
Vol.14 (2024) No. 4

ISSN: 2088-5334

Vehicle License Plate Detection and Recognition using OpenCV

and Tesseract OCR

Kalaphath Kounlaxay a, Yeo Chan Yoon b, Soo Kyun Kim b,*
a Department of Computer Engineering, Souphanouvong University, Louangprabang City, Laos

b Department of Artificial Intelligence, Jeju National University, Jeju City, Republic of Korea
c Department of Computer Engineering, Jeju National University, Jeju City, Republic of Korea

Corresponding author: *kimsk@jejunu.ac.kr

Abstract—License plate recognition (LPR) is essential as the number of vehicles increases and the human ability to accomplish this task

is limited. If human labor is used to manage these, it will take a lot of time and energy and cause a discrepancy. License Plate Recognition

(LPR) is an advanced technology that leverages optical character recognition (OCR) and various image processing methods to read

vehicle license plates automatically. Typically, an LPR system comprises two primary components: detecting vehicles and their license

plates and recognizing the alphanumeric characters displayed on those plates. This study explores the use of OpenCV for license plate

detection and Tesseract OCR for character recognition. In this research, the dataset for training and testing the system included 100

license plates evenly split between plates featuring English and Lao characters. The Lao license plates presented unique complexities

due to their specific characteristics. The experimental setup involved processing images of license plates taken from multiple angles.

The system's performance was evaluated based on the speed and accuracy of line and character recognition. For English character

plates, the recognition process took 0.12 seconds with an accuracy of 98.8%. In contrast, the Lao character plates required 0.24 seconds,

achieving an accuracy rate of 89.42%.

Keywords—Computer vision; license plate; ROI; OpenCV; tesseract OCR.

Manuscript received 20 Dec. 2023; revised 23 Feb. 2024; accepted 8 Apr. 2024. Date of publication 31 Aug. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

LPR technology continues to evolve with advancements in

computer vision, machine learning, and deep learning,

improving accuracy and reliability in recognizing license

plates under various conditions. The number of vehicles on

the roads is increasing rapidly, and most of the time, verifying

the identity of these vehicles is very important for the

authorization of traffic regulations and supervision of parking

lots [1]. It is difficult to check this colossal number of moving

vehicles physically. LPR has become an important topic due

to the increasing interest of modern technological society in

powerful, intelligent surveillance and security systems [2].
Thus, LPR systems can be utilized as part of a traffic

monitoring system with traffic lights to identify vehicles

violating traffic rules or detect prohibited vehicles [3].

However, identifying vehicle license plates has always been

challenging for various reasons, such as changes in

brightness, irregular vehicle shadow license plate character

types, multiple styles, and environmental color effects [4].

LPR technology is structured around three primary steps: LP

detection, character segmentation, and character recognition,

which are essential for detecting and identifying specific or all

objects in an image [5]. In computer vision [6], systems have
been designed to perform tasks that traditionally require

constant human supervision and decision-making. These

tasks typically involve detecting, identifying, and tracking

objects of interest [7]. Although object detection [8] and

object recognition [9] are related techniques, they differ in

how they are implemented. Object detection focuses on

locating instances of objects within images. With the

integration of deep learning, object detection extends into a

form of object recognition that identifies an object and

recognizes it within its visual context, enabling the

identification of multiple objects within the same frame.
This study is organized into two main segments: the

detection and recognition of license plates with annotations.

The initial phase involves pinpointing the location of the

license plate based on its distinctive features. The subsequent

phase entails segmenting characters on the plate to distinguish

1170

individual alphanumeric characters. These characters are then

processed through an optical character recognition (OCR)

engine, which accurately identifies and annotates each

character on the license plate.

A. Background of Object Detection and Recognition

This section outlines the foundational concepts necessary

for this study, focusing on object detection and recognition.
These topics encompass the core ideas, underlying principles,

and techniques pertinent to their implementation.

1) Object Detection: This is a crucial area within

computer vision and image processing that involves

identifying specific categories of semantic objects—such as

people, buildings, or vehicles—in digital images and videos.

Therefore, object detection is a critical method of machine

learning and deep learning [11]. Additionally, Object

detection in images has been identified as a crucial area of

computer vision image processing research [12]. The purpose

is to instruct machines to understand (perceive) the content of

images, similar to what humans do, as shown in Figure. 1.

Fig. 1 Differences between Classification, Location and Detection

The above figures demonstrate the results of image

classification, object localization, and object detection. In

classifying images, the system takes an image as input and

outputs a classification label for that image along with some

units of measurement such as probability, loss, accuracy, etc.

