
Vol.13 (2023) No. 4

ISSN: 2088-5334

Performance Analysis of Deep Learning Implementation in
Operational Condition Forecasting of a Gas Transmission

Pipeline Network
Aditya Firman Ihsan a,*, Darmadi b, Saladin Uttunggadewa c, Silvya Dewi Rahmawati d, Irsyad Giovanni b,

Salamet Nur Himawan b
a School of Computing, Telkom University, Bandung, Indonesia

b RC-OPPINET, Institut Teknologi Bandung, Bandung, Indonesia
c Mathematics Department, Institut Teknologi Bandung, Bandung, Indonesia

d Petroleum Engineering Department, Institut Teknologi Bandung, Bandung, Indonesia

Corresponding author: *adityaihsan@telkomuniversity.ac.id

Abstract— Monitoring natural gas transmission in a pipeline network is important to maintain the supply and demand balance in

natural gas transactions and distribution. Gas pressure, temperature, flowrate, and gas properties must be monitored during the

transmission process. These variables, also known as operational conditions, need to be simulated carefully to understand the dynamics

and behavior over time. Commonly used physical equations, such as thermodynamic or hydraulic equations, have limitations in

simulating future trends because they need some known boundary conditions to be solved. In that case, data-driven method is needed,

especially nowadays when data management is widely implemented. This paper implements a deep Recurrent Neural Network (RNN)

to forecast the future behavior of gas pressure as an operational condition in a gas pipeline network receiving platform. Different types

of recurrent cells are used, i.e., Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The model is trained in 8 years

of a gas pipeline network operational data. Historical flowrate data in the end-nodes become the forecast input in addition to the past

pressure data. The sensitivity of the model and learning parameters is experimented with and analyzed to understand the capacity of

the RNN in the given task. Mean absolute error is set as the satisficing metric, whereas the training time is set as optimizing metrics.

The obtained best model successfully forecasts the future pressure of one day ahead with only around 2% relative error.

Keywords— Recurrent neural network; operational condition; forecasting; gas pipeline network.

Manuscript received 21 Aug. 2022; revised 6 Apr. 2023; accepted 19 May 2023. Date of publication 31 Aug. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The oil and natural gas industry has many complexities and
challenges. Managing the production and distribution process
of crude oil or natural gas is important in the increasing need
for oil and gas in the energy supply. Specifically, natural gas
has been used in various sectors, from households to factories.
One of the main challenges in natural gas production is the far,
or even sometimes isolated, location of gas sources or wells.
For this matter, the gas should have flowed through a long
network of pipelines. Monitoring natural gas production in
terms of its transmission from suppliers to traders or shippers
should be done properly. Gas from production platforms will
be pressurized or compressed to flow through the pipeline as
it reaches the receiving facility's low-pressure area.

Coordinated pressure management between platforms is thus
important in ensuring supply and demand balance.

Ideally, a simulation of the flow throughout the pipes is
needed for monitoring. However, a lot of coupled variables
are involved in the system. By physical law, this simulation is
modeled using hydraulic and thermodynamic equations. The
system Hydraulic equation describes correlations between the
pressure and flowrate of the gas [1]. The coupling of the
thermodynamics equations forms a non-isothermal system
that involves additional variables, i.e., gas temperature.
Solving this system of equations is not an easy task to be done
analytically. Thus, numerical approaches are often taken for
practicality [2], [3].

Despite its capability for simulating flow, hydraulic
equations only govern the flow of one pipeline. In the case of
branching or a network of pipelines, additional correlations

1423

and equations are needed, which needs a decoupling trick to
be applied [4]. Nevertheless, these physical governing
equations still lack the capability for future behavior
prediction because the boundary condition of the system at
every time step is needed to simulate the whole system
completely.

In recent years, the development of data science techniques
has presented many data-driven methodologies to be applied
to various problems in many sectors. This applicability of
data-driven techniques is also true for the oil and gas industry,
as some studies have been done in that area, such as predictive
maintenance, process optimization, time-series forecasting,
and the calculation of fluid properties [5], [6].

