
Vol.13 (2023) No. 4

ISSN: 2088-5334

Partial Leader Optimizer

Purba Daru Kusuma a,*, Faisal Candrasyah Hasibuan a
a Computer Engineering, Telkom University, Buah Batu Street, Bandung, Indonesia

Corresponding author: *purbodaru@telkomuniversity.ac.id

Abstract— A new swarm intelligence-based metaheuristic optimizer, namely Partial Leader Optimizer (PLO), is presented. PLO

contains several autonomous agents that represent the solution. The best solution represents collective intelligence, i.e., the leader. PLO

has distinct mechanics in finding the acceptable solution during the given iteration. Every agent moves to a specified target in every

iteration. Two options can be chosen to determine the target. First, the target is calculated by pushing the virtual best solution away

from the corresponding agent. Second, the target is randomly chosen within the solution space. This target selection is conducted

stochastically based on the threshold that is set manually before the iteration. Then, several candidates are generated between the target

and the agent's current location. The distance between adjacent candidates is the same. The agent moves to the best candidate and

updates the best solution. Simulation is implemented to observe and analyze the PLO’s performance. The well-known 23 benchmark

functions are used as the optimization problems. In this simulation, PLO is benchmarked with marine predator algorithm (MPA),

particle swarm optimization (PSO), average subtraction-based optimizer (ASBO), slime mold algorithm (SMA), and pelican

optimization algorithm (POA). The result shows that PLO is competitive compared to these algorithms, especially in solving fixed-

dimension multimodal functions. PLO is better than PSO, MPA, SMA, ASBO, and POA in optimizing 22, 19, 18, 9, and 20 functions

out of 23, respectively.

Keywords— Metaheuristic; swarm intelligence; quantitative optimization.

Manuscript received 8 Aug. 2022; revised 7 Nov. 2022; accepted 26 Dec. 2022. Date of publication 31 Aug. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Optimization is a broad subject that spreads widely in many

areas, such as operations research, engineering, finance,

computation, telecommunication, and many others. Its

popularity comes from its primary characteristic of achieving

optimal results within limited resources. The optimal result

can be considered as minimizing cost or maximizing

revenue/profit. The examples are as follows. Wu et al. [1]

proposed an optimization model for inventory routing
problems to minimize transportation costs, i.e., fuel

consumption. Miyata and Nagano [2] proposed an

optimization model for the distributed flow shop to minimize

the make-span. This model is optimized using the variable

neighborhood search (VNS) and iterated greedy algorithm

[2]. Othman et al. [3] proposed a new method by hybridizing

the water flow algorithm and VNS to solve the classic

traveling salesman problem. Fathollahi-Fard et al. [4]

proposed an optimization model in the home healthcare

system to optimize the total cost and unemployment time and

maintain continuity. Mokhtari et al. [5] proposed an
optimization model to solve the university course timetabling

problem in the postgraduate course. Shi [6] optimized the 5G
network using Viterbi and Bayesian algorithms to meet the

increasing network demand within the given bandwidth. Zhao

et al. [7] proposed an optimized urban rail transit using a

genetic algorithm for passengers’ travel time and cost and

operational cost.

Swarm intelligence is a popular method used extensively

in many optimization studies. Swarm intelligence is part of a

metaheuristic algorithm. As a metaheuristic algorithm, swarm

intelligence uses a stochastic approach so that it tries to find

an acceptable or high-quality solution without guaranteeing

the optimal global solution [8]. In general, swarm intelligence

consists of several autonomous and distributed agents that
work independently to find the best solution without

centralized coordination [9]. PSO and ant colony optimization

(ACO) are popular swarm intelligence algorithms.

Many shortcoming metaheuristics algorithms were

developed based on the swarm intelligence mechanism. In

general, these shortcoming algorithms use a leader or several

leaders as a reference to improve the solution. PSO becomes

the early algorithm that adopts this mechanism by using the

global and local best solutions as references. Marine predator

1598

algorithm (MPA) and grey wolf optimizer (GWO) are popular

algorithms adopting the leader concept. In MPA, the predator

represents the local leader and interacts with its corresponding

prey [10]. In GWO, the three best solutions represent the

leaders so that the entire wolves move toward the resultant of

these leaders [11].

Many shortcoming algorithms adopt the leader concepts in

many ways. Several algorithms, such as Komodo Mlipir and

Red Deer Algorithms (RDA), combine the leader concept and

cross-over. In KMA, the male dragons represent the leaders
[12]. The big male dragons crawl toward the better big male

dragons and avoid the worse big male dragons [12]. The

female dragons cross over with the highest quality male

dragon [12]. The small male dragons follow the big male

dragons [12]. In RDA, the male commanders represent the

leaders, creating a group of harems [13]. Several other

shortcoming algorithms are northern goshawk optimization

(NGO) [9], golden search optimization algorithm (GSOA)

[14], pelican optimization algorithm (POA) [15], hybrid

leader-based optimization (HLBO) [16], three influential

members-based optimizer (TIMBO) [17], tunicate swarm
algorithm (TSA) [18], squirrel search optimizer (SSO) [19],

butterfly optimization algorithm (BOA) [20], multi leader

optimizer (MLO) [21], and so on. In POA, every iteration

generates a randomized leader, and entire agents try to follow

this leader [15]. In NGO, the leader is selected randomly from

the population [NGO]. This concept is like MPA during the

eddy formation [10]. In GSOA, the best solution becomes the

leader, and the agent moves toward this leader based on

sinusoid calculation [14]. In MLO, several best agents

become the leaders, and the number of leaders is set manually

[21]. This mechanism can be seen as a dynamic version of
GWO.

