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Abstract—License plate recognition (LPR) is essential as the number of vehicles increases and the human ability to accomplish this task 

is limited. If human labor is used to manage these, it will take a lot of time and energy and cause a discrepancy. License Plate Recognition 

(LPR) is an advanced technology that leverages optical character recognition (OCR) and various image processing methods to read 

vehicle license plates automatically. Typically, an LPR system comprises two primary components: detecting vehicles and their license 

plates and recognizing the alphanumeric characters displayed on those plates. This study explores the use of OpenCV for license plate 

detection and Tesseract OCR for character recognition. In this research, the dataset for training and testing the system included 100 

license plates evenly split between plates featuring English and Lao characters. The Lao license plates presented unique complexities 

due to their specific characteristics. The experimental setup involved processing images of license plates taken from multiple angles. 

The system's performance was evaluated based on the speed and accuracy of line and character recognition. For English character 

plates, the recognition process took 0.12 seconds with an accuracy of 98.8%. In contrast, the Lao character plates required 0.24 seconds, 

achieving an accuracy rate of 89.42%. 
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I. INTRODUCTION

LPR technology continues to evolve with advancements in 

computer vision, machine learning, and deep learning, 

improving accuracy and reliability in recognizing license 

plates under various conditions. The number of vehicles on 

the roads is increasing rapidly, and most of the time, verifying 

the identity of these vehicles is very important for the 

authorization of traffic regulations and supervision of parking 

lots [1]. It is difficult to check this colossal number of moving 

vehicles physically. LPR has become an important topic due 

to the increasing interest of modern technological society in 

powerful, intelligent surveillance and security systems [2]. 
Thus, LPR systems can be utilized as part of a traffic 

monitoring system with traffic lights to identify vehicles 

violating traffic rules or detect prohibited vehicles [3]. 

However, identifying vehicle license plates has always been 

challenging for various reasons, such as changes in 

brightness, irregular vehicle shadow license plate character 

types, multiple styles, and environmental color effects [4]. 

LPR technology is structured around three primary steps: LP 

detection, character segmentation, and character recognition, 

which are essential for detecting and identifying specific or all 

objects in an image [5]. In computer vision [6], systems have 
been designed to perform tasks that traditionally require 

constant human supervision and decision-making. These 

tasks typically involve detecting, identifying, and tracking 

objects of interest [7]. Although object detection [8] and 

object recognition [9] are related techniques, they differ in 

how they are implemented. Object detection focuses on 

locating instances of objects within images. With the 

integration of deep learning, object detection extends into a 

form of object recognition that identifies an object and 

recognizes it within its visual context, enabling the 

identification of multiple objects within the same frame. 
This study is organized into two main segments: the 

detection and recognition of license plates with annotations. 

The initial phase involves pinpointing the location of the 

license plate based on its distinctive features. The subsequent 

phase entails segmenting characters on the plate to distinguish 
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individual alphanumeric characters. These characters are then 

processed through an optical character recognition (OCR) 

engine, which accurately identifies and annotates each 

character on the license plate. 

A. Background of Object Detection and Recognition

This section outlines the foundational concepts necessary

for this study, focusing on object detection and recognition. 
These topics encompass the core ideas, underlying principles, 

and techniques pertinent to their implementation. 

1) Object Detection: This is a crucial area within

computer vision and image processing that involves 

identifying specific categories of semantic objects—such as 

people, buildings, or vehicles—in digital images and videos. 

Therefore, object detection is a critical method of machine 

learning and deep learning [11]. Additionally, Object 

detection in images has been identified as a crucial area of 

computer vision image processing research [12]. The purpose 

is to instruct machines to understand (perceive) the content of 

images, similar to what humans do, as shown in Figure. 1. 

Fig. 1  Differences between Classification, Location and Detection 

The above figures demonstrate the results of image 

classification, object localization, and object detection. In 

classifying images, the system takes an image as input and 

outputs a classification label for that image along with some 

units of measurement such as probability, loss, accuracy, etc. 

