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Abstract— This study presents the results of an effort to improve the forecast of precipitation (> 0.1 mm/hr or > 0.1 mm/3hr) in the 

Local Data Assimilation and Prediction System (LDAPS) and the Global Data Assimilation and Prediction System (GDAPS) by 

applying the Random Forest (RF) model in South Korea. LDAPS and GDAPS are Numerical Weather Prediction (NWP) models 

operated by the Korea Meteorological Administration (KMA) for weather forecasting. GDAPS operates the Unified Model (UM) and 

the Korean Integrated Model (KIM). This study used weather forecast data from LDAPS, GDAPS/KIM, and GDAPS/UM. Precipitation 

forecasts from LDAPS and GDAPS were corrected by RF training with rain gauge observations from about 685 stations. Approximately 

35 selected NWP model output variables were used as inputs to the RF training. To reflect recent trends in biases between observations 

and NWP, the precipitation probability prediction model was designed for real-time learning using a sliding window technique. In 

addition, the precipitation data had a data imbalance problem with more precipitation cases than non-precipitation cases, so an under-

sampling method was applied to solve this problem. Comparing the performance of the proposed method with NWP in predicting 

precipitation, the CSI was improved by 14.7-23.1% (LDAPS), 33.9% (GDAPS/KIM), and 6.7%-38% (GDAPS/UM) over NWP, and the 

accuracy was also better. In future research, automating the sampling rate selection to reflect recent weather trends when under-

sampling is likely to improve forecast performance. 
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I. INTRODUCTION

Today, precipitation forecasting is a critical factor affecting 

not only individual lives but also significantly impacting 

society as a whole, including water management, agriculture, 
logistics, and transportation. With the onset of climate 

change, extreme weather events such as torrential rains, heat 

waves, heavy snowfalls, floods, and droughts are occurring 

more frequently around the world, and as the scale of natural 

disasters increases, so does the demand for accurate 

precipitation forecasts.  

Very short-term forecasts, which predict weather 

conditions within six hours of the present, are relatively 

accurate because they are based on ground observations, radar 

observations, and high-resolution models. However, short-

term and medium-term forecasts, which cover days to weeks, 

depend mostly on numerical weather prediction (NWP) 
models, and the performance of the NWP models determines 

the accuracy of the forecast. Therefore, meteorological 

agencies worldwide develop, continuously improve, and 

operate the NWP system to suit their environment. However, 

due to limitations such as errors in the numerical model itself, 

initial value problems, atmospheric boundary conditions, 

atmospheric nonlinearity, and physical process 

parameterization, the forecast data of numerical models 

always have errors [1]–[3]. Since the model does not reflect 

changes in the regional and seasonal occurrence mechanisms 
of precipitation, precipitation prediction can increase the 

uncertainty of precipitation prediction [4], [5]. Therefore, 

statistical post-processing methods have been applied in many 

countries to reduce the uncertainty of precipitation forecasts 

from numerical models and improve their forecast 

performance [6]. The most representative statistical models 

are Model Output Statistics (MOS) and Bayesian Model 

Averaging (BMA), which reduce the systematic error of the 

model from the relationship between actual observations and 

numerical model predictions. They are known to effectively 

calibrate forecasts from today to 10 days in the future [7]-[9]. 
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However, because they use linear relationships, they require 

significant tuning by forecasters depending on the forecast 

data distribution [3].  

Recently, machine learning methods have been actively 

applied to NWP post-processing because of their ability to 

handle complex nonlinear processes. In a related study, 

Herman and Schumacher [10] and Loken et al. [11] developed 

a post-processing model of a numerical weather prediction 

model using a Random Forest (RF) model and applied a deep 

neural network for uncertainty diagnosis and bias correction 
of NWP forecasts. Ko et al. [12] developed a post-processing 

model for precipitation correction in NWP using XGboost 

(Extreme Gradient Boosting). In addition, there are other 

methods such as Quantile Regression, Gradient Boosted 

Regression Tree, Neural Network, Long Short-Term 

Memory, ELM (Extreme Learning Machine), and Genetic 

Programming for post-processing of NWP data [13] –[19]. 