For example, a picture of a car can be classified using the class

label "car", or an image of a person can be classified using the

class label "person" with some probability. A detector
outcome commonly consists of a list of bounding boxes,

confidence levels, and classes [13]. The object detection

algorithms calculate object locations by finding whether an

object is present in an image and displaying it with a bounding

box [14]. It takes an image as input and outputs the position

of the bounding box in terms of position, height, and width.

Finally, the object detection algorithm combines image

classification and object localization [15]. The image will be

input, and then one or more bounding boxes will be created

with a class label attached to each bounding box [16]. These

algorithms can handle multiclass classification and
localization tasks, including dealing with objects with

multiple events.

Various algorithms and models can be used for object

detection, and one popular approach is convolutional neural

networks (CNNs). The basic idea is to divide the image into a

grid and predict the presence or absence of an object in each

grid cell and the bounding box coordinates [17]. Here is a

simplified representation of the formulas used in object

detection:

 Grid Division: Divide the input image into a grid. Each

grid cell is responsible for detecting objects present in

that region.
 Bounding Box Prediction: Predict the bounding box

coordinates for each grid cell. A bounding box typically

represents the coordinates (xtop-left, ytop-left) of the top-left

corner and the dimensions (width, height). The

bounding box coordinates for the button-right corner

(xbottom-right, ybottom-right) can be calculated as follows:����������	
� = �������� + ����ℎ (1)

����������	
� = �������� + ℎ���ℎ� (2)

 Object Class Prediction: For each grid cell, the

probability of the presence of different classes of

objects is predicted. This is usually performed using

SoftMax activation to obtain class probabilities.

 Combine Predictions: Combine the bounding box

coordinates and class probabilities to form the final
predictions for each object detected in the image.

 Non-maximum suppression: To remove duplicate or

highly overlapping bounding box predictions, apply

non-maximum suppression which this step ensures that

only the most confident and non-overlapping bounding

boxes are retained.

 Intersection over Union (IoU): The IoU between two

bounding boxes is calculated as the ratio of the

intersection and combined areas. The intersection area

is the overlapping area between two bounding boxes,

and the union area is the sum of the total areas of both
bounding boxes.

��� = ���� �� ����� �!�������� �� "���� (3)

Fig. 2 A diagram representing the intersection over union

 Object Confidence Score: where P(Object) is the

probability of an object being present in the grid cell

and P(Class) is the probability of belonging to a

particular class.

1171

 #�$%���$&� '&�(� =)*+,-�&�. ×)*#0122. (4)

Object detection models, especially those based on deep

learning, are trained using labeled datasets, where each object

in an image is annotated with its class label and bounding box

coordinates. Popular architectures for object detection include

the Single Shot Multibox Detector (SSD), You Only Look

Once (YOLO), and Region-Based CNNs (R-CNNs). The

specific formulas and details may vary based on the chosen

model architecture.

2) Object Recognition: Object recognition is a technique

in computer vision that identifies various objects within

images or videos. It is a crucial application of deep learning

and machine learning technologies [18]. People, objects,

scenes, and visual details can be instantly observed when

humans view photos or watch videos. The goal is to teach

computers to do something natural for humans: to make sense

of what is in an image [19]. Object recognition using deep

learning CNN is one of the most popular object methods [20].

CNN is used to detect objects in an environment [21], and it

is widely used, and most state-of-the-art neural networks use

this method to perform a variety of tasks. About object

recognition, such as image classification, a CNN network

takes images as input and outputs probabilities of different

classes [22]. If there is an object in the picture, the output may
be high; otherwise, the output probabilities of the remaining

categories will be very small or very low, and model training

is performed when the error rate decreases. Then, the trained

model tests some sample images [23]. Compared with

machine learning, the advantage of deep learning is that there

is no need to extract features from the data.

Fig. 3 Overview of tasks related to object recognition

Object recognition involves several interconnected tasks,

each contributing to identifying and understanding objects

inside the images or video frames. Each of these tasks plays a
crucial role in the overall object recognition pipeline, and

advancements in technology, especially in deep learning,

continue to refine and enhance the capabilities of object

recognition systems. Object recognition involves identifying

and classifying objects within an image. Thus, CNNs are

commonly used for object recognition tasks [24]. Below is a

simplified formula for object recognition using a deep

learning model:

 Input image: Let I be the input image

 Preprocessing: Preprocess the image, including

normalization and resizing, if necessary.

