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Abstract— Monitoring natural gas transmission in a pipeline network is important to maintain the supply and demand balance in 

natural gas transactions and distribution. Gas pressure, temperature, flowrate, and gas properties must be monitored during the 

transmission process. These variables, also known as operational conditions, need to be simulated carefully to understand the dynamics 

and behavior over time. Commonly used physical equations, such as thermodynamic or hydraulic equations, have limitations in 

simulating future trends because they need some known boundary conditions to be solved. In that case, data-driven method is needed, 

especially nowadays when data management is widely implemented. This paper implements a deep Recurrent Neural Network (RNN) 

to forecast the future behavior of gas pressure as an operational condition in a gas pipeline network receiving platform. Different types 

of recurrent cells are used, i.e., Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The model is trained in 8 years 

of a gas pipeline network operational data. Historical flowrate data in the end-nodes become the forecast input in addition to the past 

pressure data. The sensitivity of the model and learning parameters is experimented with and analyzed to understand the capacity of 

the RNN in the given task. Mean absolute error is set as the satisficing metric, whereas the training time is set as optimizing metrics. 

The obtained best model successfully forecasts the future pressure of one day ahead with only around 2% relative error. 

Keywords— Recurrent neural network; operational condition; forecasting; gas pipeline network. 

Manuscript received 21 Aug. 2022; revised 6 Apr. 2023; accepted 19 May 2023. Date of publication 31 Aug. 2023. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The oil and natural gas industry has many complexities and 
challenges. Managing the production and distribution process 
of crude oil or natural gas is important in the increasing need 
for oil and gas in the energy supply. Specifically, natural gas 
has been used in various sectors, from households to factories. 
One of the main challenges in natural gas production is the far, 
or even sometimes isolated, location of gas sources or wells. 
For this matter, the gas should have flowed through a long 
network of pipelines. Monitoring natural gas production in 
terms of its transmission from suppliers to traders or shippers 
should be done properly. Gas from production platforms will 
be pressurized or compressed to flow through the pipeline as 
it reaches the receiving facility's low-pressure area. 

Coordinated pressure management between platforms is thus 
important in ensuring supply and demand balance.  

Ideally, a simulation of the flow throughout the pipes is 
needed for monitoring. However, a lot of coupled variables 
are involved in the system. By physical law, this simulation is 
modeled using hydraulic and thermodynamic equations. The 
system Hydraulic equation describes correlations between the 
pressure and flowrate of the gas [1]. The coupling of the 
thermodynamics equations forms a non-isothermal system 
that involves additional variables, i.e., gas temperature. 
Solving this system of equations is not an easy task to be done 
analytically. Thus, numerical approaches are often taken for 
practicality [2], [3].  

Despite its capability for simulating flow, hydraulic 
equations only govern the flow of one pipeline. In the case of 
branching or a network of pipelines, additional correlations 
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and equations are needed, which needs a decoupling trick to 
be applied [4]. Nevertheless, these physical governing 
equations still lack the capability for future behavior 
prediction because the boundary condition of the system at 
every time step is needed to simulate the whole system 
completely. 

In recent years, the development of data science techniques 
has presented many data-driven methodologies to be applied 
to various problems in many sectors. This applicability of 
data-driven techniques is also true for the oil and gas industry, 
as some studies have been done in that area, such as predictive 
maintenance, process optimization, time-series forecasting, 
and the calculation of fluid properties [5], [6].  

As physical systems such as hydraulic and 
thermodynamics equations have some limitations, some data-
driven methods are emerging in the face of the advancement 
of machine learning, from traditional to contemporary. For 
example, forecasting of gas shale or wells production can be 
done using classical statistical methods such as Support 
Vector Machine (SVM), linear regression, or autoregressive 
(AR) [7] or the contemporary method such as neural network 
[8]. Even though some more advanced techniques of deep 
learning have developed, traditional machine learning 
techniques such as a nearest neighbor or random forest are 
still largely used, such as for beam pump dynamometer data 
classification [9], prediction of dead oil viscosity correlation 
[10], offshore structure predictive modeling [11], oilfield 
process control [12], drifting behavior detection [13], and 
crude oil contamination detection [14]. 