There are many factors to consider when correcting NWP 

forecast results, but this study focused on two factors that 

significantly impact the correction results. The first factor is 

the difficulty of dealing with heterogeneity resulting from 
changes in the characteristics of NWP forecast data due to 

improvements in NWP physical processes and data 

assimilation processes without reproducing historical data 

using a new model [20]. In addition, when training a model 

by accumulating training data over a long period, it is difficult 

to account for changes in the bias between observations and 

NWP forecasts due to rapid changes in weather conditions. 

To address these issues, Allen et al. [21] suggested that 

learning a small set of recent data at regular intervals would 

be effective. Therefore, in this study, a model was designed 

using a Sliding Window Technique (SWT) to learn recent 
data at regular intervals. 

Second, precipitation, which is the focus of this study, is an 

imbalanced dataset with a dominance of no-precipitation 

cases. This imbalance significantly affects the prediction 

performance of the learning model. Random Over-sampling 

(ROS) and Random Under-sampling (RUS) are 

representative methods dealing with data imbalance, but there 

is no universally best method. Therefore, it is necessary to 

tailor the method to each training domain [22], [23]. The ROS 

method may add unnecessary noise to the training data and 

cause overfitting due to overlap, while the RUS method may 

lose important data [24]. In this study, we applied the RUS 
method to avoid overfitting due to overlapping data and 

changes in the physical properties of the NWP prediction data. 

This paper aims to predict the probability of precipitation 

through the bias correction of LDAPS/UM (Local Data 

Assimilation and Prediction System/Unified Model), 

GDAPS/UM (Global Data Assimilation and Prediction 

System/Unified Model), and GDAPS/KIM (Global Data 

Assimilation and Prediction System/Korean Integrated 

Model), which are NWP models operated by the Korea 

Meteorological Administration (KMA). RF was used to train 

the probability prediction model, and an SWT and RUS 
method was used to select the training data. The specific data 

and research methods are described in Section 2, the results 

and discussion in Section 3, and the conclusion in Section 4. 

 

 

II. MATERIALS AND METHOD 

A. Materials 

In this study, the numerical model data used to develop a 

precipitation probability prediction model are LDAPS/UM, 

GDAPS/KIM, and GDAPS/UM. The LDAPS/UM has a 

spatial resolution of 1.5 km, and the vertical layers are 

provided at 25 hPa intervals for 1000-850 hPa and 50 hPa 
intervals for 800-200 hPa. It also consists of 602 grids from 

east to west and 781 grids from north to south. LDAPS/UM 

is run four times a day (0000, 0600, 1200, 1800 UTC) and 

provides a 48-hour forecast with 1-hour intervals. The input 

variables used for training are LDAPS surface and pressure 

levels (Table 1), latitude, longitude, forecast time, and local 

time. 

TABLE I 

LIST OF INPUT VARIABLES IN THE LDAPS 

Surface level variables  Pressure level variables 

Total Downward SW Flux (Surface) 850 hPa Vertical Velocity 
Outgoing LW Flux (TOA) 700 hPa Vertical Velocity 

Large-scale precipitation 500 hPa Vertical Velocity 
Large-scale precipitation rate 850 hPa Temperature 
Richardson Number 700 hPa Temperature 
U-wind (10m) 500 hPa Temperature 
V-wind (10m) 850 hPa Relative Humidity 
Sensible Heat Flux (Surface) 700 hPa Relative Humidity 
Latent Heat Flux (Surface) 500 hPa Relative Humidity 
Temperature (1.5m) 850 hPa U- wind 

Minimum Temperature (1.5m) 700 hPa U- wind 
Maximum Temperature (1.5m) 850 hPa V- wind 
Relative Humidity (1.5m) 700 hPa V- wind 
Dewpoint Temperature (1.5m) 500 hPa Geopotential Height 
Total Cloud  
Cloud Top Height  
Mean Sea Level Pressure 
(Surface) 

※ SW: Short-Wave 

Pressure (Surface)      LW: Long-Wave 
K-index  

 

The ground truth used was the 1-hour cumulative 

precipitation observed by the KMA's Automated Synoptic 

Observation System (ASOS) and Automatic Weather Station 
(AWS). Observational data were collected from 705 stations 

(Figure 1).  