As physical systems such as hydraulic and
thermodynamics equations have some limitations, some data-
driven methods are emerging in the face of the advancement
of machine learning, from traditional to contemporary. For
example, forecasting of gas shale or wells production can be
done using classical statistical methods such as Support
Vector Machine (SVM), linear regression, or autoregressive
(AR) [7] or the contemporary method such as neural network
[8]. Even though some more advanced techniques of deep
learning have developed, traditional machine learning
techniques such as a nearest neighbor or random forest are
still largely used, such as for beam pump dynamometer data
classification [9], prediction of dead oil viscosity correlation
[10], offshore structure predictive modeling [11], oilfield
process control [12], drifting behavior detection [13], and
crude oil contamination detection [14].

In the case of neural networks, their advancing techniques,
with some modifications and adaptations nowadays, are also
widely implemented in many areas of oil and gas. To name a
few, some of them are artificial lift selection [15] and
correlation development to predict oil rate [16], computation
of gas hydraulic [17], failures prediction [18], risk assessment
[19], flaring event prediction [20], Enhanced Oil Recovery
(EOR) and carbon dioxide storage capacity [21], burst
pressure prediction [22], optimization in Pressure Swing
Adsorption (PSA) process. Even the advanced generative
model, such as GAN (generative adversarial network) can be
applied to map water saturation from reservoir properties [23].

For monitoring purposes, the need to be knowledgeable of
possible future behavior arises due to the popularity of
forecasting tasks as one of the machine learning capabilities.
Some aspects that can be forecasted are supply and demand
for transmission control [24], flowrate in gas production [25]
and oil production [26], crude oil price crash [27], or demand
fluctuation for bullwhip assessment [28].

In this study, we utilize a neural network, specifically a
recurrent neural network (RNN), to forecast pressure in a gas
pipeline network sink node that receives gas flow from 4
different sources. To our knowledge, implementing a neural
network for gas pressure monitoring purposes is quite new in
the literature, especially the performance analysis to
understand the capability of the forecasting model with some
given adjustments. Historical flowrate data from all network
nodes over time become the input feature and the past
pressure of the received gas in the sink node. We set up some

cases to see how different neural network architecture affects
the forecasting results.

II. MATERIAL AND METHOD

A. Dataset

The dataset used in this paper is a pipeline network
operational data consisting of physical conditions of the gas,
such as pressure, temperature, energy rate, and volume rate,
with additional component fraction features of the gas.
Because the temperature is relatively stable and almost
homogeneous, isothermal system is considered. The
fractional data of the gas components is excluded in this case
in the assumption of no significant correlation with the
dynamics of the gas pressure. Thus, we use only the pressure
and flowrate feature of the gas, where the volume rate is used
to represent flowrate rather than the energy rate. The data is
taken hourly from each network platform (nodes), which are
four sources (transmitting facility/reservoir) and 1 sink
(receiving facility), in 8 years’ time range (2013-2021). In
total, that counts around 69576 data points.

In some field cases, pressure in the source nodes is control
variable that should be adjusted. Thus, we only use flowrate
data from those nodes, resulting in only six features (4 source
flowrate, sink flowrate, and sink pressure). Our forecasting
target is the sink pressure.

Field dataset usually contains many broken entries or
anomalies from many practical errors or failures. These
anomalies are not always in the form of empty values but also
in the form of unnaturally very high or very low values.
However, some caution should be taken in handling the
broken datapoints, as it may represent the true condition in the
field. For instance, a zero flowrate value in some consecutive
datapoints may be caused by a sudden short shutdown from
one of the compressors. This kind of data should be included
as it still affects the received gas pressure in the Sink. Also,
blindly removing the datapoint may cause discontinuity in the
series. For that matter, we handle these issues by first
carefully detecting outer outliers. Due to the distinct overall
behavior of flowrate and pressure, we use different techniques
in detecting anomalies: quantile-based selection for the source
node data and variance-based selection for the sink node data.
All detected outliers are then replaced with the last good value
of the data (previous datapoints) after being checked
thoughtfully to ensure they are truly anomalies.