In the case of neural networks, their advancing techniques, 
with some modifications and adaptations nowadays, are also 
widely implemented in many areas of oil and gas. To name a 
few, some of them are artificial lift selection [15] and 
correlation development to predict oil rate [16], computation 
of gas hydraulic [17], failures prediction [18], risk assessment 
[19], flaring event prediction [20], Enhanced Oil Recovery 
(EOR) and carbon dioxide storage capacity [21], burst 
pressure prediction [22], optimization in Pressure Swing 
Adsorption (PSA) process. Even the advanced generative 
model, such as GAN (generative adversarial network) can be 
applied to map water saturation from reservoir properties [23]. 

For monitoring purposes, the need to be knowledgeable of 
possible future behavior arises due to the popularity of 
forecasting tasks as one of the machine learning capabilities. 
Some aspects that can be forecasted are supply and demand 
for transmission control [24], flowrate in gas production [25] 
and oil production [26], crude oil price crash [27], or demand 
fluctuation for bullwhip assessment [28].  

In this study, we utilize a neural network, specifically a 
recurrent neural network (RNN), to forecast pressure in a gas 
pipeline network sink node that receives gas flow from 4 
different sources. To our knowledge, implementing a neural 
network for gas pressure monitoring purposes is quite new in 
the literature, especially the performance analysis to 
understand the capability of the forecasting model with some 
given adjustments. Historical flowrate data from all network 
nodes over time become the input feature and the past 
pressure of the received gas in the sink node. We set up some 

cases to see how different neural network architecture affects 
the forecasting results. 

II. MATERIAL AND METHOD 

A. Dataset 

The dataset used in this paper is a pipeline network 
operational data consisting of physical conditions of the gas, 
such as pressure, temperature, energy rate, and volume rate, 
with additional component fraction features of the gas. 
Because the temperature is relatively stable and almost 
homogeneous, isothermal system is considered. The 
fractional data of the gas components is excluded in this case 
in the assumption of no significant correlation with the 
dynamics of the gas pressure. Thus, we use only the pressure 
and flowrate feature of the gas, where the volume rate is used 
to represent flowrate rather than the energy rate. The data is 
taken hourly from each network platform (nodes), which are 
four sources (transmitting facility/reservoir) and 1 sink 
(receiving facility), in 8 years’ time range (2013-2021). In 
total, that counts around 69576 data points.  

In some field cases, pressure in the source nodes is control 
variable that should be adjusted. Thus, we only use flowrate 
data from those nodes, resulting in only six features (4 source 
flowrate, sink flowrate, and sink pressure). Our forecasting 
target is the sink pressure. 

Field dataset usually contains many broken entries or 
anomalies from many practical errors or failures. These 
anomalies are not always in the form of empty values but also 
in the form of unnaturally very high or very low values. 
However, some caution should be taken in handling the 
broken datapoints, as it may represent the true condition in the 
field. For instance, a zero flowrate value in some consecutive 
datapoints may be caused by a sudden short shutdown from 
one of the compressors. This kind of data should be included 
as it still affects the received gas pressure in the Sink. Also, 
blindly removing the datapoint may cause discontinuity in the 
series. For that matter, we handle these issues by first 
carefully detecting outer outliers. Due to the distinct overall 
behavior of flowrate and pressure, we use different techniques 
in detecting anomalies: quantile-based selection for the source 
node data and variance-based selection for the sink node data. 
All detected outliers are then replaced with the last good value 
of the data (previous datapoints) after being checked 
thoughtfully to ensure they are truly anomalies.  