All agents will generally follow the leader in the swarm

intelligence-based metaheuristic algorithms. This leader can

be a single global leader, a single local leader, a combination

between the global leader and local leader, or several global

leaders. In some algorithms, random movement within the

solution space is conducted only if the leader-guided

movement fails to improve the agent's current solution. On the

other hand, swarm intelligence-based algorithms where not all

agents follow the leader are hard to find.

There are also various stochastic mechanisms when

moving toward a leader. Many algorithms work uniformly
and randomly. Some other algorithms choose a normal

distribution. There are few algorithms to choose Levy Flight

or Brownian motion. Most algorithms generate only one

replacement candidate.

Based on this circumstance, this work presents a novel

leader-based metaheuristic algorithm, a Partial Leader

Optimizer (PLO). The concept is that not all agents refer to

the leader, i.e., the best solution, to improve their current

solution. Meanwhile, some agents refer to specific

randomized solutions within the solution space. Moreover,

this work proposes multiple solution candidates rather than
single or static candidates for each agent, like in most

metaheuristic algorithms.

The main contribution of this work is that in PLO, only

several agents will conduct the leader-guided movement.

Meanwhile, the other ones will conduct randomized

movements. Due to the stochastic mechanism, this role will

be shuffled in every iteration.

This paper is organized as follows. Section one presents the

background; review of swarm intelligence, especially the

shortcoming metaheuristic algorithms; the research objective;

and the contribution of this work. Section two presents the

proposed model, which consists of the concept, algorithm,

and mathematical model of PLO and the simulation scenario.

Section three presents the simulation result and discusses the

in-depth analysis and findings regarding the result. Finally,
section four summarizes the conclusion and future research

potential.

II. MATERIAL AND METHOD

A. Proposed Model

The model of PLO is presented in three parts: concept,

algorithm, and mathematical model. The concept represents

the mechanics of the exploration-exploitation strategy and its

reasoning. The algorithm represents procedural formalization
and is presented in pseudocode form. The mathematical

model represents the more detailed formalization of each

process conducted in the algorithm.

Swarm intelligence is the basis of the PLO algorithm.

There are a specific number of autonomous agents in it. These

agents stand in for the solution. Its main purpose is to find the

most optimal solution within the solution space. Due to its

autonomy, each agent moves within the solution space

independently based on its perception of its environment.

Each agent tries to find a better solution in every iteration.

Besides, there is collective intelligence, namely, the best

solution. The best solution is the solution whose fitness is the
best among agents. This best solution becomes the final at the

end of the iteration. As a metaheuristic algorithm, PLO is

divided into two phases. Phase one is initialization. Phase two

is iteration. In the initialization, all agents are randomized

within the solution space. This distribution follows a uniform

distribution. In the iteration, each agent tries to improve its

solution quality.

This algorithm is called a partial leader optimizer because

the best solution (leader) is not guaranteed to guide the

improvement. In every iteration, an agent will determine its

target. There are two options regarding this process. The first
option calculates the target by pushing the virtual best

solution away from the agent's solution. The idea is that the

best solution is currently better than the agent's current

solution. So, there is an opportunity to improve the best and

the agent's current solution by pushing the best solution away

from the agent's current solution. The target is randomized

within the solution space in the second option. This option is

considered because there is no guarantee that the first option

will improve the solution. These options are chosen

stochastically by each agent based on a certain threshold. So,

in every iteration, some agents may choose the first option
while others choose the second one.

After the target is chosen, the agent will try to find a better

solution along its current location to the target. In this process,

the agent will move in several steps to its target. The step size

is equal. The optimal solution may be laid between the agent's

current solution and the target.

1599

Every time the agent moves to a new step, the agent will

update its solution. If this new step is better than the agent's

current solution, this new solution replaces the agent's old

solution. This process is conducted until the last step. After

this process ends, the best solution is updated by comparing

the best and the agent's solutions. If the agent's new solution

is better than the best solution, then this agent's new solution

becomes the best solution.

This simple concept is then transformed into the algorithm.

Before explained further, there are annotations used in this
work. These annotations are as follows. Meanwhile, the

algorithm of PLO is presented in algorithm 1.

bl lower boundary

bu upper boundary

c candidate

C set of candidates

i candidate index

x solution

xbest the best solution

xtarget target
X set of solutions

t iteration

tmax maximum iteration

r threshold

algorithm 1: Partial Leader Optimizer

1 output: xbest

2 begin

3 for all X
4 initialize x using (1)
5 update xbest using (2)
6 end

7 for t = 1 to tmax
8 for all X
9 calculate xtarget using (3)
10 for i = 1 to n(C)

11 calculate ci using (4)
12 update x using (5)
13 end

14 update xbest using (2)
15 end

16 end

17 end

Below is the explanation of algorithm 1. Line 1 states that

the best solution becomes the output of the algorithm. Line 3

to line 6 represents the initialization phase. Line 7 to line 16

represents the iteration phase. The initialization phase consists

of two processes for all solutions: setting up the initial

solution (line 4) and updating the best solution (line 5). The

iteration phase contains two loops. The outer loop iterates

from the first iteration to the maximum iteration.