After all, anomalies are handled successfully; the time
series are smoothed to reduce extreme fluctuations that occur
frequently in the data, as shown forming many spikes in
Figure 1. In the data profile, we can see that the data is
stationary without periodic trends. We apply a forward rolling
average with width of 6 hours intervals to smoothen the spikes.
This means that the data values in 6 hours is averaged to
determine the new value of the 7th hours data. Next
preprocessing taken is scaling transformation. To avoid
negative values, instead of standard normalization (gaussian
transformation), max-min rescaling is applied to squeeze the
data to intervals of zero and one.

1424

Fig. 1 Profile overview of the dataset

In these three steps, the data is ready to be learned. To

finalize the preparation, we split the data into two sets: a
training set and a validation set. Standard splitting usually
uses randomized sampling with an 8:2 ratio of both sets. In
the case of time series data, this splitting is implemented in
‘window’ level, not datapoint level. It means that the data is
cut in consecutive time windows of fixed length to preserve
the sequential information of the series. However, in this case,
because we still want to track the timestamp of the data, we
split the data first based on the timestamp. The last 18 months
of the data (Jan ’20- July ’21) is taken as the validation set and
the rest become training set.

After the splitting, the windowing process occurs, in which
each data set is bundled in 72 datapoints sequences. To avoid
overfitting of the model in learning some regularities, the
window is taken every three datapoints interval. In each
window, the first 48 datapoints are set to be the forecasting
input, and the last 24 datapoints are the output. In other words,
we prepare the data to be learned so that one day (24 hours)
operational behavior in the future can be determined by the
behavior of two days prior (48 hours). After the windowing
process, we close the preprocessing by shuffling all the
windows and bundling it in batches of 8 windows to be
learned by the model.

Fig. 2 Data preprocessing steps

B. Model Architecture

This study's core model is Artificial Neural Network
(ANN). ANN in brief, is a method inspired by biological
brains to approximate a function in the form of a set of linear
computations. These linear computations, each called neurons,
are ‘activated’ by a nonlinear function to accommodate
nonlinearity. The commonly used activation function in ANN
is so-called Rectified Linear Units (ReLU) [29].

Neurons can be stacked consecutively to increase the depth
of complexity approximated by the ANN. Each neuron has
internal linear parameters that are refined iteratively using
gradient descent optimization. By computing the
approximation loss compared to the expected or true values,
the gradient of the loss can also be computed as a guide to
adjust the parameter in a way that the loss decreases.

In this study, we use time series data, which is one form of
sequential data. One ANN modification that can
accommodate sequential data is Recurrent Neural Network
(RNN). In RNN, the neuron is modified to a cell that has
additional output called memory, which is a part of
information of current datapoints that become additional input
for the next datapoint. There are many variations of recurrent
cells. Some of those are Long Short-Term Memory (LSTM)

1425

cell and Gated Recurrent Units (GRU) cell. LSTM cell
accommodates two memory states, i.e., long-term and short-
term, with 3 internal computations called gates, i.e., forget
gate, input gate, and output gate. Each gate has its
functionalities to preserve information passed through from
the previous cell to the next cell. GRU cell is a modification
of LSTM where the input and forget gates are combined to
update the gate. Detailed explanations and mathematical
computations inside each of these cells [30].

In this paper, we formulate the architecture in two blocks.
The first block, the recurrent block, will learn the data's time-
based features, and the second block, the dense block, will
process the features to predict future time-step. We use four
different recurrent architectures for the recurrent block, i.e.,
vanilla/plain RNN, LSTM, GRU, and bidirectional LSTM
(bi-LSTM). The last architecture is an RNN modification
where two recurrent layers are stacked to learn opposite time
directions simultaneously. Fully connected linear layers are
used with ReLU activation for the dense block. The
illustration of the architecture is shown in Fig. 3.

Finally, the model is evaluated using mean absolute error
(MAE) as the standard time series data metric. MAE is used
during training as a loss function to guide the backward
propagation in updating model parameters. We also use
relative error (RE), also known as approximation error or
percentage error, to obtain errors in original scales relative to
the expected value. This error gives more understanding in
practical use cases because it illustrates measurement or
prediction precision. The relative error is computed as the
percentage of the average ratio of absolute difference and the
real data. The mathematical formula for MAE and RE is
written in (1) and (2).