After all, anomalies are handled successfully; the time 
series are smoothed to reduce extreme fluctuations that occur 
frequently in the data, as shown forming many spikes in 
Figure 1. In the data profile, we can see that the data is 
stationary without periodic trends. We apply a forward rolling 
average with width of 6 hours intervals to smoothen the spikes. 
This means that the data values in 6 hours is averaged to 
determine the new value of the 7th hours data. Next 
preprocessing taken is scaling transformation. To avoid 
negative values, instead of standard normalization (gaussian 
transformation), max-min rescaling is applied to squeeze the 
data to intervals of zero and one.  
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Fig. 1  Profile overview of the dataset 

 
In these three steps, the data is ready to be learned. To 

finalize the preparation, we split the data into two sets: a 
training set and a validation set. Standard splitting usually 
uses randomized sampling with an 8:2 ratio of both sets. In 
the case of time series data, this splitting is implemented in 
‘window’ level, not datapoint level. It means that the data is 
cut in consecutive time windows of fixed length to preserve 
the sequential information of the series. However, in this case, 
because we still want to track the timestamp of the data, we 
split the data first based on the timestamp. The last 18 months 
of the data (Jan ’20- July ’21) is taken as the validation set and 
the rest become training set.  

After the splitting, the windowing process occurs, in which 
each data set is bundled in 72 datapoints sequences. To avoid 
overfitting of the model in learning some regularities, the 
window is taken every three datapoints interval. In each 
window, the first 48 datapoints are set to be the forecasting 
input, and the last 24 datapoints are the output. In other words, 
we prepare the data to be learned so that one day (24 hours) 
operational behavior in the future can be determined by the 
behavior of two days prior (48 hours). After the windowing 
process, we close the preprocessing by shuffling all the 
windows and bundling it in batches of 8 windows to be 
learned by the model. 

 

 
Fig. 2  Data preprocessing steps 

B. Model Architecture 

This study's core model is Artificial Neural Network 
(ANN). ANN in brief, is a method inspired by biological 
brains to approximate a function in the form of a set of linear 
computations. These linear computations, each called neurons, 
are ‘activated’ by a nonlinear function to accommodate 
nonlinearity. The commonly used activation function in ANN 
is so-called Rectified Linear Units (ReLU) [29].  

Neurons can be stacked consecutively to increase the depth 
of complexity approximated by the ANN. Each neuron has 
internal linear parameters that are refined iteratively using 
gradient descent optimization. By computing the 
approximation loss compared to the expected or true values, 
the gradient of the loss can also be computed as a guide to 
adjust the parameter in a way that the loss decreases.  

In this study, we use time series data, which is one form of 
sequential data. One ANN modification that can 
accommodate sequential data is Recurrent Neural Network 
(RNN). In RNN, the neuron is modified to a cell that has 
additional output called memory, which is a part of 
information of current datapoints that become additional input 
for the next datapoint. There are many variations of recurrent 
cells. Some of those are Long Short-Term Memory (LSTM) 
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cell and Gated Recurrent Units (GRU) cell. LSTM cell 
accommodates two memory states, i.e., long-term and short-
term, with 3 internal computations called gates, i.e., forget 
gate, input gate, and output gate. Each gate has its 
functionalities to preserve information passed through from 
the previous cell to the next cell. GRU cell is a modification 
of LSTM where the input and forget gates are combined to 
update the gate. Detailed explanations and mathematical 
computations inside each of these cells [30]. 

In this paper, we formulate the architecture in two blocks. 
The first block, the recurrent block, will learn the data's time-
based features, and the second block, the dense block, will 
process the features to predict future time-step. We use four 
different recurrent architectures for the recurrent block, i.e., 
vanilla/plain RNN, LSTM, GRU, and bidirectional LSTM 
(bi-LSTM). The last architecture is an RNN modification 
where two recurrent layers are stacked to learn opposite time 
directions simultaneously. Fully connected linear layers are 
used with ReLU activation for the dense block. The 
illustration of the architecture is shown in Fig. 3.  

Finally, the model is evaluated using mean absolute error 
(MAE) as the standard time series data metric. MAE is used 
during training as a loss function to guide the backward 
propagation in updating model parameters. We also use 
relative error (RE), also known as approximation error or 
percentage error, to obtain errors in original scales relative to 
the expected value. This error gives more understanding in 
practical use cases because it illustrates measurement or 
prediction precision. The relative error is computed as the 
percentage of the average ratio of absolute difference and the 
real data. The mathematical formula for MAE and RE is 
written in (1) and (2). 
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Fig. 3. Model architecture illustration 

III. RESULT AND DISCUSSION 

A. Case Study 

The model built following the general architecture shown 
in Fig.3 is trained using different case studies. We vary some 
aspects of architecture and also the learning process. In total, 
we tried six different experiments, each with 3 or 4 cases. The 
details of the cases are shown in Table 1. For each variable 
experiment, other variables are set in the default value: LSTM 

cell-type, 3 recurrent layers, four dense layers, 512 dense 
neurons, 100 recurrent cells, and 0.001 for the learning rate.  