 

 
Fig. 1  Training sites in South Korea, Jeju Island (JJ), Gangwon-do (GW), 

Chungcheongnam-do (CH), Jeolla-do (JL), and the Capital Area (CP) 
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Data from grid points with the closest Euclidean distance 

were used. Then, LDAPS learning and verification were 

performed for the summer (June-August) of 2019-2021, and 

the precipitation threshold for the precipitation and non-

precipitation was set to 0.1 mm/hr based on the observed 

precipitation. 

The input variables of the precipitation probability 

prediction model using GDAPS forecast data are shown in 

Table 2. Latitude, longitude, forecast time, and local time 

were also used. The ground truth of the output variable is the 
observed 3-hour cumulative precipitation (threshold 0.1 

mm/3hr). GDAPS/KIM and GDAPS/UM are run four times 

daily (0000, 0600, 1200, 1800 UTC) and provide an 87-hour 

forecast at 3-hour intervals. The KIM model has a spatial 

resolution of 12 km, and the UM model has a spatial 

resolution of 10 km. The GDAPS-based models were trained 

and tested using data from KIM's 2021 summer season (June-

August) and UM's 2020-2021 summer season (June-August).  

TABLE II 

LIST OF INPUT VARIABLES IN THE GDAPS 

Surface level variables  Pressure level variables 

Large-scale Prcp. 850 hPa Temp. 

U-wind (10m) 700 hPa Temp. 

V-wind (10m) 500 hPa Temp. 

Sensible Heat Flux (Surface) 850 hPa Relative Humidity 

Temp. (1.5m) 700 hPa Relative Humidity 

Relative Humidity (1.5m) 500 hPa Relative Humidity 

Dewpoint Temp. (1.5m) 850 hPa U-wind 

Surface level variables  Pressure level variables 

Pressure (Surface) 700 hPa U-wind 

Geometric Height 850 hPa V-wind 

Low Cloud Cover 700 hPa V-wind 

Medium Cloud Cover 850 hPa WB. Potential Temp 

High Cloud Cover 700 hPa WB. Potential Temp 

Total Cloud Cover 500 hPa WB. Potential Temp 

Geopotential Height 700hPa Geopotential Height 

Downward LW Rad. Flux  

Downward LW Rad. Flux (x)  

Large Scale Water Prcp. Validation  

Convective Water Prcp. ※ Temp.: Temperature 

K-index      Prcp.: Precipitation 

Total Prcp. Rate      LW: Long-Wave 

Convective Prcp.  

B. Methods 

The learning and prediction system of the precipitation 

probability prediction model based on NWP (Numerical 

Weather Prediction) consists of preprocessing, model 

learning, and inference stages, as shown in Figure 2. In the 

preprocessing stage, the SWT is used to select the learning 

target data to reflect the bias trend according to the change of 

the numerical model and the recent weather change, and 

under-sampling is applied to solve the data imbalance 

problem of precipitation and non-precipitation. In the model 

learning stage, a precipitation probability prediction model is 

learned using RF, and finally, the precipitation probability is 

predicted using the trained model.  
 

 
Fig. 2  Overall framework of precipitation probability prediction model for learning system based on NWP model 

 

SWT in preprocessing for real-time learning is effective for 

modeling time series data. When applied to data whose 

characteristics change over time, such as seasonal changes in 
weather, it can improve the performance of learning models 

[25]-[29]. In this study, the training data is selected by 

selecting historical data equal to the Window Size (WS) from 

the forecast target date, and on the next day, the new data is 

included in the training, and the data outside the WS is 

excluded from the training. In a sliding window, the WS 

significantly impacts the amount of training data and the 

training time. Since meteorological phenomena such as 

precipitation have very different characteristics in different 

seasons, it is necessary to select an appropriate WS, because 

if the WS is very large, it is possible to learn data from seasons 

that are less relevant to the present. The WS used in this study 
is 30 days based on the results of NIMS (National Institute of 

Meteorological Sciences) [30]. In addition, it is difficult to 

learn enough precipitation patterns that may occur in the 

future using only the current year's data, so ±30 days were 

used based on the previous year's forecast target date (Fig. 3). 