 CNN: A pre-trained CNN model is used to train a
model for object recognition. Popular architectures

include VGG, ResNet, Inception, and MobileNet.

 Forward Pass: A forward pass-through CNN is

performed to obtain predictions for the input image.

 Class Probabilities: Obtain class probabilities using a

SoftMax activation function.

)*&0122�|�. = �45∑ �47879: (5)

Here, zi is the raw output (logit) for class i, and N is the
total number of classes.

 Class Prediction: The class with the highest probability

is the predicted class for the object.

)(���&��� #0122 = arg >1�)*&0122�|�. (6)

 Probability Threshold: Optionally, a probability

threshold is applied to filter out low-confidence

predictions.

Fig. 4 Machine learning and deep learning techniques for object recognition

The output was generated by the last layer, and the fully

connected nature of the CNN model is a single layer of labels.

Therefore, the CNN method will not perform if multiple class

labels are present in the image [25]. To limit the presence of

objects in the bounding box, we need to try another approach
other than exporting class labels. However, it also exports the

position of the bounding box.

3) OpenCV: OpenCV is an open-source library that

serves both computer vision and machine learning functions.

The term computer vision, abbreviated as “CV” in OpenCV,

refers to a field of research that enables computers to

understand digital image content, such as photos and movies.

Understanding the content of an image is the goal of computer

vision [26]. Thus, OpenCV and Python are increasingly being

applied to the shape and color detection of images [27]. A

description of the image is used, and the image may belong to

1172

the object. Text descriptions or three-dimensional (3D)

models are extracted from images [28].

Fig. 5 OpenCV software architecture

In addition to stereopsis, computer vision may be used for

various purposes. Stereo vision and motion tracking, pattern

detection, augmented reality, scene reconstruction, and

human-machine interaction are all included in this technology

category [29]. For example, computer vision can help cars by

enabling them to recognize objects, such as pedestrians,
traffic signs, and traffic lights, along the road and then

respond appropriately. Computer vision is crucial in various

traffic monitoring, management, and safety applications.

Computer vision is commonly applied in traffic-related

scenarios.

Fig. 6 Object detection and recognition on traffic roads

The image above is a real traffic road in Vientiane, Laos,

that demonstrates computer vision through the use of

OpenCV for object classification, detection, and recognition.

4) Grayscale Conversion: In OpenCV, converting an

image to grayscale involves combining the red, green, and

blue (RGB) channels of the image through a weighted

average. A frequently used technique for this process is
known as the luminosity method. The luminosity method

considers the human eye's sensitivity to different colors and

assigns weights accordingly. Grayscale images are mainly

used for shape features, edge detection, round objects, corner

points, etc. [30]. The function for converting an RGB image

to grayscale using the luminosity method is:

 Gray = 0.299 × Red + 0.587 × Green + 0.114 × Blue (7)

This function uses weights of 0.299, 0.587, and 0.114 for

the RGB channels. These weights are based on the standard

coefficients for the luminosity method. Alternatively, we can

use the average method, which takes the simple average of the

RGB values:

 Gray = QRSTUVRRWTXYZR[(8)

We can also use other methods, such as weight loss or
custom weighting schemes, based on your specific needs. An

image with two colors, black and white, is called a grayscale

image. Black is considered the least intense color. In

comparison, white is the highest color. According to the

intensity contrast evaluation, computers render each pixel in

a grayscale image based on light intensity. Many essential

image characteristics may need to be restored during the

conversion process, including sharpness, shading, contrast,

and color structure. Furthermore, current methods consume

large amounts of computing time and memory [31].

Fig. 7 Computer reading image

The computer reads each image in pixel values 0 to 255.
For each color image, there are three main channels: RGB. It

works very simply, a matrix is formed for each primary color,

and these matrices are combined to provide pixel values for

the individual RGB colors. Each element of the matrix offers

data about the brightness intensity of the pixel, as shown in

Figure 7, in which image size can be calculated by the

formula: \ ×] × 3.

5) Image Thresholding: Thresholding is a widely utilized

technique in image processing and computer vision that

segments an image into different regions according to the

intensity or color of the pixels. The core concept of
thresholding involves converting pixel values to binary

(typically 0 or 1), depending on whether they fall above or

below a predefined threshold value [32].

Let us denote the input image as I(x,y), where x and y are

pixel coordinates. The global thresholding process involves

assigning binary values to pixels based on a threshold value
T. Typically, pixels with intensity values greater than T are

assigned one value, such as 255 for white, and pixels with

intensity values less than or equal to T are assigned another

value, such as 0 for black. The thresholding function T(x,y)

can be expressed as:

 _1 �% �*�, �. > b⬚0 �% �*�, �. ≤ b (9)

where I(x,y) represents the pixel's intensity at coordinate (x,y)

in the input image and T is the global threshold value. This
process results in a binary image, where pixels are assigned

one of two values based on a comparison with the threshold.