Meanwhile, the inner loop iterates for all agents. In the

iteration phase, there are three sequential processes conducted
for every agent: determining the target (line 9), conducting

multiple steps (line 10 to line 13), and updating the best

solution (line 14). There are two processes conducted within

the multiple-step movement. The first is determining the

movement candidate (line 13), and the second is updating the

current solution based on the generated candidate (line 14).

The formalization of the initialization phase is presented in

(1) and (2). Equation (1) states that the initial solution is

randomized within the solution space. Uniform distribution is

applied in this process. The solution space is limited by using

the lower and upper boundaries. Equation (2) is used for the

best solution updating process. If the new solution is better

than the best solution, this solution will replace the current

best solution to become the new one. Otherwise, the best

solution remains the same.

 � = ���� , ��	 (1)

 �
��
′ = ��, ���	 < ���
��
	
�
��
 , ���� (2)

Equation (3) states two possible ways or options to

determine the target. The first option is pushing the best

solution away from the related one. The movement step size

is uniformly randomized between zero and the gap between

the best and related solutions. The second option is to generate

the target randomly within the solution space. The selection is

conducted by generating a random number ranging from 0 to
1. The first option is chosen if this number is below the

threshold. Otherwise, the second option is chosen.

 �
�� = ��
��
 + ��0,1	. ��
��
 − �	,��0,1	 < �
���� , ��	, ���� (3)

Equation (4) states that the candidate solution is between
the current and target solutions. The distance between the

adjacent candidates is equal. The earlier candidates are closer

to the current solution. Meanwhile, the later candidates are

closer to the target.

 �� = � + � �
 �!	" . ��
�� − �	 (4)

Equation (5) is used for the solution updating process. If

the candidate is better than the solution, it will replace the
current solution to become the new one. Otherwise, the

solution remains the same.

 �# = ��� , ����	 < ���	
�, ���� (5)

Based on the explanation above, the algorithm complexity

of PLO is shown as O(tmax.n(X).n(C)). It means the algorithm

complexity is linear to the maximum iteration, the population
size, and the number of candidates.

B. Simulation

PLO is then implemented into the simulation so that its

performance can be evaluated. In this work, there are three

simulations. The first simulation is used to analyze the

performance of PLO in solving the 23 benchmark functions.

This first simulation compares PLO with five other

metaheuristic algorithms: PSO, MPA, SMA, ASBO, and
POA. The second and third simulations are conducted to

analyze the algorithm's sensitivity. The second simulation is

conducted to analyze the sensitivity of the maximum iteration,

and the last one is conducted to analyze the sensitivity of the

threshold.

The 23 benchmark functions are selected based on two

reasons. The first reason is that this algorithm represents

various problems, from unimodal and multimodal problems,

low dimension to big dimension problems, and narrow

solution space to large solution space problems. These 23

functions are divided into three categories. These functions

1600

are distributed into seven high-dimension unimodal functions

(function 1 to function 7), six high-dimension multimodal

functions (function 8 to function 13), and ten fixed-dimension

multimodal functions (function 14 to function 23). A detailed

description of these 23 benchmark functions is presented in

Table 1. Second, these 23 functions have been used

extensively in many studies proposing new metaheuristic

algorithms.

TABLE I

BENCHMARK FUNCTIONS

F Function Solution space Dim

1 Sphere [-100, 100] 20
2 Schwefel 2.22 [-100, 100] 20
3 Schwefel 1.2 [-100, 100] 20
4 Schwefel 2.21 [-100, 100] 20

5 Rosenbrock [-30, 30] 20
6 Step [-100, 100] 20
7 Quartic [-1.28, 1.28] 20
8 Schwefel [-500, 500] 20
9 Ratsrigin [-5.12, 5.12] 20
10 Ackley [-32, 32] 20
11 Griewank [-600, 600] 20
12 Penalized [-50, 50] 20

13 Penalized 2 [-50, 50] 20
14 Shekel Foxholes [-65, 65] 2
15 Kowalik [-5, 5] 4
16 Six Hump Camel [-5, 5] 2
17 Branin [-5, 5] 2
18 Goldstein-Price [-2, 2] 2
19 Hartman 3 [1, 3] 3
20 Hartman 6 [0, 1] 6

21 Shekel 5 [0, 10] 4
22 Shekel 7 [0, 10] 4

23 Shekel 10 [0, 10] 4

Some reasons for choosing the five algorithms for
comparison are as follows. PSO is an early metaheuristic

algorithm that uses swarm intelligence. PSO also becomes the

foundation for the development of a lot of later metaheuristic

algorithms. Moreover, because of its popularity, many

optimization studies used, modified, or combined PSO. The

example is as follows. Liu et al. [22] used PSO to improve the

accuracy of the rock slope slip simulation. Gao et al. [23]

combined PSO with Levy flight, also used in MPA, to solve

high latency issues in the mobile cloud computing system.