 
Fig. 3  Schematic diagram of the sliding window technique 

 

The training data selected by SWT used RUS to mitigate 

the imbalance between precipitation and non-precipitation 
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data. The target data of this study consists of about 87-93% 

(based on observed precipitation for June-August 2019-2021) 

non-precipitation cases. Therefore, most precipitation data is 

extracted, and only some non-precipitation data is extracted. 

In this case, the proportion of non-precipitation cases 

extracted in RUS greatly affects the tendency of the learning 

model to overestimate or underestimate the prediction. In this 

study, we experimented with the following two methods 

depending on the extraction rate of non-precipitation cases 

(Figure 4). The first method extracts 85% or 95% of the 
precipitation data in the training data, and the second method 

extracts 30% or 40% of the non-precipitation cases (hereafter 

referred to as Method 1). This method does not consider the 

relative distribution of precipitation and non-precipitation in 

the training data, which may have the disadvantage that the 

training model is more likely to underestimate precipitation 

when it is relatively distributed. To compensate for the 

disadvantages of Method 1, the second method is to extract 

the number of precipitation cases multiplied by a certain ratio 

so that the number of precipitation cases is proportional to the 

number of rainfall cases when extracting precipitation data 
(hereafter referred to as Method 2). The training data 

extracted by Method 2 can be expected to have better 

prediction performance than Method 1 by having a constant 

ratio between precipitation and non-precipitation. 
 

 
Fig. 4  Schematic diagram for training a precipitation probability prediction 

model 

 

The RF model used in the training phase of the precipitation 

probability prediction model is an ensemble model that trains 
multiple decision tree models and combines the results to 

make a prediction [31]. RF is generally less computationally 

expensive to train than other machine learning methods 

because it favors overfitting the training model and requires 

fewer parameters to be estimated. Moreover, it is often used 

for learning predictive or classification models in 

meteorology and other fields because it guarantees a certain 

good performance [32] - [34]. In this study, since we have the 

constraint of being able to quickly learn new data selected by 

SWT every day, a model with a large number of parameters 

to be estimated or a large computational cost is not 

appropriate, so we used RF. The number of trees in RF is 500, 
and other initial parameters [30]. 

To evaluate the performance of the trained model, we used 

the verification metrics shown in Table 3, which are 

commonly used to evaluate the performance of precipitation 

forecasting. In the verification metric, ACC represents the 

average agreement between forecast and observation, and CSI 

is ACC subtracted by the value of C, which is not related to 

precipitation. POD is the ratio of the accuracy of the forecast 

to the observations, with ACC, CSI, and POD ranging from 0 

to 1, with a perfect forecast having a value of 1. FAR is the 

percentage of wrong precipitation forecasts, ranging from 0 to 

1, with a perfect forecast having a value of 0. Finally, bias 

ranges from 0 to infinity and has a value of 1 when the range 

of predicted precipitation is the same as the range of observed 

precipitation. Bias has nothing to do with accuracy but the 

relative skewness of the observed and predicted values. 

Therefore, a bias less than 1 indicates a tendency to 

underestimate, and a bias greater than 1 indicates a tendency 

to overestimate. 

TABLE III 

THE VERIFICATION METRICS FOR THE PREDICTION OF PRECIPITATION IN TWO 

CATEGORICAL DATA 

Verification metrics Formula Range 

Accuracy ACC �  
� � �

� � � � 	 � �
 
0 � ACC � 1� 

Critical success index CSI �  
�

� � � � 	
 
0 � CSI � 1� 

False alarm ratio FAR � 1 � 
�

� � 	
 
0 � FAR � 1� 

Probability of 

detection 
POD �  

�

� � �
 
0 � POD � 1� 

Bias Bias �  
� � 	

� � �
 
0 � Bias� 

H: Hits, M: Misses, F: False alarms, C: Correct negatives 

III. RESULTS AND DISCUSSION 

This section describes the performance and characteristics 

of the precipitation probability prediction models trained for 

each NWP by applying the method proposed in this study to 

the following LDAPS/UM, GDAPS/KIM, and GDAPS/UM 

forecast data. 

A. LDAPS/UM-based Precipitation Probability Prediction 

Model 

The ground truth for training the LDAPS/UM-based 

precipitation probability prediction model was labeled as 
precipitation if the observed precipitation was greater than or 

equal to 0.1 mm/1hr, and as no precipitation otherwise. The 

output of the trained model, the probability of precipitation, 

was labeled as precipitation if it was greater than or equal to 

0.5.  