Additionally, these binary results can be helpful for tasks such

1173

as object detection, edge detection, or simplifying further

image analysis [33]. In practice, image-processing libraries

such as OpenCV provide functions for performing

thresholding without the need for explicit mathematical

expressions. For instance, the cv2.threshold() function in

OpenCV can apply global thresholding to an image.

6) Contour Detection: Contour detection is a computer

vision technique used to identify and track the boundaries of

objects in images. A contour is a curve along a boundary

connecting all consecutive points of the same color or
intensity. Contour detection is widely used in image

processing and computer vision applications for object

recognition, shape analysis, and image segmentation [34].

Additionally, the contour variable contains a list of contours;

each contour is represented as an array of points. While the

process involves multiple steps and functions, contour

detection is a complex topic, and the specific methods used

can vary depending on the application and the characteristics

of the images being processed. In mathematical terms, a

contour is often represented as a set of (x, y) coordinates that

define the boundary of an object.

 Preprocessing: Often, contour detection begins with

preprocessing steps, such as converting the image to

grayscale to simplify the data and enhance edges. Other

techniques, such as blurring or thresholding, may be

applied to improve the quality of the image for contour

extraction.
 Edge Detection: Edge detection algorithms such as

Sobel, Canny, or Laplacian filters can be applied to

identify areas of rapid intensity change in an image.

These edges are crucial for contour detection.

 Contour Finding: The contours are then identified using

algorithms like the one provided by OpenCV's

‘findContours’ function. This function detects contours

in a binary image, where the contours are represented

as a list of points or a hierarchy of contours.

 Hierarchy and Approximation: Contour information

may include hierarchical relationships between
contours, helping to distinguish between inner and

outer contours. Additionally, contours can be

approximated to reduce the number of points and

simplify the representation.

 Visualization: Finally, the contours can be visualized

by drawing them onto the original image. This step

helps in understanding and analyzing the detected

objects.

Contour detection is fundamental in various computer

vision applications, such as object recognition, gesture

recognition, image segmentation, and robotics [35]. It allows

computers to understand the shapes and boundaries of objects
within an image, facilitating subsequent analysis and

decision-making processes.

7) Region of Interest (ROI): An ROI is a specific area

within an image or dataset relevant to a particular task or

analysis. Identifying an ROI allows for more focused and

efficient processing, reducing the computational load and

improving the accuracy of the analysis. This process is

commonly used in computer vision, machine learning, and

image analysis applications [36]. There are various types of

ROIs, and the choice of ROI depends on the specific

requirements of the task. In image processing and computer

vision in image analysis, an ROI might be defined by

specifying the coordinates, drawing a bounding box, or

segmenting an image to focus on a particular object or area of

interest [37]. This approach is common in object detection,

image recognition, and tracking tasks. Object tracking and

detection are among the most common uses of ROIs in

computer vision. Object detection refers to detecting the

presence of an object of interest in an image or video frame.

In contrast, object tracking involves finding a specific object

of interest in a sequence of images or video frames.

Fig. 8 ROI in object detection

8) Tesseract OCR: OCR is a key technology for

converting typed or handwritten text into machine-readable

text. It allows automatic data processing and analysis.

However, OCRs for languages with complex text present

unique challenges due to the complex nature of the characters

[38]. Furthermore, Tesseract OCR, initially developed by HP

Labs in 1985, was later released as an open-source project by
Google in 2005 [39]. It has been under development since

2006. A combination of the OCR engine and improved text-

matching algorithms are used to implement the system [40].

Tesseract is compatible with Unicode (UTF-8) and can

recognize over 100 languages from the start, making it

suitable for developing language scanning applications. The

newer releases, like Tesseract 4, incorporate an OCR engine

based on a Neural Net (LSTM) primarily focusing on online

recognition [41]. Additionally, it supports the traditional

Tesseract OCR engine, which identifies characters based on

their patterns [42].

Fig. 9 Tesseract OCR Architecture

Tesseract OCR is commonly employed to transform
documents, including scanned papers, PDF files, or images

taken with a digital camera, into editable and searchable data.

A comparison between Tesseract OCR's performance with

English language support and its capabilities with multi-

language support reveals significant differences, as detailed

in Table 1.