 ��� �
�

�
∑ |	
 � 	�
|
 (1)

� �
�

�
∑

�

��
⋅ |	
 � 	�
| ⋅ 100
 % (2)

Fig. 3. Model architecture illustration

III. RESULT AND DISCUSSION

A. Case Study

The model built following the general architecture shown
in Fig.3 is trained using different case studies. We vary some
aspects of architecture and also the learning process. In total,
we tried six different experiments, each with 3 or 4 cases. The
details of the cases are shown in Table 1. For each variable
experiment, other variables are set in the default value: LSTM

cell-type, 3 recurrent layers, four dense layers, 512 dense
neurons, 100 recurrent cells, and 0.001 for the learning rate.

We aim to observe the sensitivity of the model performance
in different setups. We train all model cases in 40 epochs with
a learning rate to exponentially decrease as the training
progresses. The learning rate in Table 1 is the initial rate
before decaying in the second epoch.

TABLE I
EXPERIMENTAL CASES

Variable Case 1 Case 2 Case 3 Case 4

cell-type LSTM GRU BiLSTM Simple
#recurrent-layers (l) 1 2 3 -
#dense-layers (k) 1 2 3 4
#recurrent-cells (c) 50 100 200 -
#dense-neurons (n) 64 128 256 512
learning-rate (lr) .005 .001 .0005 .0001

B. Training Performance

During training, we feed the model with validation data at
each epoch and compute the MAE to obtain the unbiased state
of the model as it progresses. For each experimental case, we
plot the profile of MAE calculated in the validation data over
training epochs. We compare the profile of all cases for each
experiment variable in Fig. 4.

In overview, validation MAE is unstable as it always
fluctuates due to uncertainty induced by validation data
models has never been seen before. This is not a problem as
we seek to see the general trend of the profile. For the first
figure, Fig. 4(a), we see that even though the bi-LSTM model
has a short plateau during a few first epochs, all the models
reached a similar state at the 40th epoch. It may be difficult to
see, but the single LSTM model has the most stable
convergence in the training process. One possible explanation
is that LSTM has more complexity than GRU and Simple RNN.
Also, bi-LSTM probably is unsuitable for this kind of time
series data because the information is always moving forward
without the necessity of future impact on the past. Thus,
creating two-directional recurrent layers adds unnecessary
complexity to the model, causing it to learn slower.

A common understanding of neural networks is that the
model's depth and width increase the model's capacity to learn
more abstract information from the data. The number of layers
represents the depth of the neural network, and the width is
represented by the number of neurons or cells in each layer.
However, as presented in Fig. 4(b)-(e), which shows the
profile results of the experimental cases of depth and width
variation of the model, the validation MAE is almost similar
without any significant difference between all cases. The
increasing complexity of the neural network does not give
better results. In the case of the model width, careful
observation shows that the model with 512 neurons or 200
cells, which is the highest value of each experiment, has a
more stable performance. Other than that, meaningful insight
is difficult to draw.

For the learning rate, as shown in Fig. 4(f), it can be easily
seen that the optimal value is 0.001, which gives stable and
fast convergence of validation MAE. The lower values, i.e.,
0.0005 and 0.0001, result in slower convergence, whereas the
higher values, i.e., 0.005, give a more unstable performance.
It even fails to reach the expected minimum loss, as the loss
suddenly rises around 5th epoch.

1426

(a)

(b)

(c)

(d)

(e) (f)

Fig. 4 Validation MAE Profile in all experimental cases

C. Computational Load

In choosing the best model, many aspects have to be
considered. Obtaining the smallest possible validation MAE
is the main objective. However, other constraints should be
considered, such as the load of the model. A heavier model
without a significant gain in the result is unnecessary. We
need to obtain a ‘good enough’ model with the proper load.
The second metric we use to analyze the model is the training
time for every 40 training epochs in each case. The results are
shown in Table II.