Habib et al. [24] used the modified PSO (MPSO) to reduce

the sidelobe level (SSL) in beam pointing for uniform
hexagonal array (UHA) antennas. Many studies used and

modified MPA and SMA are the popular shortcoming

metaheuristic algorithms. The example is as follows. Abdel-

Basset [25] used MPA in proposing a task scheduling model

in the fog computing environment to improve the quality of

services. Liu et al. [26] combined SMA and ACO to solve the

classic traveling salesman problem, arguing that SMA can

cover the disadvantage of ACO in the easiness of falling into

the optimal local trap. Dhawale et al. [27] improved the basic

SMA by combining it with sinusoid chaotic behavior to

become an algorithm, namely chaotic SMA (CSMA).

On the other hand, Altay [28] developed another chaotic
mechanism for essential SMA by applying ten chaotic maps,

such as the Chebyshev map, circle map, Gauss map, and

others. Al-qanees et al. [29] used MPA to improve the

adaptive neuro-fuzzy inference system (ANFIS). This system

is implemented in the COVID-19 confirmed cases forecasting

system [29]. Finally, ASBO and POA represented the

shortcoming of metaheuristic algorithms. These algorithms

are firstly introduced in 2022. Although these two algorithms

show outstanding performance, studies that use these

algorithms are still hard to find.

This first simulation is conducted based on several settings.
The maximum iteration and population size are 100 and 20,

respectively. In PLO, the number of candidates is ten, and the

threshold is 0.5. In PSO, all weights are 0.1. In MPA, the FAD

is 0.5. There is not any adjusted parameter in ASBO and POA.

III. RESULT AND DISCUSSION

This section presents the simulation result and the in-depth

analysis of the result and findings. Table 2 to Table 4 presents
the result of the first simulation. Table 2 presents the average

fitness score, while Table 3 presents the standard deviation.

Then, Table 4 presents the number of functions where PLO is

better than other algorithms. In Table 4, the data is divided

based on the groups. Table 5 shows the performance of PLO

within the various maximum iteration. Table 6 shows the

performance of PLO within the various threshold.

Table 2 shows that PLO performs well. It can find an

acceptable solution for the 23 functions. Moreover, PLO can

find the optimal global solution for seven functions: Schwefel

2.22, Shekel Foxholes, Six Hump Camel, Branin, Goldstein-

Price, Shekel 7, and Shekel 10. Among these seven functions,
one function is in the first group, while the six functions are

in the third group. PLO also outperforms all sparing

algorithms in solving eight functions: Shekel Foxholes,

Kowalik, Six Hump Camel, Branin, Hartman 6, Shekel 5,

Shekel 7, and Shekel 10.

Table 3 shows that the performance variance of PLO varies

depending on the problem it tries to solve. PLO performs zero

variance in solving two functions: Goldstein-Price and

Schwefel 2.22. Meanwhile, PLO performs very low variance

in optimizing Shekel Foxholes, Branin, Six Hump Camel,

Shekel 7, and Shekel 10.
Table 4 shows that PLO is competitive compared with the

five algorithms. PSO becomes the most straightforward

algorithm to beat. On the other hand, ASBO becomes the most

challenging algorithm to beat. PLO is very superior in solving

the functions in the third group. Meanwhile, PLO is inferior

in the first and second groups, especially compared to ASBO.

PLO outperforms PSO, MPA, SMA, ASBO, and POA in

solving 22, 19, 18, 9, and 20 functions.

In simulation two, the maximum iteration consists of three

values. The first value is 25, the second is 50, and the third is

75. These three values are less than 100, as set in the first
simulation. Table 5 shows that, in general, the convergence of

the optimization process is achieved in low maximum

iteration. There are 12 functions where the convergence is

achieved when the maximum iteration is set at 25.

TABLE II

SIMULATION RESULT ON 23 BENCHMARK FUNCTIONS (AVERAGE FITNESS SCORE)

1601

F PSO MPA ASBO SMA POA PLO Better Than

1 2.773x103 3.064x102 5.342x10-23 1.283x103 1.589x104 1.952 PSO, MPA, SMA, POA
2 0 0 0 0 0 0 -
3 8.197x103 9.527x102 1.064x10-3 6.542x103 2.132x104 1.733x102 PSO, MPA, SMA, POA
4 2.348x101 1.400 2.998x10-9 1.770x101 5.416x101 8.531 PSO, SMA, POA
5 1.095x106 6.654x101 1.854x101 5.714x105 2.323x107 1.513x102 PSO, SMA, POA
6 2.094x103 2.885x102 6.335x10-2 7.670x102 1.501x104 1.099 PSO, MPA, SMA, POA
7 3.035x10-1 6.838x10-2 9.218x10-3 2.371x101 7.427 2.598x10-2 PSO, MPA, SMA, POA