For example, a picture of a car can be classified using the class 

label "car", or an image of a person can be classified using the 

class label "person" with some probability. A detector 
outcome commonly consists of a list of bounding boxes, 

confidence levels, and classes [13]. The object detection 

algorithms calculate object locations by finding whether an 

object is present in an image and displaying it with a bounding 

box [14]. It takes an image as input and outputs the position 

of the bounding box in terms of position, height, and width. 

Finally, the object detection algorithm combines image 

classification and object localization [15]. The image will be 

input, and then one or more bounding boxes will be created 

with a class label attached to each bounding box [16]. These 

algorithms can handle multiclass classification and 
localization tasks, including dealing with objects with 

multiple events. 

Various algorithms and models can be used for object 

detection, and one popular approach is convolutional neural 

networks (CNNs). The basic idea is to divide the image into a 

grid and predict the presence or absence of an object in each 

grid cell and the bounding box coordinates [17]. Here is a 

simplified representation of the formulas used in object 

detection: 

 Grid Division: Divide the input image into a grid. Each

grid cell is responsible for detecting objects present in

that region.
 Bounding Box Prediction: Predict the bounding box

coordinates for each grid cell. A bounding box typically

represents the coordinates (xtop-left, ytop-left) of the top-left

corner and the dimensions (width, height). The

bounding box coordinates for the button-right corner

(xbottom-right, ybottom-right) can be calculated as follows:����������	
� =  �������� + ����ℎ (1) 

����������	
� =  �������� + ℎ���ℎ� (2) 

 Object Class Prediction: For each grid cell, the

probability of the presence of different classes of

objects is predicted. This is usually performed using

SoftMax activation to obtain class probabilities.

 Combine Predictions: Combine the bounding box

coordinates and class probabilities to form the final
predictions for each object detected in the image.

 Non-maximum suppression: To remove duplicate or

highly overlapping bounding box predictions, apply

non-maximum suppression which this step ensures that

only the most confident and non-overlapping bounding

boxes are retained.

 Intersection over Union (IoU): The IoU between two

bounding boxes is calculated as the ratio of the

intersection and combined areas. The intersection area

is the overlapping area between two bounding boxes,

and the union area is the sum of the total areas of both
bounding boxes.

��� =  ���� �� ����� �!�������� �� "���� (3) 

Fig. 2  A diagram representing the intersection over union 

 Object Confidence Score: where P(Object) is the

probability of an object being present in the grid cell

and P(Class) is the probability of belonging to a

particular class.
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Object detection models, especially those based on deep 

learning, are trained using labeled datasets, where each object 

in an image is annotated with its class label and bounding box 

coordinates. Popular architectures for object detection include 

the Single Shot Multibox Detector (SSD), You Only Look 

Once (YOLO), and Region-Based CNNs (R-CNNs). The 

specific formulas and details may vary based on the chosen 

model architecture. 

2) Object Recognition: Object recognition is a technique 

in computer vision that identifies various objects within 

images or videos. It is a crucial application of deep learning 

and machine learning technologies [18]. People, objects, 

scenes, and visual details can be instantly observed when 

humans view photos or watch videos. The goal is to teach 

computers to do something natural for humans: to make sense 

of what is in an image [19]. Object recognition using deep 

learning CNN is one of the most popular object methods [20]. 

CNN is used to detect objects in an environment [21], and it 

is widely used, and most state-of-the-art neural networks use 

this method to perform a variety of tasks. About object 

recognition, such as image classification, a CNN network 

takes images as input and outputs probabilities of different 

classes [22]. If there is an object in the picture, the output may 
be high; otherwise, the output probabilities of the remaining 

categories will be very small or very low, and model training 

is performed when the error rate decreases. Then, the trained 

model tests some sample images [23]. Compared with 

machine learning, the advantage of deep learning is that there 

is no need to extract features from the data. 

 
Fig. 3  Overview of tasks related to object recognition 

 

Object recognition involves several interconnected tasks, 

each contributing to identifying and understanding objects 

inside the images or video frames. Each of these tasks plays a 
crucial role in the overall object recognition pipeline, and 

advancements in technology, especially in deep learning, 

continue to refine and enhance the capabilities of object 

recognition systems. Object recognition involves identifying 

and classifying objects within an image. Thus, CNNs are 

commonly used for object recognition tasks [24]. Below is a 

simplified formula for object recognition using a deep 

learning model: 

 Input image: Let I be the input image 

 Preprocessing: Preprocess the image, including 

normalization and resizing, if necessary. 