TABLE IV 

RESULTS FOR THE SAMPLING PROPORTION (NPR: NON-PRECIPITATION, PR:  

PRECIPITATION, METHOD 1) EXPERIMENT FOR SOUTH KOREA DURING THE 

SUMMER MONTHS (JUNE-AUGUST) FROM 2019-2021 

Year 

Sampling 

proportion  

(npr / pr) 

CSI POD FAR Bias ACC 

2019 

LDAPS / UM 0.314 0.423 0.450 0.769 0.925 

30 / 85 (%) 0.371 0.544 0.461 1.010 0.925 

30 / 95 (%) 0.374 0.566 0.476 1.081 0.923 

40 / 85 (%) 0.358 0.482 0.419 0.831 0.929 

40 / 95 (%) 0.364 0.505 0.434 0.892 0.928 

2020 

LDAPS / UM 0.339 0.453 0.427 0.791 0.880 

30 / 85 (%) 0.396 0.644 0.494 1.272 0.866 

30 / 95 (%) 0.395 0.668 0.508 1.357 0.861 

40 / 85 (%) 0.389 0.573 0.452 1.046 0.878 

40 / 95 (%) 0.393 0.600 0.467 1.126 0.874 

2021 

LDAPS / UM 0.286 0.398 0.494 0.786 0.914 

30 / 85 (%) 0.360 0.536 0.478 1.027 0.917 

30 / 95 (%) 0.361 0.557 0.493 1.100 0.914 

40 / 85 (%) 0.349 0.479 0.436 0.850 0.922 

40 / 95 (%) 0.354 0.501 0.452 0.913 0.920 
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Table 4 shows the experimental results for sampling 

Method 1 (non-precipitation sampling proportion 30 and 

40%, precipitation sampling proportion 85 and 95%) on 

LDAPS/UM data produced four times a day during the 

summer months of 2019-2021. For all sampling proportions, 

the LDAPS/UM model outperforms the LDAPS model.  

Specifically, CSI and POD were dominant in all years 

when the non-precipitation proportion was 30%, while FAR 

and ACC were dominant when the non-precipitation 

proportion was 40%. However, bias tended to be 
overestimated when the non-precipitation proportion was set 

to 30%. For precipitation, 95% was always better than 85% 

for all verification metrics. Overall, the best performance for 

each metric was achieved when the precipitation proportion 

was set to 95%, and the precipitation rate was set to 40%. 

Compared to the performance of the LDAPS model, CSI was 

improved by 15.9-23.8%, POD by 19.4-32.5%, and Bias by 

16.0-42.4%. This means that even if the training data is under-

sampled and reconstructed, the NWP model data can be well 

corrected. 

Precipitation is characterized by different seasons but also 
by different regions. While the model proposed in this study 

performed better than LDAPS/UM for the whole of South 

Korea, when CSI and POD were analyzed for each of the five 

rainy administrative regions in South Korea, some regions 

performed worse than the original data (Table 5). This was 

analyzed because, in years and regions with relatively more 

rainless days than precipitation days, sampling Method 1 did 

not alleviate the data imbalance problem because the rainless 

cases were extracted relatively more than the precipitation 

cases. Therefore, sampling Method 2 was used to compensate 

for this problem. 

TABLE V 

THE RATE OF IMPROVEMENT OF THE VERIFICATION METRICS COMPARED TO 

LDAPS/UM (PERIODS AS SHOWN IN TABLE IV). UNIT: %. 

Year 
Jeju-do 

Gang 

won-do 
Jeolla-do 

Chung 

cheong-do 
Capital area 

CSI POD CSI POD CSI POD CSI POD CSI POD 

2019 15.0 22.8 8.6 9.3 9.7 13.4 -0.1 -2.7 -12.6 -17.1 

2020 28.0 49.9 9.8 16.9 15.5 34.1 1.8 8.8 10.6 21.5 

2021 20.1 27.4 14.7 5.7 38.6 49.6 18.4 17.8 -0.7 -11.9 

For sampling Method 2, we kept the precipitation 

proportion fixed at 95% and sampled the number of non-

precipitation cases multiplied by 2.5, 3, 3.5, and 4 times the 

number of precipitation cases, respectively. The results are 

shown in Table 6.  