8 -2.231x103 -2.679x103 -3.385x103 -5.732x103 -2.896x103 -5.181x103 PSO, MPA, ASBO, POA
9 1.457x102 7.455x101 3.560 1.578x101 1.914x102 3.037x101 PSO, MPA
10 1.108x101 5.870 1.677 7.025 1.863x101 4.823 PSO, MPA, SMA, POA
11 2.480x101 3.977 8.692x10-2 8.787 1.500x102 4.757x10-1 PSO, MPA, SMA, POA
12 3.744x104 5.580 2.586x10-3 4.613x103 2.214x107 3.817 PSO, MPA, SMA, POA
13 5.220x105 2.741x102 5.148 5.454x105 7.594x107 1.221x101 PSO, MPA, SMA, POA
14 4.991 5.319 1.103 1.310 1.785 9.980x10-1 PSO, MPA, ASBO, SMA, POA
15 1.989x10-2 4.429x10-3 7.526x10-2 9.362x10-2 2.997x10-3 4.700x10-4 PSO, MPA, ASBO, SMA, POA
16 -1.030 -1.022 -7.618x10-2 -3.286x10-2 -1.029 -1.032 PSO, MPA, ASBO, SMA, POA

17 1.504 5.816x10-1 6.438x10-1 6.312x10-1 4.009x10-1 3.981x10-1 PSO, MPA, ASBO, SMA, POA
18 1.097x101 4.668 3.000 3.000 3.046 3.000 PSO, MPA, POA
19 -1.278x10-2 -3.827 -4.954x10-2 -4.954x10-2 -4.954x10-2 -4.778x10-2 PSO
20 -2.464 -1.957 -1.223 -1.596 -2.957 -3.308 PSO, MPA, ASBO, SMA, POA
21 -4.419 -1.849 -9.137 -7.074 -3.085 -9.850 PSO, MPA, ASBO, SMA, POA
22 -4.109 -1.798 -8.214 -6.513 -3.400 -1.040x101 PSO, MPA, ASBO, SMA, POA
23 -5.048 -1.856 -8.994 -8.012 -3.838 -1.054x101 PSO, MPA, ASBO, SMA, POA

TABLE III

SIMULATION RESULT ON 23 BENCHMARK FUNCTIONS (STANDARD DEVIATION)

F PSO MPA ASBO SMA POA PLO

1 8.032x102 1.785x102 1.118x10-22 6.718x102 2.511x103 2.734
2 0 0 0 0 0 0

3 1.954x103 5.431x102 2.816x10-3 3.465x103 6.512x103 1.590x102
4 5.632 1.208 2.298x10-9 1.058x101 5.669 2.588
5 1.191x106 9.673x101 2.230x10-2 6.293x105 1.158x107 1.048x102
6 1.018x103 1.393x102 3.280x10-2 4.863x102 3.565x103 1.748
7 1.767x10-1 4.041x10-2 4.229x10-3 2.580x101 3.653 1.295x10-2
8 -3.927x102 3.205x102 3.013x102 2.844x102 4.203x102 8.645x102
9 1.510x101 2.519x101 1.529 5.024 2.112x101 9.787
10 9.293x10-1 1.255 4.256x10-1 1.969 5.316x10-1 1.166

11 8.509 1.309 6.292x10-2 6.457 3.190x101 3.511x10-1
12 9.085x104 2.208 4.439x10-3 1.329x104 1.218x107 3.652
13 8.018x105 5.539x102 1.126 9.580x105 2.453x107 1.214x101
14 3.560 3.059 3.134x10-1 1.141 1.085 3.448x10-16
15 2.321x10-2 3.630x10-3 3.328x10-2 3.665x10-2 2.121x10-3 4.073x10-4
16 4.588x10-3 9.428x10-3 1.631x10-1 8.057x10-2 1.721x10-3 2.293x10-16
17 2.993 1.587x10-1 1.844x10-1 4.364x10-2 2.523x10-3 5.722x10-17
18 2.046x101 1.244 0 0 5.324x10-2 0
19 -3.973x10-2 1.253x10-1 1.433x10-17 1.436x10-17 1.436x10-17 7.667x10-3

20 3.780x10-1 4.149x10-1 4.026x10-1 4.806x10-1 1.676x10-1 3.959x10-2
21 2.580 6.200x10-1 2.104 2.752 1.117 1.236
22 3.543 5.121x10-1 2.696 2.648 1.386 8.383x10-6
23 3.126 5.614x10-1 2.529 3.199 1.529 3.669x10-15

TABLE IV

HEAD-TO-HEAD COMPARISON

Algorithm Number of Functions that PLO beats

1st Group 2nd Group 3rd Group Total

PSO 6 6 10 22
MPA 4 6 9 19
ASBO 0 1 8 9
SMA 6 4 8 18
POA 6 5 9 20

TABLE V

RELATION BETWEEN MAXIMUM ITERATION AND THE PERFORMANCE

F
Average Fitness Score

tmax = 25 tmax = 50 tmax = 75

1 4.866x101 9.479 1.541
2 0 0 0
3 5.603x102 3.259x102 2.522x102
4 9.990 9.298 8.887
5 1.878x103 2.790x102 3.331x102
6 3.628x101 6.966 2.606
7 6.026x10-2 5.603x10-2 3.193x10-2
8 -5.402x103 -5.676x103 -5.661x103
9 4.158x101 3.030x101 3.214x101