1174

TABLE I

COMPARISON OF TESSERACT OCR WITH ENGLISH LANGUAGE SUPPORT VS.

MULTI-LANGUAGE SUPPORT

 English Only Multi-language

Language
Support

Tesseract OCR with
English language
support is explicitly

optimized for English
text recognition. It
may perform better on
English-language
documents than the
multi-language version
when processing
English text.

The multi-language
version of Tesseract
OCR supports a

broader range of
languages, making it
more versatile for
documents that contain
text in multiple
languages. It can
handle languages other
than English, including
those with different

character sets.
Accuracy Tesseract OCR with

English language
support may achieve
higher accuracy when
processing English text
because it is trained
and optimized for the

nuances and patterns
specific to the English
language.

While the multi-
language version can
handle a variety of
languages, its accuracy
might be slightly lower
for English than that of
the English-dedicated

version.

Resource
Usage

The English-only
version of Tesseract
OCR may be lighter in
terms of resource
usage since it only

needs to load and
process the data
relevant to English
language patterns.

The multi-language
version may require
more resources
(memory and
processing power) due

to the broader language
coverage and additional
language models.

Training
and
Customizat
ion

If we have specific
requirements for
English text
recognition and want

to fine-tune the OCR
engine for our specific
use case, using the
English-only version
may offer more
straightforward
training and
customization options.

The multi-language
version provides
flexibility for working
with documents in

various languages, but
training and
customization might be
more complex due to
the diverse language
models involved.

Therefore, our use case depends on the choice between

Tesseract OCR with English language support and the multi-

language version. If documents primarily contain English

text, using the English-only version might yield slightly better

results and be more resource-efficient.

II. MATERIAL AND METHOD

The license plate, a critical vehicle component, can be
detected and recognized in images or video streams using

LPR technology that combines OpenCV and Tesseract OCR.

This method's success hinges on factors such as the quality of

the input image, the lighting conditions, and the background

complexity.

A. Proposed Method

This study employs OpenCV and Tesseract OCR for

license plate detection and recognition, utilizing object

detection trained on a specialized dataset of license plate fonts
from various regions. Initially, a vehicle image undergoes

preprocessing. Should the system spot potential license plate

regions or actual plates within the image, it will proceed to

segment the characters on the plate. Following character

segmentation, OCR technology is applied to recognize and

decode each character on the license plate. Subsequent OCR

and post-processing methods are then used to enhance and

clarify the retrieved license plate data, as illustrated in Figure

10.

Fig. 10 System Overviews

B. Datasets

For the datasets used in the experiments in this research,

we selected 100 license plates, including 50 European plates,

especially in the UK, and 50 Lao license plates. We selected

those license plates to compare license plate detection and

recognition for English characters and Lao characters. All

license plate images are “still images” that typically refer to a
static image, and the file types are .jpg files of different sizes,

as shown in Figure 11.

Fig. 11 Vehicle License Plates

The purpose of the license plate used in this experiment

was to identify a single line of letters to detect and recognize

the letters on the license plate on which each license plate was

attached to a different vehicle and environment.

III. RESULTS AND DISCUSSION

The recognition of characters is performed using Tesseract

OCR with the required libraries. Then, OpenCV was used

with Python to load the image and process it for better plate

detection, which may include resizing, converting it to

grayscale, and applying various filters. Additional

preprocessing, such as blurring and thresholding, is applied if

needed to detect regions in the image that may contain license

plates. This process can be performed using techniques such

as contour detection. The ROI containing the potential license
plate was extracted, and Tesseract OCR was used to recognize

the text. Finally, post-processing steps, such as filtering out

non-alphanumeric characters from the recognized text, are

1175

implemented. The results are displayed in Figure 12, where

(a) shows the input image consisting of the vehicle with its

license plate detection, cropping, text segmentation and

display license plate recognition as ROIs with annotation; (b)

shows the detection and recognition of English character

license plates from various angles; and (c) shows the detection

and recognition of Lao character license plates from various

angles.

(a)

(b)

(c)

Fig. 12 Results

From the above results, 100 license plate images were trained
by OpenCV and Tesseract OCR. These images were divided into

two types: license plates in English and Lao characters, which

were tested. After training with the input datasets, the

experimental results showed that license plate recognition is

faster for English characters than for Lao characters because the

Lao language is more complex than English. A comparison of

the results of the prediction models produced by OpenCV and

Tesseract OCR is shown in Table 2.