TABLE II
TRAINING TIME OF ALL CASES

Variable
The training time of 40 epochs (second)

Case 1 Case 2 Case 3 Case 4

cell-type 758.9 683.7 1612.8 1761.7
#recurrent-layers (l) 696.0 765.5 817.45 -
#dense-layers (k) 851.9 812.7 814.4 817.5
#recurrent-Cells (c) 707.7 710.5 699.9 -
#dense-neurons (n) 745.9 768.5 673.1 659.4

learning-rate (lr) 921.8 818.3 817.5 819.1

As seen in the previous result, the validation MAE ends up
indifferent for all cases, where eventually, a value around 0.37
is reached. In that case, we swap the role by setting validation
MAE as the satisficing metric and the training time as the
optimizing metric. The main objective of choosing the best
model is obtaining the shortest training time possible.

In Table II, we see the training time in the second of each
case. The gap between cases is quite high for the cell-type
experiment, with GRU model (case 3) having the shortest
training. It may be due to the simplicity provided by GRU
compared to LSTM, which makes the result of the vanilla
RNN model surprising as it should be the simplest of all four.

The result in the case of the depth of the model is quite as
expected. The shallower model gives a shorter training time
with an optimal value of one recurrent layer and two dense
layers. The capacity of one dense layer model may not be
enough to learn abstract features of the data, causing it to
behave slower. The result is the opposite in the width case,
where a wider model gives a shorter time. The computation
of units (neurons or cells) in a layer is done in parallel. Thus,
more units do not contribute to the training time, causing a
wider network to be more effective.

1427

Fig. 5 Comparison of forecasted pressure profile with the real data in one semester period

For the last experiment, the training times of learning rate

are similar except for the first case (lr=0.005) due to its
unstable behavior. Even though case 3 gives the shortest time,
we still can say that the best case is case 2 because the
difference is only a matter of a second.

D. Forecasting result

In this last subsection, we review the forecasting result of
the best model. Validation data consists of 18 months
datapoint. For ease of observation, we take only six months
for testing, i.e., data from January to June 2020. The
forecasted profile is shown in Fig.5. It is shown in the figure
that the forecasted profile is close to the real data. The trends,
even though they fluctuated quite rapidly, are followed
properly by the forecast. Some sharp spikes are shown to
cause overshooting in value. However, the general trend is
sufficiently captured.

For a closer look, we then take two date samples and
forecast the pressure profile of the upcoming day with the
input of the pressure profile of the given and previous day.
The dates taken are 18th of April and 27th of July in the year
2020. The results are shown in Fig. 6. In the first case, the real
pressure profile tends to decrease a little bit with some small
fluctuations. The decrease is possibly caused by the drastic
decrease in flowrate in Source 3 and Source 4. The model
captures this decreasing trend, but the value is overshot,
giving a drastic decrease. In the second case, the shortfall in
Source 3 causes the next day pressure to fall in a short time
before it increases again. This trend is captured perfectly by
the model giving close profiles.

In field practice, the overshooting issue is tolerable because
the predicted trend is needed most, whether the pressure will
be decreased or increased in the day ahead. The error caused
by overshooting is also not significant if we consider the scale
of the value. In Fig.6(a), for instance, the average value
difference is around 50 psig, which is small compared to the
scale of 1000 psig. To see this in quantitatively way, we can
also calculate the RE of the model. In the test case of Fig.6,
the first case has RE around 3.284 % and the second case has
RE around 1.023 %. If we test the model to the whole
validation set, the RE obtained is around 2.232%. These
values are sufficiently small compared to 5% commonly used
maximum acceptable error in engineering.

(a)

(b)

Fig. 6 Forecasting results

IV. CONCLUSION

The deep learning model, or specifically the recurrent
neural network model, has been successfully implemented to
forecast future pressure values in receiving facility of a
natural gas transmission network given the historical flow rate
data from all network end-nodes. The sensitivity of some
model architecture and learning parameter variables is
experimented with and analyzed. Overall validation MAE in
almost all cases is roughly similar, around 0.37 but with
significant differences of training time. The forecast profile
agrees with the real data with a small acceptable error around
the value of 2%.

ACKNOWLEDGMENT

This research is funded by Institut Teknologi Bandung
(ITB) research grant.

1428

REFERENCES

[1] T. Kiuchi, “An implicit method for transient gas flows in pipe
networks,” Int J Heat Fluid Flow, vol. 15, no. 5, pp. 378–383, 1994,
doi: 10.1016/0142-727X(94)90051-5.