10 5.265 5.101 5.250
11 1.420 8.983x10-1 5.718x10-1
12 4.394 4.560 3.310

1602

F
Average Fitness Score

tmax = 25 tmax = 50 tmax = 75

13 2.781x101 2.564x101 1.533x101
14 1.224 9.980x10-1 9.980x10-1
15 2.042x10-3 6.639x10-4 6.414x10-4
16 -1.032 -1.032 -1.032
17 3.981x10-1 3.981x10-1 3.981x10-1
18 3.000 3.000 3.000

19 -4.650x10-2 -4.954x10-2 -4.636x10-2
20 -3.322 -3.279 -3.279
21 -8.226 -9.231 -8.434
22 -7.778 -9.466 -9.217
23 -7.761 -9.894 -1.029x101

TABLE VI

RELATION BETWEEN THRESHOLD AND THE PERFORMANCE

F
Average Fitness Score

r= 0.25 r= 0.5 r = 0.75

1 5.714 1.952 4.370
2 0 0 0

3 1.846x102 1.733x102 2.283x102
4 7.232 8.531 9.521
5 3.421x102 1.513x102 3.196x102
6 4.938 1.099 3.766

7 1.659x10-2 2.598x10-2 4.577x10-2
8 -5.526x103 -5.181x103 -5.460x103
9 2.639x101 3.037x101 3.625x101
10 4.300 4.823 5.732
11 4.600x10-1 4.757x10-1 5.467x10-1
12 1.500 3.817 3.581
13 9.489 1.221x101 1.692x101
14 9.980x10-1 9.980x10-1 1.043

15 4.209x10-4 4.700x10-4 6.603x10-4
16 -1.032 -1.032 -1.032

17 3.981x10-1 3.981x10-1 3.981x10-1

18 3.000 3.000 3.000

19 -4.846x10-2 -4.778x10-2 -4.954x10-1

20 -3.291 -3.308 -3.279
21 -9.814 -9.850 -8.321
22 -1.039x101 -1.040x101 -8.830

23 -1.051x101 -1.054x101 -9.600

In the third simulation, there are three values for the
threshold. The first value is 0.25, the second is 0.5, and the

third is 0.75. The best result is written in bold font in Table 6.

Table 6 shows the algorithm's performance in response to

different threshold values varies. The best outcome is found

for six functions at all threshold levels. When the threshold is

low, ten functions produce their best results. There are six

functions where a moderate threshold yields the best results.

When the threshold is high, only one function produces the

best results. Meanwhile, there is one function where the best

result is obtained when the threshold is low or moderate.

Although the result has shown that the performance of PLO

is acceptable, it is not wise to conclude that PLO is superior
to the defeated algorithms, such as PSO, MPA, SMA, and

POA. As explained in the no-free-lunch theory, there is not

any perfect algorithm. On the other hand, the algorithm's

performance lays on the problem it tries to tackle. Besides,

many metaheuristic algorithms depend on their adjusted

parameters to control their performance. For example, the

dominant exploitation strategy may be better at solving

unimodal problems, while the dominant exploration strategy

may be better at solving multimodal problems. As indicated

in Table 6, a low threshold may be suitable for some

problems, while a moderate threshold may be suitable for

others.

The result in Table 6 also shows that diversifying agent

roles is essential. Too many agents that conduct leader-guided

movement ends with a less satisfying result. On the other

hand, balancing leader-guided and randomized movements

ends with better results.

Traditional algorithms, such as the variable neighborhood

search (VNS), tabu search (TS), genetic algorithm (GA), and

PSO, are still employed and developed in various
optimization research even if many shortcoming methods

have outperformed them. The example is as follows. Rejer

and Jankowski [30] improved the basic GA with an

aggressive mutation method, a fast GA with aggressive

mutation (FGAAM), to decrease the time feature finding time

for feature selection. Sajadi and Ahmadi [31] combined GA

with vibration damping optimization (VDO) to optimize the

inventory management of perishable products. Krityakierne et

al. [32] used TS to optimize home healthcare routing and

scheduling. There are several reasons for this circumstance.

First, these old-fashioned algorithms are battle-proven
algorithms implemented in many optimization studies.

Second, their mechanics are uncomplicated, so they can be

combined with other algorithms to improve their performance

and tackle their weaknesses, especially in avoiding the local

trap. Third, many metaheuristic algorithms lay on the iteration

and the population size. Improving the algorithm's

performance by increasing the maximum iteration or

population size is easy.

On the other hand, the intention of developing a new

algorithm is still high. This circumstance also comes from

several reasons. First, as stated in the no-free-lunch theory, no
perfect method or algorithm is superior to solving all

problems. On the contrary, there are many problems with

specific circumstances (objective and constraint). Moreover,

to date, many problems have become more complex than in

the previous time. Second, there are a lot of mathematical

solutions that can be used and have not been explored to

construct many new algorithms.