TABLE II

COMPARISON OF ENGLISH AND LAO LICENSE PLATE TEMPLATE MATCHING

License

Plate

Characters

Number

of

Plates

Plate

detected

Cropped

License

Plate

Processing

Time

(secs)

Accuracy

(%)

English 50 YES YES 0.12 98.8

Lao 50 YES YES 0.24 89.42

The table above shows that before recognizing the license

plate, some letters may not appear or appear instead of another

letter, but the line in the inspection may be the same. The

vehicle's position, distance, light, transparency, and sharpness

are crucial for license plate detection and recognition.

Therefore, in these experiments, the average latency to detect

and recognize license plates for English characters was 0.12

s. The average accuracy was 98.8%. For Lao characters, the
average latency was 0.24 s, and the average accuracy was

89.42%.

IV. CONCLUSION

Implementing LPR using OpenCV and Tesseract OCR can

be a powerful solution for automating tasks related to vehicle

identification. Combining OpenCV for image processing and

Tesseract OCR for text recognition provides a robust

foundation for license plate recognition. The system's
accuracy depends on various factors, such as image quality,

lighting conditions, and the quality of the OCR engine.

OpenCV preprocessing techniques, such as image resizing,

color thresholding, and noise reduction, play crucial roles in

enhancing the quality of input images and improving the OCR

results. ROI detection, such as properly identifying and

extracting areas with license plates, is critical for accurate

recognition. OpenCV allows for implementing techniques

such as contour detection and perspective transformation. The

Tesseract OCR can be fine-tuned and configured to improve

accuracy, especially for specific fonts and formats commonly
used in license plates. Additionally, license plate recognition

using OpenCV and Tesseract OCR is a versatile and effective

solution with the potential to automate various tasks related to

vehicle identification. According to the experimental results,

license plate recognition is faster for English characters than

for Lao characters because the Lao language is more complex.

ACKNOWLEDGMENT

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea

(NRF), funded by the Ministry of Education

(2021R1I1A3058103).

REFERENCES

[1] A. S. D. Sham, P. Pandey, S. Jain, and S. Kalaivani, “Automatic

License Plate Recognition Using YOLOV4 and Tesseract OCR,”

International Journal Of Electrical Engineering and Technology, vol.

12, no. 5, May 2021, doi: 10.34218/ijeet.12.5.2021.006.

Input image License plate Detected

Cropped

License Recognition and display

Text Segmentation

Middle front 80 degree left

80 degree right Middle back

80 degree left

80 degree right

Middle front

Middle back

1176

[2] I. R. Khan et al., “Automatic License Plate Recognition in Real-World

Traffic Videos Captured in Unconstrained Environment by a Mobile

Camera,” Electronics, vol. 11, no. 9, p. 1408, Apr. 2022,

doi:10.3390/electronics11091408.

[3] W. Puarungroj and N. Boonsirisumpun, “Thai License Plate

Recognition Based on Deep Learning,” Procedia Computer Science,

vol. 135, pp. 214–221, 2018, doi: 10.1016/j.procs.2018.08.168.

[4] S. Parvin, L. J. Rozario, and Md. E. Islam, “Vehicle Number Plate

Detection and Recognition Techniques: A Review,” Advances in

Science, Technology and Engineering Systems Journal, vol. 6, no. 2,

pp. 423–438, Mar. 2021, doi: 10.25046/aj060249.

[5] O. Bulan, V. Kozitsky, P. Ramesh, and M. Shreve, “Segmentation- and

Annotation-Free License Plate Recognition With Deep Localization

and Failure Identification,” IEEE Transactions on Intelligent

Transportation Systems, vol. 18, no. 9, pp. 2351–2363, Sep. 2017, doi:

10.1109/tits.2016.2639020.

[6] A.I. Khan and S. Al-Habsi, “Machine Learning in Computer Vision,”

Procedia Computer Science, vol. 167, pp. 1444–1451, 2020,

doi:10.1016/j.procs.2020.03.355.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,”

Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2017,

doi: 10.1145/3065386.

[8] K. L. Masita, A. N. Hasan, and T. Shongwe, “Deep Learning in Object

Detection: a Review,” 2020 International Conference on Artificial

Intelligence, Big Data, Computing and Data Communication Systems

(icABCD), Aug. 2020, doi:10.1109/icabcd49160.2020.9183866.

[9] A. Akhil, R. R. Praneeth, and Kumar, “Object Detection/Recognition

Using Machine Learning Techniques in AWS,” The International Journal

of Analytical And Experimental Modal Analysis, vol. 12, no. 3, 2020.