We aim to observe the sensitivity of the model performance 
in different setups. We train all model cases in 40 epochs with 
a learning rate to exponentially decrease as the training 
progresses. The learning rate in Table 1 is the initial rate 
before decaying in the second epoch. 

TABLE I 
EXPERIMENTAL CASES 

Variable Case 1 Case 2 Case 3 Case 4 

cell-type LSTM GRU BiLSTM Simple 
#recurrent-layers (l) 1 2 3 - 
#dense-layers (k) 1 2 3 4 
#recurrent-cells (c) 50 100 200 - 
#dense-neurons (n) 64 128 256 512 
learning-rate (lr) .005 .001 .0005 .0001 

B. Training Performance 

During training, we feed the model with validation data at 
each epoch and compute the MAE to obtain the unbiased state 
of the model as it progresses. For each experimental case, we 
plot the profile of MAE calculated in the validation data over 
training epochs. We compare the profile of all cases for each 
experiment variable in Fig. 4.  

In overview, validation MAE is unstable as it always 
fluctuates due to uncertainty induced by validation data 
models has never been seen before. This is not a problem as 
we seek to see the general trend of the profile. For the first 
figure, Fig. 4(a), we see that even though the bi-LSTM model 
has a short plateau during a few first epochs, all the models 
reached a similar state at the 40th epoch. It may be difficult to 
see, but the single LSTM model has the most stable 
convergence in the training process. One possible explanation 
is that LSTM has more complexity than GRU and Simple RNN. 
Also, bi-LSTM probably is unsuitable for this kind of time 
series data because the information is always moving forward 
without the necessity of future impact on the past. Thus, 
creating two-directional recurrent layers adds unnecessary 
complexity to the model, causing it to learn slower.  

A common understanding of neural networks is that the 
model's depth and width increase the model's capacity to learn 
more abstract information from the data. The number of layers 
represents the depth of the neural network, and the width is 
represented by the number of neurons or cells in each layer. 
However, as presented in Fig. 4(b)-(e), which shows the 
profile results of the experimental cases of depth and width 
variation of the model, the validation MAE is almost similar 
without any significant difference between all cases. The 
increasing complexity of the neural network does not give 
better results. In the case of the model width, careful 
observation shows that the model with 512 neurons or 200 
cells, which is the highest value of each experiment, has a 
more stable performance. Other than that, meaningful insight 
is difficult to draw. 

For the learning rate, as shown in Fig. 4(f), it can be easily 
seen that the optimal value is 0.001, which gives stable and 
fast convergence of validation MAE. The lower values, i.e., 
0.0005 and 0.0001, result in slower convergence, whereas the 
higher values, i.e., 0.005, give a more unstable performance. 
It even fails to reach the expected minimum loss, as the loss 
suddenly rises around 5th epoch. 
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Fig. 4  Validation MAE Profile in all experimental cases 

 

C. Computational Load 

In choosing the best model, many aspects have to be 
considered. Obtaining the smallest possible validation MAE 
is the main objective. However, other constraints should be 
considered, such as the load of the model. A heavier model 
without a significant gain in the result is unnecessary. We 
need to obtain a ‘good enough’ model with the proper load. 
The second metric we use to analyze the model is the training 
time for every 40 training epochs in each case. The results are 
shown in Table II. 