IV. CONCLUSION

This work has proposed a new metaheuristic method, a

partial leader optimizer (PLO). Based on the explanation, this

algorithm is shown as a simple algorithm. Meanwhile, the

simulation results show that PLO is competitive compared to

PSO, MPA, ASBO, SMA, and POA. PLO is better than PSO,

MPA, SMA, ASBO, and POA in finding the optimal solution

of 22, 19, 18, 9, and 20 functions, respectively. The simulation

result also shows that PLO can achieve an acceptable solution

in the low iteration. Moreover, the low or moderate threshold

is generally better than the high threshold in solving the

benchmark functions.
Various approaches can continue this work. First, more

studies to implement PLO in many real-world applications are

needed to create a more comprehensive evaluation of the

performance of PLO. Second, more studies to combine PLO

with other algorithms, either the old-fashioned algorithms or

the shortcoming ones, are also challenging.

ACKNOWLEDGMENT

1603

Telkom University, Indonesia, financially supported this

work.

REFERENCES

[1] W. Wu, W. Zhou, Y. Lin, Y. Xie, and W. Jin, “A hybrid metaheuristic

algorithm for location inventory routing problem with time windows

and fuel consumption,” Expert Syst Appl, vol. 166, p. 114034, Mar.

2021, doi: 10.1016/j.eswa.2020.114034.

[2] H. H. Miyata and M. S. Nagano, “An iterated greedy algorithm for

distributed blocking flow shop with setup times and maintenance

operations to minimize makespan,” Comput Ind Eng, vol. 171, p.

108366, Sep. 2022, doi: 10.1016/j.cie.2022.108366.

[3] M. R. Othman, Z. Ali Othman, A. I. Srour, and N. S. Sani, “A Hybrid

Water Flow-Like Algorithm and Variable Neighbourhood Search for

Traveling Salesman Problem,” Int J Adv Sci Eng Inf Technol, vol. 9,

no. 5, p. 1505, Oct. 2019, doi: 10.18517/ijaseit.9.5.7957.

[4] A. M. Fathollahi-Fard, A. Ahmadi, and B. Karimi, “Multi-Objective

Optimization of Home Healthcare with Working-Time Balancing and

Care Continuity,” Sustainability, vol. 13, no. 22, p. 12431, Nov. 2021,

doi: 10.3390/su132212431.

[5] M. Mokhtari, M. Vaziri Sarashk, M. Asadpour, N. Saeidi, and O.

Boyer, “Developing a Model for the University Course Timetabling

Problem: A Case Study,” Complexity, vol. 2021, pp. 1–12, Dec. 2021,

doi: 10.1155/2021/9940866.

[6] X. Shi, “A Method of Optimizing Network Topology Structure

Combining Viterbi Algorithm and Bayesian Algorithm,” Wirel

Commun Mob Comput, vol. 2021, pp. 1–12, May 2021, doi:

10.1155/2021/5513349.

[7] J. Zhao, M. Ye, Z. Yang, Z. Xing, and Z. Zhang, “Operation

optimizing for minimizing passenger travel time cost and operating

cost with time-dependent demand and skip-stop patterns: Nonlinear

integer programming model with linear constraints,” Transp Res

Interdiscip Perspect, vol. 9, p. 100309, Mar. 2021, doi:

10.1016/j.trip.2021.100309.

[8] J. Swan et al., “Metaheuristics ‘In the Large,’” Eur J Oper Res, vol.

297, no. 2, pp. 393–406, Mar. 2022, doi: 10.1016/j.ejor.2021.05.042.

[9] M. Dehghani, S. Hubalovsky, and P. Trojovsky, “Northern Goshawk

Optimization: A New Swarm-Based Algorithm for Solving

Optimization Problems,” IEEE Access, vol. 9, pp. 162059–162080,

2021, doi: 10.1109/ACCESS.2021.3133286.

[10] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi,

“Marine Predators Algorithm: A nature-inspired metaheuristic,”

Expert Syst Appl, vol. 152, p. 113377, Aug. 2020, doi:

10.1016/j.eswa.2020.113377.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”

Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi:

10.1016/j.advengsoft.2013.12.007.

[12] S. Suyanto, A. A. Ariyanto, and A. F. Ariyanto, “Komodo Mlipir

Algorithm,” Appl Soft Comput, vol. 114, p. 108043, Jan. 2022, doi:

10.1016/j.asoc.2021.108043.

[13] A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, and R. Tavakkoli-

Moghaddam, “Red deer algorithm (RDA): a new nature-inspired

meta-heuristic,” Soft comput, vol. 24, no. 19, pp. 14637–14665, Oct.

2020, doi: 10.1007/s00500-020-04812-z.

[14] M. Noroozi, H. Mohammadi, E. Efatinasab, A. Lashgari, M. Eslami,

and B. Khan, “Golden Search Optimization Algorithm,” IEEE Access,

vol. 10, pp. 37515–37532, 2022, doi:

10.1109/ACCESS.2022.3162853.

[15] P. Trojovský and M. Dehghani, “Pelican Optimization Algorithm: A

Novel Nature-Inspired Algorithm for Engineering Applications,”

Sensors, vol. 22, no. 3, p. 855, Jan. 2022, doi: 10.3390/s22030855.

