resource

Efficient Microservice Deployment in Cloud-Edge Continuum," IEEE

Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.

1825 - 1840, 2022.

[35] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang and C. Lin,

"Microservice Deployment in Edge Computing Based on Deep Q

Learning," IEEE Transactions on Parallel and Distributed Systems ,

vol. 33, no. 11, pp. 2968 - 2978, 2022.

[36] I. K. Aksakalli, T. Celik, A. B. Can and B. Tekinerdogan, "Systematic

Approach for Generation of Feasible Deployment Alternatives for

Microservices Publisher: IEEE Cite This PDF," IEEE Access , vol. 9,

pp. 29505 - 29529, 2021.

[37] G. Blinowski, A. Ojdowska and A. Przybyłek, "Monolithic vs.

Microservice Architecture: A Performance and Scalability

Evaluation," IEEE Access, vol. 10, pp. 20357 - 20374, 2022.

[38] C. Richardson, "Pattern: Microservice Architecture," Microservices.io,

2021. [Online]. Available:

https://microservices.io/patterns/microservices.html. [Accessed 30

November 2021].

[39] Rianto, M. A. Rifansyah, R. Gunawan, I. Darmawan and A.

Rahmatulloh, "Comparison of JSON and XML Data Formats in

Document Stored NoSql Database Replication Processes,"

International Journal on Advanced Science, Engineering and

Information Technology, vol. 11, no. 3, pp. 1150-1156, 2021.

1024