 CNN: A pre-trained CNN model is used to train a 
model for object recognition. Popular architectures 

include VGG, ResNet, Inception, and MobileNet. 

 Forward Pass: A forward pass-through CNN is 

performed to obtain predictions for the input image. 

 Class Probabilities: Obtain class probabilities using a 

SoftMax activation function. 

 )*&0122�|�. =  �45∑ �47879:   (5) 

Here, zi is the raw output (logit) for class i, and N is the 
total number of classes. 

 Class Prediction: The class with the highest probability 

is the predicted class for the object. 

 )(���&��� #0122 = arg >1� )*&0122�|�. (6) 

 Probability Threshold: Optionally, a probability 

threshold is applied to filter out low-confidence 

predictions. 

 
Fig. 4  Machine learning and deep learning techniques for object recognition 

 

The output was generated by the last layer, and the fully 

connected nature of the CNN model is a single layer of labels. 

Therefore, the CNN method will not perform if multiple class 

labels are present in the image [25]. To limit the presence of 

objects in the bounding box, we need to try another approach 
other than exporting class labels. However, it also exports the 

position of the bounding box. 

3) OpenCV: OpenCV is an open-source library that 

serves both computer vision and machine learning functions. 

The term computer vision, abbreviated as “CV” in OpenCV, 

refers to a field of research that enables computers to 

understand digital image content, such as photos and movies. 

Understanding the content of an image is the goal of computer 

vision [26]. Thus, OpenCV and Python are increasingly being 

applied to the shape and color detection of images [27]. A 

description of the image is used, and the image may belong to 
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the object. Text descriptions or three-dimensional (3D) 

models are extracted from images [28]. 
 

 
Fig. 5  OpenCV software architecture 

 

In addition to stereopsis, computer vision may be used for 

various purposes. Stereo vision and motion tracking, pattern 

detection, augmented reality, scene reconstruction, and 

human-machine interaction are all included in this technology 

category [29]. For example, computer vision can help cars by 

enabling them to recognize objects, such as pedestrians, 
traffic signs, and traffic lights, along the road and then 

respond appropriately. Computer vision is crucial in various 

traffic monitoring, management, and safety applications. 

Computer vision is commonly applied in traffic-related 

scenarios. 

 

 
Fig. 6  Object detection and recognition on traffic roads 

 

The image above is a real traffic road in Vientiane, Laos, 

that demonstrates computer vision through the use of 

OpenCV for object classification, detection, and recognition. 

4) Grayscale Conversion: In OpenCV, converting an 

image to grayscale involves combining the red, green, and 

blue (RGB) channels of the image through a weighted 

average. A frequently used technique for this process is 
known as the luminosity method. The luminosity method 

considers the human eye's sensitivity to different colors and 

assigns weights accordingly. Grayscale images are mainly 

used for shape features, edge detection, round objects, corner 

points, etc. [30]. The function for converting an RGB image 

to grayscale using the luminosity method is: 

 Gray = 0.299 × Red + 0.587 × Green + 0.114 × Blue (7) 

This function uses weights of 0.299, 0.587, and 0.114 for 

the RGB channels. These weights are based on the standard 

coefficients for the luminosity method. Alternatively, we can 

use the average method, which takes the simple average of the 

RGB values: 

 Gray =  QRSTUVRRWTXYZR[  (8) 

We can also use other methods, such as weight loss or 
custom weighting schemes, based on your specific needs. An 

image with two colors, black and white, is called a grayscale 

image. Black is considered the least intense color. In 

comparison, white is the highest color. According to the 

intensity contrast evaluation, computers render each pixel in 

a grayscale image based on light intensity. Many essential 

image characteristics may need to be restored during the 

conversion process, including sharpness, shading, contrast, 

and color structure. Furthermore, current methods consume 

large amounts of computing time and memory [31]. 
 