TABLE VI 

RESULTS FOR THE SAMPLING RATIO ( NON-PRECIPITATION CASE: 

PRECIPITATION CASE � RATIO, METHOD 2) EXPERIMENT FOR SOUTH KOREA 

(PERIODS AS SHOWN IN TABLE IV). 

Year 
Non-precipitation 

sampling ratio  
CSI POD FAR Bias ACC 

2019 

LDAPS / UM 0.314  0.423 0.450 0.769 0.925 

2.5 0.373 0.653 0.534 1.400  0.911  

3 0.376  0.619 0.510 1.264  0.915  

3.5 0.376  0.587 0.489 1.148 0.921  

4 0.374  0.559 0.470 1.054  0.924  

2020 

LDAPS / UM 0.339 0.453 0.427 0.791 0.880 

2.5 0.392  0.681 0.520 1.417  0.857  

3 0.392  0.639 0.496 1.270  0.866  

3.5 0.389  0.602 0.476 1.149  0.872  

4 0.384  0.569 0.458 1.050  0.876  

2021 

LDAPS / UM 0.286 0.398 0.494 0.786 0.914 

2.5 0.363  0.553 0.485 1.074  0.916  

3 0.359  0.517 0.459 0.956  0.920  

3.5 0.352  0.486 0.439 0.867 0.922  

4 0.345  0.462 0.424 0.801 0.923  

 

For South Korea, similar to Method 1, the verification 

metrics are improved over the LDAPS/UM model in all cases. 

When each verification metric is evaluated comprehensively, 

the non-precipitation case performs best, with 3.5 times the 

performance of the precipitation case. 

When comparing the performance of sampling method 1 

and Method 2 by region, it was found that the performance of 

Method 2 improved in regions where Method 1 did not 
perform as well as LDAPS/UM (Figure 5). Therefore, it was 

analyzed that it is effective to sample non-precipitation cases 

in proportion to precipitation cases, which are a minority 

group. 

 

 

Fig. 5  The rate of CSI improvement for sampling methods 1 and 2 over LDASP/UM, with periods as shown in Table 4. Unit: % 

 

Figure 6 shows the CSI and Bias by forecast time for 
LDAPS/UM and the proposed model. CSI shows that the 

proposed model outperforms the LDAPS model at all forecast 

times. On the other hand, the bias tends to overestimate 

compared to LDAPS/UM, but the bias of the constrained 
model is closer to 1 than LDAPS/UM, indicating that it 

compensates well for the bias of NWP precipitation. 
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Fig. 6  CSI and Bias comparison of the proposed model and LDAPS/UM for South Korea at each prediction time. The red line shows the proposed model, and 

the black line shows LDAPS/UM 

 

B. GDAPS-based Precipitation Probability Prediction 

Model 

It shows an improvement in CSI over the GDAPS/KIM 

model in all cases. However, for POD, the performance of 

POD decreases as the proportion of non-precipitation cases 

increases, with a decrease of -13.9% for 1.5x, -22.1% for 2x, 

and -28.4% for 2.5x. For bias, doubling the number of non-

precipitation cases was the most dominant method, with 

performance improvements of 86.8% for 1.5x, 95.5% for 2x, 

and 86.7% for 2.5x. When each verification metric was 
evaluated together, it was found that the non-precipitation 

case performed best when the precipitation case was doubled. 

The difference between the best performances of 

GDAPS/KIM and LDAPS/UM indicates that the distribution 

of precipitation and non-precipitation is different for other 

NWP models. It is necessary to experiment with sampling 

proportions of finer units in the future. 