[2] C. Li, H. Wang, H. Yue, and S. Guo, “Fast difference scheme for the
reaction-diffusion-advection equation with exact artificial boundary
conditions,” Applied Numerical Mathematics, vol. 173, no. 2018, pp.
395–417, 2022, doi: 10.1016/j.apnum.2021.12.013.

[3] Q. Guo, Y. Liu, Y. Yang, T. Song, and S. Wang, “Improved Adaptive
Time Step Method for Natural Gas Pipeline Transient Simulation,”
Energies (Basel), vol. 15, no. 14, p. 4961, Jul. 2022, doi:
10.3390/en15144961.

[4] P. Wang, S. Ao, B. Yu, D. Han, and Y. Xiang, “An efficiently
decoupled implicit method for complex natural gas pipeline network
simulation,” Energies (Basel), vol. 12, no. 8, 2019, doi:
10.3390/en12081516.

[5] P. Bangert, “Introduction to Machine Learning in the Oil and Gas
Industry,” in Machine Learning and Data Science in the Oil and Gas

Industry, Elsevier, 2021, pp. 69–81. doi: 10.1016/B978-0-12-820714-
7.00004-2.

[6] K. M. Hanga and Y. Kovalchuk, “Machine learning and multi-agent
systems in oil and gas industry applications: A survey,” Comput Sci

Rev, vol. 34, p. 100191, 2019, doi: 10.1016/j.cosrev.2019.08.002.
[7] R. N. Anderson et al., “Petroleum analytics learning machine to

forecast production in the wet gas marcellus shale,” SPE/AAPG/SEG

Unconventional Resources Technology Conference 2016, pp. 132–147,
2016, doi: 10.15530/urtec-2016-2426612.

[8] Q. Cao, R. Banerjee, S. Gupta, J. Li, W. Zhou, and B. Jeyachandra,
“Data driven production forecasting using machine learning,” Society

of Petroleum Engineers - SPE Argentina Exploration and Production

of Unconventional Resources Symposium, 2016, doi: 10.2118/180984-
ms.

[9] S. A. Sharaf, P. Bangert, M. Fardan, K. Alqassab, M. Abubakr, and M.
Ahmed, “Beam pump dynamometer card classification using machine
learning,” SPE Middle East Oil and Gas Show and Conference, MEOS,

Proceedings, vol. 2019-March, 2019, doi: 10.2118/194949-ms.
[10] U. Sinha, B. Dindoruk, and M. Soliman, “Machine learning

augmented dead oil viscosity model for all oil types,” J Pet Sci Eng,
vol. 195, no. July, p. 107603, 2020, doi: 10.1016/j.petrol.2020.107603.

[11] U. T. Tygesen, K. Worden, T. Rogers, G. Manson, and E. J. Cross,
“State-of-the-art and future directions for predictive modelling of
offshore structure dynamics using machine learning,” Conference

Proceedings of the Society for Experimental Mechanics Series, vol. 2,
pp. 223–233, 2019, doi: 10.1007/978-3-319-74421-6_30.

[12] K. Patel and R. Patwardhan, “Machine learning in oil & gas industry:
A novel application of clustering for oilfield advanced process control,”
SPE Middle East Oil and Gas Show and Conference, MEOS,

Proceedings, vol. 2019-March, 2019, doi: 10.2118/194827-ms.
[13] J. Zenisek, F. Holzinger, and M. Affenzeller, “Machine learning based

concept drift detection for predictive maintenance,” Comput Ind Eng,
vol. 137, no. August, p. 106031, 2019, doi: 10.1016/j.cie.2019.106031.

[14] R. Pelta, N. Carmon, and E. Ben-Dor, “A machine learning approach
to detect crude oil contamination in a real scenario using hyperspectral
remote sensing,” International Journal of Applied Earth Observation

and Geoinformation, vol. 82, no. November 2018, p. 101901, 2019,
doi: 10.1016/j.jag.2019.101901.

[15] F. I. Syed, M. Alshamsi, A. K. Dahaghi, and S. Neghabhan, “Artificial
lift system optimization using machine learning applications,”

Petroleum, vol. 8, no. 2, pp. 219–226, Jun. 2022, doi:
10.1016/j.petlm.2020.08.003.