 
Fig. 7  Computer reading image 

 

The computer reads each image in pixel values 0 to 255. 
For each color image, there are three main channels: RGB. It 

works very simply, a matrix is formed for each primary color, 

and these matrices are combined to provide pixel values for 

the individual RGB colors. Each element of the matrix offers 

data about the brightness intensity of the pixel, as shown in 

Figure 7, in which image size can be calculated by the 

formula: \ × ] × 3. 

5) Image Thresholding: Thresholding is a widely utilized 

technique in image processing and computer vision that 

segments an image into different regions according to the 

intensity or color of the pixels. The core concept of 
thresholding involves converting pixel values to binary 

(typically 0 or 1), depending on whether they fall above or 

below a predefined threshold value [32].  

Let us denote the input image as I(x,y), where x and y are 

pixel coordinates. The global thresholding process involves 

assigning binary values to pixels based on a threshold value 
T. Typically, pixels with intensity values greater than T are 

assigned one value, such as 255 for white, and pixels with 

intensity values less than or equal to T are assigned another 

value, such as 0 for black. The thresholding function T(x,y) 

can be expressed as: 

 _1   �% �*�, �. > b⬚0  �% �*�, �. ≤  b (9) 

where I(x,y) represents the pixel's intensity at coordinate (x,y) 

in the input image and T is the global threshold value. This 
process results in a binary image, where pixels are assigned 

one of two values based on a comparison with the threshold. 

Additionally, these binary results can be helpful for tasks such 
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as object detection, edge detection, or simplifying further 

image analysis [33]. In practice, image-processing libraries 

such as OpenCV provide functions for performing 

thresholding without the need for explicit mathematical 

expressions. For instance, the cv2.threshold() function in 

OpenCV can apply global thresholding to an image. 

6) Contour Detection: Contour detection is a computer 

vision technique used to identify and track the boundaries of 

objects in images. A contour is a curve along a boundary 

connecting all consecutive points of the same color or 
intensity. Contour detection is widely used in image 

processing and computer vision applications for object 

recognition, shape analysis, and image segmentation [34]. 

Additionally, the contour variable contains a list of contours; 

each contour is represented as an array of points. While the 

process involves multiple steps and functions, contour 

detection is a complex topic, and the specific methods used 

can vary depending on the application and the characteristics 

of the images being processed. In mathematical terms, a 

contour is often represented as a set of (x, y) coordinates that 

define the boundary of an object. 

 Preprocessing: Often, contour detection begins with 

preprocessing steps, such as converting the image to 

grayscale to simplify the data and enhance edges. Other 

techniques, such as blurring or thresholding, may be 

applied to improve the quality of the image for contour 

extraction. 
 Edge Detection: Edge detection algorithms such as 

Sobel, Canny, or Laplacian filters can be applied to 

identify areas of rapid intensity change in an image. 

These edges are crucial for contour detection. 

 Contour Finding: The contours are then identified using 

algorithms like the one provided by OpenCV's 

‘findContours’ function. This function detects contours 

in a binary image, where the contours are represented 

as a list of points or a hierarchy of contours. 

 Hierarchy and Approximation: Contour information 

may include hierarchical relationships between 
contours, helping to distinguish between inner and 

outer contours. Additionally, contours can be 

approximated to reduce the number of points and 

simplify the representation. 

 Visualization: Finally, the contours can be visualized 

by drawing them onto the original image. This step 

helps in understanding and analyzing the detected 

objects. 

Contour detection is fundamental in various computer 

vision applications, such as object recognition, gesture 

recognition, image segmentation, and robotics [35]. It allows 

computers to understand the shapes and boundaries of objects 
within an image, facilitating subsequent analysis and 

decision-making processes. 

7) Region of Interest (ROI): An ROI is a specific area 

within an image or dataset relevant to a particular task or 

analysis. Identifying an ROI allows for more focused and 

efficient processing, reducing the computational load and 

improving the accuracy of the analysis. This process is 

commonly used in computer vision, machine learning, and 

image analysis applications [36]. There are various types of 

ROIs, and the choice of ROI depends on the specific 

requirements of the task. In image processing and computer 

vision in image analysis, an ROI might be defined by 

specifying the coordinates, drawing a bounding box, or 

segmenting an image to focus on a particular object or area of 

interest [37]. This approach is common in object detection, 

image recognition, and tracking tasks. Object tracking and 

detection are among the most common uses of ROIs in 

computer vision. Object detection refers to detecting the 

presence of an object of interest in an image or video frame. 