[16] M. Dehghani and P. Trojovský, “Hybrid leader based optimization: a

new stochastic optimization algorithm for solving optimization

applications,” Sci Rep, vol. 12, no. 1, p. 5549, Dec. 2022, doi:

10.1038/s41598-022-09514-0.

[17] F. Zeidabadi, M. Dehghani, and O. Malik, “TIMBO: Three Influential

Members Based Optimizer,” International Journal of Intelligent

Engineering and Systems, vol. 14, no. 5, pp. 121–128, Oct. 2021, doi:

10.22266/ijies2021.1031.12.

[18] S. Kaur, L. K. Awasthi, A. L. Sangal, and G. Dhiman, “Tunicate

Swarm Algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization,” Eng Appl Artif Intell, vol. 90, p. 103541, Apr.

2020, doi: 10.1016/j.engappai.2020.103541.

[19] M. Suman, V. Sakthivel, and P. Sathya, “Squirrel Search Optimizer:

Nature Inspired Metaheuristic Strategy for Solving Disparate

Economic Dispatch Problems,” International Journal of Intelligent

Engineering and Systems, vol. 13, no. 5, pp. 111–121, Oct. 2020, doi:

10.22266/ijies2020.1031.11.

[20] S. Arora and S. Singh, “Butterfly optimization algorithm: a novel

approach for global optimization,” Soft comput, vol. 23, no. 3, pp. 715–

734, Feb. 2019, doi: 10.1007/s00500-018-3102-4.

[21] M. Dehghani et al., “MLO: Multi Leader Optimizer,” International

Journal of Intelligent Engineering and Systems, vol. 13, no. 6, pp.

364–373, Dec. 2020, doi: 10.22266/ijies2020.1231.32.

[22] B. Liu, Z. Wang, and X. Zhong, “Particle Swarm Optimization

Algorithm in Numerical Simulation of Saturated Rock Slope Slip,”

Math Probl Eng, vol. 2021, pp. 1–11, Mar. 2021, doi:

10.1155/2021/6682659.

[23] T. Gao, Q. Tang, J. Li, Y. Zhang, Y. Li, and J. Zhang, “A Particle

Swarm Optimization With Lévy Flight for Service Caching and Task

Offloading in Edge-Cloud Computing,” IEEE Access, vol. 10, pp.

76636–76647, 2022, doi: 10.1109/ACCESS.2022.3192846.

[24] H. Mohammed Hussein, K. Katzis, L. P. Mfupe, and E. T. Bekele,

“Performance Optimization of High-Altitude Platform Wireless

Communication Network Exploiting TVWS Spectrums Based on

Modified PSO,” IEEE Open Journal of Vehicular Technology, vol. 3,

pp. 356–366, 2022, doi: 10.1109/OJVT.2022.3191762.

[25] M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei,

and N. Kumar, “Energy-Aware Marine Predators Algorithm for Task

Scheduling in IoT-Based Fog Computing Applications,” IEEE Trans

Industr Inform, vol. 17, no. 7, pp. 5068–5076, Jul. 2021, doi:

10.1109/TII.2020.3001067.

[26] M. Liu et al., “A Slime Mold-Ant Colony Fusion Algorithm for

Solving Traveling Salesman Problem,” IEEE Access, vol. 8, pp.

202508–202521, 2020, doi: 10.1109/ACCESS.2020.3035584.

[27] D. Dhawale, V. K. Kamboj, and P. Anand, “An effective solution to

numerical and multi-disciplinary design optimization problems using

chaotic slime mold algorithm,” Eng Comput, May 2021, doi:

10.1007/s00366-021-01409-4.

[28] O. Altay, “Chaotic slime mould optimization algorithm for global

optimization,” Artif Intell Rev, vol. 55, no. 5, pp. 3979–4040, Jun.

2022, doi: 10.1007/s10462-021-10100-5.

[29] M. A. A. Al-qaness, A. A. Ewees, H. Fan, L. Abualigah, and M. Abd

Elaziz, “Marine Predators Algorithm for Forecasting Confirmed Cases

of COVID-19 in Italy, USA, Iran and Korea,” Int J Environ Res Public

Health, vol. 17, no. 10, p. 3520, May 2020, doi:

10.3390/ijerph17103520.

[30] I. Rejer and J. Jankowski, “fGAAM: A fast and resizable genetic

algorithm with aggressive mutation for feature selection,” Pattern

Analysis and Applications, vol. 25, no. 2, pp. 253–269, May 2022, doi:

10.1007/s10044-021-01000-z.

[31] S. J. Sajadi and A. Ahmadi, “An integrated optimization model and

metaheuristics for assortment planning, shelf space allocation, and

inventory management of perishable products: A real application,”

PLoS One, vol. 17, no. 3, p. e0264186, Mar. 2022, doi:

10.1371/journal.pone.0264186.

[32] T. Krityakierne, O. Limphattharachai, and W. Laesanklang, “Nurse-

patient relationship for multi-period home health care routing and

scheduling problem,” PLoS One, vol. 17, no. 5, p. e0268517, May

2022, doi: 10.1371/journal.pone.0268517.

1604