[16] M. R. Khan, S. Alnuaim, Z. Tariq, and A. Abdulraheem, “Machine
learning application for oil rate prediction in artificial gas lift wells,”
SPE Middle East Oil and Gas Show and Conference, MEOS,

Proceedings, vol. 2019-March, 2019, doi: 10.2118/194713-ms.
[17] G. Cui, Q. S. Jia, X. Guan, and Q. Liu, “Data-driven computation of

natural gas pipeline network hydraulics,” Results in Control and

Optimization, vol. 1, no. December, p. 100004, 2020, doi:
10.1016/j.rico.2020.100004.

[18] N. Elshaboury, A. Al-Sakkaf, G. Alfalah, and E. M. Abdelkader,
“Data-Driven Models for Forecasting Failure Modes in Oil and Gas
Pipes,” Processes, vol. 10, no. 2, pp. 1–17, 2022, doi:
10.3390/pr10020400.

[19] X. Li, J. Wang, and G. Chen, “A machine learning methodology for
probabilistic risk assessment of process operations: A case of subsea
gas pipeline leak accidents,” Process Safety and Environmental

Protection, vol. 165, pp. 959–968, Sep. 2022, doi:
10.1016/j.psep.2022.04.029.

[20] M. Giuliani et al., “Flaring events prediction and prevention through
advanced big data analytics and machine learning algorithms,”
Offshore Mediterranean Conference and Exhibition 2019, OMC 2019,
no. April 2021, 2019.

[21] J. You et al., “Assessment of enhanced oil recovery and CO2 storage
capacity using machine learning and optimization framework,”
Society of Petroleum Engineers - SPE Europec Featured at 81st EAGE

Conference and Exhibition 2019, vol. i, 2019, doi: 10.2118/195490-
ms.

[22] H. C. Phan and A. S. Dhar, “Predicting pipeline burst pressures with
machine learning models,” International Journal of Pressure Vessels

and Piping, vol. 191, no. March, 2021, doi:
10.1016/j.ijpvp.2021.104384.

[23] Z. Zhong, A. Y. Sun, Y. Wang, and B. Ren, “Predicting field
production rates for waterflooding using a machine learning-based
proxy model,” J Pet Sci Eng, vol. 194, no. December 2019, p. 107574,
2020, doi: 10.1016/j.petrol.2020.107574.

[24] M. Petkovic, T. Koch, and J. Zittel, “Deep learning for spatio‐temporal
supply and demand forecasting in natural gas transmission networks,”
Energy Sci Eng, vol. 01, no. December, 2021, doi: 10.1002/ese3.932.

[25] T. Bikmukhametov and J. Jäschke, “Oil production monitoring using
gradient boosting machine learning algorithm,” IFAC-PapersOnLine,
vol. 52, no. 1, pp. 514–519, 2019, doi: 10.1016/j.ifacol.2019.06.114.

[26] E. A. M. VÃlez, F. R. Consuegra, and C. A. B. Arias, “EOR Screening
and Early Production Forecasting in Heavy Oil Fields: AMachine
Learning Approach,” SPE Latin American and Caribbean Petroleum

Engineering Conference Proceedings, 2020, doi: 10.2118/199047-MS.
[27] Y. Zhang and S. Hamori, “Forecasting crude oil market crashes using

machine learning technologies,” Energies (Basel), vol. 13, no. 10,
2020, doi: 10.3390/en13102440.

[28] Sousa, Ribeiro, Relvas, and Barbosa-Póvoa, “Using Machine Learning
for Enhancing the Understanding of Bullwhip Effect in the Oil and
Gas Industry,” Mach Learn Knowl Extr, vol. 1, no. 3, pp. 994–1012,
2019, doi: 10.3390/make1030057.

[29] Y. Bengio, A. Courville, and I. J. Goodfellow, Deep Learning. 2016.
doi: 10.2172/1462436.

[30] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural
Networks: LSTM Cells and Network Architectures,” Neural Comput,
vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi: 10.1162/neco_a_01199.

1429