In contrast, object tracking involves finding a specific object 

of interest in a sequence of images or video frames. 

 

 
Fig. 8  ROI in object detection 

 

8) Tesseract OCR: OCR is a key technology for 

converting typed or handwritten text into machine-readable 

text. It allows automatic data processing and analysis. 

However, OCRs for languages with complex text present 

unique challenges due to the complex nature of the characters 

[38]. Furthermore, Tesseract OCR, initially developed by HP 

Labs in 1985, was later released as an open-source project by 
Google in 2005 [39]. It has been under development since 

2006. A combination of the OCR engine and improved text-

matching algorithms are used to implement the system [40]. 

Tesseract is compatible with Unicode (UTF-8) and can 

recognize over 100 languages from the start, making it 

suitable for developing language scanning applications. The 

newer releases, like Tesseract 4, incorporate an OCR engine 

based on a Neural Net (LSTM) primarily focusing on online 

recognition [41]. Additionally, it supports the traditional 

Tesseract OCR engine, which identifies characters based on 

their patterns [42]. 
 

 
Fig. 9  Tesseract OCR Architecture 

 

Tesseract OCR is commonly employed to transform 
documents, including scanned papers, PDF files, or images 

taken with a digital camera, into editable and searchable data. 

A comparison between Tesseract OCR's performance with 

English language support and its capabilities with multi-

language support reveals significant differences, as detailed 

in Table 1. 
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TABLE I 

COMPARISON OF TESSERACT OCR WITH ENGLISH LANGUAGE SUPPORT VS. 

MULTI-LANGUAGE SUPPORT 

 English Only Multi-language 

Language 
Support 

Tesseract OCR with 
English language 
support is explicitly 

optimized for English 
text recognition. It 
may perform better on 
English-language 
documents than the 
multi-language version 
when processing 
English text. 

The multi-language 
version of Tesseract 
OCR supports a 

broader range of 
languages, making it 
more versatile for 
documents that contain 
text in multiple 
languages. It can 
handle languages other 
than English, including 
those with different 

character sets. 
Accuracy Tesseract OCR with 

English language 
support may achieve 
higher accuracy when 
processing English text 
because it is trained 
and optimized for the 

nuances and patterns 
specific to the English 
language. 

While the multi-
language version can 
handle a variety of 
languages, its accuracy 
might be slightly lower 
for English than that of 
the English-dedicated 

version. 

Resource 
Usage 

The English-only 
version of Tesseract 
OCR may be lighter in 
terms of resource 
usage since it only 

needs to load and 
process the data 
relevant to English 
language patterns. 

The multi-language 
version may require 
more resources 
(memory and 
processing power) due 

to the broader language 
coverage and additional 
language models. 

Training 
and 
Customizat
ion 

If we have specific 
requirements for 
English text 
recognition and want 

to fine-tune the OCR 
engine for our specific 
use case, using the 
English-only version 
may offer more 
straightforward 
training and 
customization options. 

The multi-language 
version provides 
flexibility for working 
with documents in 

various languages, but 
training and 
customization might be 
more complex due to 
the diverse language 
models involved. 

 

Therefore, our use case depends on the choice between 

Tesseract OCR with English language support and the multi-

language version. If documents primarily contain English 

text, using the English-only version might yield slightly better 

results and be more resource-efficient. 

II. MATERIAL AND METHOD 

The license plate, a critical vehicle component, can be 
detected and recognized in images or video streams using 

LPR technology that combines OpenCV and Tesseract OCR. 

This method's success hinges on factors such as the quality of 

the input image, the lighting conditions, and the background 

complexity. 

 

 

A. Proposed Method 

This study employs OpenCV and Tesseract OCR for 

license plate detection and recognition, utilizing object 

detection trained on a specialized dataset of license plate fonts 
from various regions. Initially, a vehicle image undergoes 

preprocessing. Should the system spot potential license plate 

regions or actual plates within the image, it will proceed to 

segment the characters on the plate. Following character 

segmentation, OCR technology is applied to recognize and 

decode each character on the license plate. Subsequent OCR 

and post-processing methods are then used to enhance and 

clarify the retrieved license plate data, as illustrated in Figure 

10. 