TABLE VII 

RESULTS FOR THE SAMPLING RATIO (NON-PRECIPITATION CASE: 

PRECIPITATION CASE � RATIO, METHOD 2) EXPERIMENT FOR SOUTH KOREA 

DURING THE SUMMER MONTHS (JUNE-AUGUST) FROM 2021 

Year Non-precipitation 

sampling ratio 
CSI POD FAR Bias ACC 

2021 

GDAPS / KIM 0.290  0.697  0.668 2.100  0.772 

1.5 0.388  0.600  0.476  1.145  0.874  

2 0.386 0.543  0.429 0.951  0.884  

2.5 0.377  0.499  0.392  0.820 0.890  

 

Table 8 shows the results of the precipitation probability 

prediction model using GDAPS/UM data. For 1.5x and 2x the 

2020 precipitation cases, the CSI improvement over 

GDAPS/UM is 9.2% and 6.7%, respectively, FAR is 31.3% 

and 21.2%, ACC is 7.9% and 9.4%, and bias corrects the 
tendency to overestimate close to 1. However, FAR 

underperformed GDAPS/UM at both 1.5x and 2x. For 2021, 

using 1.5x and 2x precipitation cases, the CSI improvement 

over the model was 37.6% and 38.0%, respectively, FAR was 

39.0% and 57.1%, and ACC was 15.9% and 17.8%. In both 

cases, the CSI improvements were almost identical, but given 

the other verification metrics, it concluded that doubling was 

optimal. As with the LDAPS/UM results, the reason for the 

higher performance improvement in 2021 compared to 2020 

is largely due to the percentage of precipitation each year. 

This suggests that we should further devise a method to 
resolve the data imbalance considering the current or recent 

precipitation distribution. 

TABLE VIII 

RESULTS FOR THE SAMPLING RATIO (NON-PRECIPITATION CASE: 

PRECIPITATION CASE � RATIO, METHOD 2) EXPERIMENT FOR SOUTH KOREA 

DURING THE SUMMER MONTHS (JUNE-AUGUST) FROM 2020-2021 

Year Non-precipitation 

sampling ratio CSI POD FAR Bias ACC 

2020 
GDAPS / UM 0.390 0.758 0.554 1.699 0.756 

1.5 0.426 0.664 0.457 1.222 0.816 

2 0.416 0.597 0.422 1.032 0.827 

2021 
GDAPS / UM 0.279 0.725 0.688 2.322 0.749 

1.5 0.384 0.617 0.495 1.222 0.868 

2 0.385 0.550 0.438 0.979 0.882 

IV. CONCLUSION 

This study developed a model to predict the probability of 

precipitation by post-processing the forecast data of the NWP 

model for more accurate precipitation prediction. The 
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proposed model applies SWT to reflect the recent bias 

between observations and NWP, and the RUS method 

alleviates the data imbalance between precipitation and non-

precipitation. When sampling via RUS, the sampling 

proportion of precipitation cases was 95%, and the sampling 

proportion of non-precipitation cases was proportional to 

precipitation cases. The extracted data are trained in real time 

immediately after RF produces the daily NWP data, and the 

probability of precipitation on the target day is predicted. In 

this study, when the proposed method is applied to 
LDAPS/UM, GDAPS/KIM, and GDAPS/UM operated by 

KMA, the bias with observation is reduced and the prediction 

performance is improved compared to NWP for precipitation 

and no-precipitation prediction. The prediction performance 

of the proposed model improves the CSI by 14.7-23.1% 

compared to LDAPS/UM for South Korea, 33.9% for 

GDAPS/KIM, and 6.7%-38% for GDAPS/UM.  

With RUS sampling, the sampling rate significantly 

impacts model performance. Weather phenomena such as 

precipitation have different characteristics depending on the 

season and region, and their patterns vary from year to year. 
The optimal sampling rate may be different for each region 

and season. Estimating the appropriate sampling rate will help 

your model perform better. This could be done by automating 

the selection of an appropriate sampling rate that takes into 

account differences in the probability distribution of 

precipitation across the training set and the location and scale 

parameters of the probability distribution of recent 

precipitation and by using AutoML to automate the selection 

of the sampling rate.  

In this study, a precipitation threshold of 0.1 mm was used. 

If the precipitation threshold range is extended to predict 
heavy precipitation, the data imbalance will be more severe 

because heavy precipitation has a much smaller number of 

cases than weak precipitation. Therefore, a mixed sampling 

method using RUS for the majority population and data 

augmentation techniques for the minority population will be 

effective. Data augmentation has been used to address data 

imbalance using generative models, noise transformers, etc. 

Future research could improve forecast performance by 

improving sampling methods by expanding the range of 

precipitation thresholds and developing automated methods 

for selecting sampling rates. 
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