[10] S. N. Srivatsa, G. Sreevathsa, G. Vinay, and P. Elaiyaraja, “Object

Detection using Deep Learning with OpenCV and Python,”,

International Research Journal of Engineering and Technology

(IRJET), vol. 8, no. 1, pp. 227–230, 2021.

[11] Z. Akhtar and R. Ali, “Automatic Number Plate Recognition Using

Random Forest Classifier,” SN Computer Science, vol. 1, no. 3, Apr.

2020, doi: 10.1007/s42979-020-00145-8.

[12] Y. Guan et al., “An Object Detection Framework Based on Deep

Features and High-Quality Object Locations,” Traitement du Signal,

vol. 38, no. 3, pp. 719–730, Jun. 2021, doi: 10.18280/ts.380319.

[13] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on

Performance Metrics for Object-Detection Algorithms,” 2020

International Conference on Systems, Signals and Image Processing

(IWSSIP), Jul. 2020, doi: 10.1109/iwssip48289.2020.9145130.

[14] Y. Pan and F. Dong, “Suppression and Enhancement of Overlapping

Bounding Boxes Scores in Object Detection,” 2019 IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT),

Dec. 2019, doi:10.1109/isspit47144.2019.9001826.

[15] F. Shao et al., “Deep Learning for Weakly-Supervised Object

Detection and Localization: A Survey,” Neurocomputing, vol. 496, pp.

192–207, Jul. 2022, doi: 10.1016/j.neucom.2022.01.095.

[16] X. Wu, D. Sahoo, and S. C. H. Hoi, “Recent advances in deep learning

for object detection,” Neurocomputing, vol. 396, pp. 39–64, Jul. 2020,

doi: 10.1016/j.neucom.2020.01.085.

[17] W. R. Sania, C. A. Sari, E. H. Rachmawanto, and M. Doheir,

“Bounding Box and Thresholding in Optical Character Recognition

for Car License Plate Recognition,” sinkron, vol. 8, no. 4, Oct. 2023,

doi: 10.33395/sinkron.v8i4.12944.

[18] L. Liu, Y. Wang, and W. Chi, “Image Recognition Technology Based

on Machine Learning,” IEEE Access, pp. 1–1, 2024,

doi:10.1109/access.2020.3021590.

[19] M. Aamir, “A Progressive Approach to Generic Object Detection: A

Two-Stage Framework for Image Recognition,” Computers, Materials

& Continua, vol. 75, no. 3, pp. 6351–6373, 2023,

doi:10.32604/cmc.2023.038173.

[20] S. Bouraya, and A. Belanngour, “Object Detectors’ Convolutional

Neural Networks backbones : a review and a comparative study,”

International Journal of Emerging Trends in Engineering Research, vol.

9, no. 11, pp. 1379–1386, Nov. 2021,

doi:10.30534/ijeter/2021/039112021.

[21] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M.

Z. Maningo, “Object Detection Using Convolutional Neural

Networks,” TENCON 2018 - 2018 IEEE Region 10 Conference, Oct.

2018, doi: 10.1109/tencon.2018.8650517.

[22] J. Ren, and Yi, W. Shim, “Overview of Object Detection Algorithms

Using Convolutional Neural Networks,” Journal of Computer and

Communications, vol. 10, no. 1, pp. 115–132, 2022.

[23] A. Kumar and S. Srivastava, “Object Detection System Based on

Convolution Neural Networks Using Single Shot Multi-Box Detector,”

Procedia Computer Science, vol. 171, pp. 2610–2617, 2020, doi:

10.1016/j.procs.2020.04.283.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature

Hierarchies for Accurate Object Detection and Semantic

Segmentation,” 2014 IEEE Conference on Computer Vision and

Pattern Recognition, Jun. 2014, doi: 10.1109/cvpr.2014.81.

[25] G. M. G. Madhuri, B. Shaik, S. S. Tungala, CH. D. D. S. Kumar, and

S. V. R. Pilla, “Recognition and Tracing of Object Using CNN,”

Journal of Engineering Sciences, vol. 14, no. 03, pp. 589-593, 2023.

[26] R. TH. Hasan and A. . Bibo Sallow, “Face Detection and Recognition

Using OpenCV”, jscdm, vol. 2, no. 2, pp. 86–97, Oct. 2021.

[27] M. K. Hossen, "Application of Python-OpenCV to detect contour of

shapes and colour of a real image", International Journal of Novel

Research in Computer Science and Software Engineering, vol. 9, no.

2, pp. 20-25, 2022.