 

 
Fig. 10  System Overviews 

B. Datasets 

For the datasets used in the experiments in this research, 

we selected 100 license plates, including 50 European plates, 

especially in the UK, and 50 Lao license plates. We selected 

those license plates to compare license plate detection and 

recognition for English characters and Lao characters. All 

license plate images are “still images” that typically refer to a 
static image, and the file types are .jpg files of different sizes, 

as shown in Figure 11. 

 
Fig. 11  Vehicle License Plates 

 

The purpose of the license plate used in this experiment 

was to identify a single line of letters to detect and recognize 

the letters on the license plate on which each license plate was 

attached to a different vehicle and environment. 

III. RESULTS AND DISCUSSION 

The recognition of characters is performed using Tesseract 

OCR with the required libraries. Then, OpenCV was used 

with Python to load the image and process it for better plate 

detection, which may include resizing, converting it to 

grayscale, and applying various filters. Additional 

preprocessing, such as blurring and thresholding, is applied if 

needed to detect regions in the image that may contain license 

plates. This process can be performed using techniques such 

as contour detection. The ROI containing the potential license 
plate was extracted, and Tesseract OCR was used to recognize 

the text. Finally, post-processing steps, such as filtering out 

non-alphanumeric characters from the recognized text, are 
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implemented. The results are displayed in Figure 12, where 

(a) shows the input image consisting of the vehicle with its 

license plate detection, cropping, text segmentation and 

display license plate recognition as ROIs with annotation; (b) 

shows the detection and recognition of English character 

license plates from various angles; and (c) shows the detection 

and recognition of Lao character license plates from various 

angles. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12  Results 

From the above results, 100 license plate images were trained 
by OpenCV and Tesseract OCR. These images were divided into 

two types: license plates in English and Lao characters, which 

were tested. After training with the input datasets, the 

experimental results showed that license plate recognition is 

faster for English characters than for Lao characters because the 

Lao language is more complex than English. A comparison of 

the results of the prediction models produced by OpenCV and 

Tesseract OCR is shown in Table 2. 

TABLE II 

COMPARISON OF ENGLISH AND LAO LICENSE PLATE TEMPLATE MATCHING 

License 

Plate 

Characters 

Number 

of 

Plates 

Plate 

detected 

Cropped 

License 

Plate 

Processing 

Time 

(secs) 

Accuracy 

(%) 

English 50 YES YES 0.12 98.8 

Lao 50 YES YES 0.24 89.42 

 

The table above shows that before recognizing the license 

plate, some letters may not appear or appear instead of another 

letter, but the line in the inspection may be the same. The 

vehicle's position, distance, light, transparency, and sharpness 

are crucial for license plate detection and recognition. 

Therefore, in these experiments, the average latency to detect 

and recognize license plates for English characters was 0.12 

s. The average accuracy was 98.8%. For Lao characters, the 
average latency was 0.24 s, and the average accuracy was 

89.42%. 

IV. CONCLUSION 

Implementing LPR using OpenCV and Tesseract OCR can 

be a powerful solution for automating tasks related to vehicle 

identification. Combining OpenCV for image processing and 

Tesseract OCR for text recognition provides a robust 

foundation for license plate recognition. The system's 
accuracy depends on various factors, such as image quality, 

lighting conditions, and the quality of the OCR engine. 

OpenCV preprocessing techniques, such as image resizing, 

color thresholding, and noise reduction, play crucial roles in 

enhancing the quality of input images and improving the OCR 

results. ROI detection, such as properly identifying and 

extracting areas with license plates, is critical for accurate 

recognition. OpenCV allows for implementing techniques 

such as contour detection and perspective transformation. The 

Tesseract OCR can be fine-tuned and configured to improve 

accuracy, especially for specific fonts and formats commonly 
used in license plates. Additionally, license plate recognition 

using OpenCV and Tesseract OCR is a versatile and effective 

solution with the potential to automate various tasks related to 

vehicle identification. According to the experimental results, 

license plate recognition is faster for English characters than 

for Lao characters because the Lao language is more complex.  
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