TABLE II  
TRAINING TIME OF ALL CASES 

Variable 
The training time of 40 epochs (second) 

Case 1 Case 2 Case 3 Case 4 

cell-type 758.9 683.7 1612.8 1761.7 
#recurrent-layers (l) 696.0 765.5 817.45 - 
#dense-layers (k) 851.9 812.7 814.4 817.5 
#recurrent-Cells (c) 707.7 710.5 699.9 - 
#dense-neurons (n) 745.9 768.5 673.1 659.4 

learning-rate (lr) 921.8 818.3 817.5 819.1 
 

As seen in the previous result, the validation MAE ends up 
indifferent for all cases, where eventually, a value around 0.37 
is reached. In that case, we swap the role by setting validation 
MAE as the satisficing metric and the training time as the 
optimizing metric. The main objective of choosing the best 
model is obtaining the shortest training time possible. 

In Table II, we see the training time in the second of each 
case. The gap between cases is quite high for the cell-type 
experiment, with GRU model (case 3) having the shortest 
training. It may be due to the simplicity provided by GRU 
compared to LSTM, which makes the result of the vanilla 
RNN model surprising as it should be the simplest of all four. 

The result in the case of the depth of the model is quite as 
expected. The shallower model gives a shorter training time 
with an optimal value of one recurrent layer and two dense 
layers. The capacity of one dense layer model may not be 
enough to learn abstract features of the data, causing it to 
behave slower. The result is the opposite in the width case, 
where a wider model gives a shorter time. The computation 
of units (neurons or cells) in a layer is done in parallel. Thus, 
more units do not contribute to the training time, causing a 
wider network to be more effective.  
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Fig. 5  Comparison of forecasted pressure profile with the real data in one semester period 

 
For the last experiment, the training times of learning rate 

are similar except for the first case (lr=0.005) due to its 
unstable behavior. Even though case 3 gives the shortest time, 
we still can say that the best case is case 2 because the 
difference is only a matter of a second. 

D. Forecasting result 

In this last subsection, we review the forecasting result of 
the best model. Validation data consists of 18 months 
datapoint. For ease of observation, we take only six months 
for testing, i.e., data from January to June 2020. The 
forecasted profile is shown in Fig.5. It is shown in the figure 
that the forecasted profile is close to the real data. The trends, 
even though they fluctuated quite rapidly, are followed 
properly by the forecast. Some sharp spikes are shown to 
cause overshooting in value. However, the general trend is 
sufficiently captured. 

For a closer look, we then take two date samples and 
forecast the pressure profile of the upcoming day with the 
input of the pressure profile of the given and previous day. 
The dates taken are 18th of April and 27th of July in the year 
2020. The results are shown in Fig. 6. In the first case, the real 
pressure profile tends to decrease a little bit with some small 
fluctuations. The decrease is possibly caused by the drastic 
decrease in flowrate in Source 3 and Source 4. The model 
captures this decreasing trend, but the value is overshot, 
giving a drastic decrease. In the second case, the shortfall in 
Source 3 causes the next day pressure to fall in a short time 
before it increases again. This trend is captured perfectly by 
the model giving close profiles.  

In field practice, the overshooting issue is tolerable because 
the predicted trend is needed most, whether the pressure will 
be decreased or increased in the day ahead. The error caused 
by overshooting is also not significant if we consider the scale 
of the value. In Fig.6(a), for instance, the average value 
difference is around 50 psig, which is small compared to the 
scale of 1000 psig. To see this in quantitatively way, we can 
also calculate the RE of the model. In the test case of Fig.6, 
the first case has RE around 3.284 % and the second case has 
RE around 1.023 %. If we test the model to the whole 
validation set, the RE obtained is around 2.232%. These 
values are sufficiently small compared to 5% commonly used 
maximum acceptable error in engineering. 

 

 
(a) 

 
(b) 

Fig. 6  Forecasting results 

IV. CONCLUSION 

The deep learning model, or specifically the recurrent 
neural network model, has been successfully implemented to 
forecast future pressure values in receiving facility of a 
natural gas transmission network given the historical flow rate 
data from all network end-nodes. The sensitivity of some 
model architecture and learning parameter variables is 
experimented with and analyzed. Overall validation MAE in 
almost all cases is roughly similar, around 0.37 but with 
significant differences of training time. The forecast profile 
agrees with the real data with a small acceptable error around 
the value of 2%.  
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