[28] F. Yu, J. Shuai, B. Yin, and X. Feng, “3D Depth of Field Acquisition

Based on OpenCV,” Proceedings of the 2016 2nd Workshop on

Advanced Research and Technology in Industry Applications, 2016,

doi: 10.2991/wartia-16.2016.195.

[29] A. Shihab, Z. S. Noori, and M. A. Jasim, “Dynamic Object Detection

and Evaluation Patterns using OpenCV,” International Refereed

Journal of Reviews and Research, vol. 10, no. 1, 2022.

[30] Z. N. Khudhair et al., “Color to Grayscale Image Conversion Based on

Singular Value Decomposition,” IEEE Access, vol. 11, pp. 54629–

54638, 2023, doi: 10.1109/access.2023.3279734.

[31] M. S. M. Rahim, A. Norouzi, A. Rehman and T. Saba, "3D bones

segmentation based on ct images visualization", Biomed. Res., vol. 28,

no. 8, pp. 3641-3644, 2017.

[32] J. Chen, B. Guan, H. Wang, X. Zhang, Y. Tang, and W. Hu, “Image

Thresholding Segmentation Based on Two Dimensional Histogram

Using Gray Level and Local Entropy Information,” IEEE Access, vol.

6, pp. 5269–5275, 2018, doi: 10.1109/access.2017.2757528.

[33] Z. Wang, J. Wang, W. Wang, C. Gao, and S. Chen, “A Novel

Thresholding Algorithm for Image Deblurring Beyond Nesterov’s

Rule,” IEEE Access, vol. 6, pp. 58119–58131, 2018,

doi:10.1109/access.2018.2873628.

[34] J. Shashirangana, H. Padmasiri, D. Meedeniya, and C. Perera,

“Automated License Plate Recognition: A Survey on Methods and

Techniques,” IEEE Access, vol. 9, pp. 11203–11225, 2021,

doi:10.1109/access.2020.3047929.

[35] H. Li, P. Wang, and C. Shen, “Toward End-to-End Car License Plate

Detection and Recognition With Deep Neural Networks,” IEEE

Transactions on Intelligent Transportation Systems, vol. 20, no. 3, pp.

1126–1136, Mar. 2019, doi: 10.1109/tits.2018.2847291.

[36] X. T. Nguyen, K.-T. Nguyen, H.-J. Lee, and H. Kim, “ROI-Based

LiDAR Sampling Algorithm in on-Road Environment for

Autonomous Driving,” IEEE Access, vol. 7, pp. 90243–90253, 2019,

doi: 10.1109/access.2019.2927036.

[37] Y. Wang, X. Zheng, and N. Gao, “A Region of Interest-Based

Electrophysiological Source Imaging Technology and its Applications

in Analysis of Motor Imagery EEG Signals,” IEEE Access, vol. 11, pp.

140596–140608, 2023, doi:10.1109/access.2023.3339857.

[38] M. Samantaray, A. K. Biswal, D. Singh, D. Samanta, M. Karuppiah,

and N. P. Joseph, “Optical Character Recognition (OCR) based

Vehicle’s License Plate Recognition System Using Python and

OpenCV,” 2021 5th International Conference on Electronics,

Communication and Aerospace Technology (ICECA), Dec. 2021,

doi:10.1109/iceca52323.2021.9676015.

[39] C. Adjetey and K. S. Adu-Manu, “Content-based Image Retrieval

using Tesseract OCR Engine and Levenshtein Algorithm,”

International Journal of Advanced Computer Science and Applications,

vol. 12, no. 7, 2021, doi:10.14569/ijacsa.2021.0120776.

[40] S. Bansal, M. Gupta, and A. K. Tyagi, “A Necessary Review on

Optical Character Recognition (OCR) System for Vehicular

Applications,” 2020 Second International Conference on Inventive

Research in Computing Applications (ICIRCA), Jul. 2020,

doi:10.1109/icirca48905.2020.9183330.

[41] T. M. Breuel, A. Ul-Hasan, M. A. Al-Azawi, and F. Shafait, “High-

Performance OCR for Printed English and Fraktur Using LSTM

Networks,” 2013 12th International Conference on Document

Analysis and Recognition, Aug. 2013, doi: 10.1109/icdar.2013.140.

[42] X. F. Wang, Z.-H. He, K. Wang, Y.-F. Wang, L. Zou, and Z.-Z. Wu,

“A survey of text detection and recognition algorithms based on deep

learning technology,” Neurocomputing, vol. 556, p. 126702, Nov.

2023, doi: 10.1016/j.neucom.2023.126702.

1177

