
Vol.13 (2023) No. 3

ISSN: 2088-5334

Position Data Estimation System Based on Recognized Field

Landmark Using Deep Neural Network for ERSOW Soccer Robot

Iwan Kurnianto Wibowo a,*, Mochamad Mobed Bachtiar a, Erna Alfi Nurrohmah a,

Vega Kurnia Garindra Wardhana a
a Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia

Corresponding author: *eone@pens.ac.id

Abstract—One of the problems faced by soccer robots is how to find out the position of the robot itself and other robots on the field. A

simple way to find out the robot's position is to use the odometry method. However, odometry is weak in accumulating position errors

that reduce the accuracy of the moving robot's absolute position estimation and orientation. This paper presents a robot position data

estimation system that is to be implemented on the ERSOW wheeled soccer robot. The robot can determine its position based on a

unique landmark: an L-shaped line on the soccer robot field. We use a deep neural network method to recognize landmark L-shaped.

Vision systems and deep learning inferences run on the Robot Operating System platform. After obtaining the distance of the robot to

the L-shaped landmark, the robot's orientation and position relative to the field can be accurately determined based on the

omnidirectional camera's perception. The results of the position estimation system in this study can be used to reduce position errors

resulting from the odometry method. Based on the landmark L-shape recognition test results conducted on 641 datasets, the validation

accuracy value is 0.806. The results of testing the robot position generated by vision obtained the largest error x about 2.32 cm and y

about 1.99 cm.

Keywords— ERSOW robot; estimation; landmark L-shape.

Manuscript received 25 Oct. 2022; revised 13 Jan. 2023; accepted 18 May 2023. Date of publication 30 Jun. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Robot soccer is one type of robot that has the task of

playing football like humans [1]. There are two types of
soccer robots, namely humanoid soccer and wheeled soccer.

Soccer robots have basic abilities to find the ball, dribble, kick

the ball, find the goal, recognize opponents and friends, avoid

collisions, and coordinate with each other. The soccer robot

also requires self-localization skills to determine its field

position [2]. A reliable robot position and orientation

estimation system is needed to support these basic abilities.

Odometry is a technique that uses the robot's relative

movement and the measurement of the angular rotational

speed of its wheels to estimate the robot's position.

Odometry's primary drawback is the accumulation of errors,

which decreases the precision of estimates of the moving
robot's absolute position and orientation [2].

The ERSOW robot is one of those wheeled soccer robots

that has all the major individual skills. One of the most

important skills is knowing the robot's orientation and

position on the field [3]. ERSOW also uses the odometry

method to assist the position estimation system. The

orientation of the robot can be easily established using the

IMU sensor or compass [4]. However, in the implementation

in the field, there are many errors of angular drift in the IMU

and also the bad influence of the magnetic field of the robot

actuator itself. So that the robot often experiences orientation

disturbances and the wrong position. The orientation of the
robot affects the positioning of the robot [5]. For a long time,

the ERSOW robot determines orientation using the IMU

sensor. The ERSOW robot often has orientation problems

because the IMU sensor has an accumulated drifting effect.

So, it requires periodic orientation and position calibration

[6]. The odometer calibration is done by detecting a line in the

field using a line sensor placed under the robot. In research by
Romadon [7] and Alatise and Hancke [8], Kalman Filter is

used to estimate a robot's orientation and position. When the

robot moves slowly with a fixed orientation, it will produce a

good estimate of the position and orientation. However, when
the robot has to move quickly above 110 cm/s with a rapid

change in the robot's angle, it will result in a large orientation

961

and position estimation error. The ERSOW robot runs at

speeds above 100cm/s, so this is considered insufficient.

According to Luo et al. [9], to feed the ball to a friendly

robot, a localization system is needed to determine the

position and orientation of the robot itself and the friend robot

in the field. Position localization is based on 3D positioning

from the Kinect camera by processing the depth point cloud

value[10]. The method used to identify other robots is

Convolutional Neural Networks which run on the GPU. Point

cloud depth is combined with 2D positioning to get real-time
3D positioning.

The study of Karkoub et al. [11] combines a conventional

camera with a hyperbolic mirror. Thus, the vision becomes

wide and looks omnidirectional. The final image quality is

highly dependent on the shape of the mirror and the camera

or mirror settings. To provide a 360° field of vision, mirror

play a very important part in this vision system in the MSL

RoboCup [12]. Omnidirectional robot often uses a

catadioptric vision system. The camera module set consists of

an upright camera facing a convex mirror. The mirror used, in

general, is parabolic or hyperbolic. Engel et al. [13] study
explains that a camera's RGB image can be regressed using a

convolutional neural network. The deep learning approach

promises better results in recognizing landmark objects.

Landmarks can be used for localization, making it a useful

map. One of the deep learning methods, DNN, can be trained

quickly and give good test results [14], [15]. Research by
Dwijayanto et al. [16] uses YOLO to detect landmarks on the

soccer field in the Indonesian robot contest. However, not yet

able to estimate the position. The fastest version of YOLOv3

is YOLOv3-tiny. The basic difference from YOLOv3 is in the

total layer used. To detect the system, YOLOv3-tiny uses 24
layers. OpenCV is a framework developed for real-time

computer vision programming [17]. In this regard, Google

developed an end-to-end open-source machine learning

platform using OpenCV called TensorFlow[18]. TensorFlow

provides a deep neural network solution and can be

considered as an advanced framework for object detection

[19], [20], including robot application detection [21]. The

training model greatly affects the detection test results. Large-

scale datasets are needed to get better training model results

in learning visual features from images [22].

In this paper, we used L-shape line landmarks to assist the

orientation estimation process in the ERSOW soccer robot.
The L-shape line landmark is unique compared to other line

shapes on the field, and this can reduce the potential for errors

in landmark detection. The L-shape landmark is the outermost

goal line located in front of the goal. Robots will often

traverse the area, especially defender robots and goalkeepers.

There are two L-shape landmarks in front of the goal. Camera

with omnidirectional mirrors is used to take pictures of the

field. The camera mounted on top of the ERSOW robot can

see landmark lines up to 5 meters away. The recognition of L-

shape landmarks were carried out using the Deep Neural

Network.

II. MATERIALS AND METHOD

This research was built in several stages, as shown in Fig.

1. The vision system and artificial intelligence on the ERSOW

robot are run using Robot Operating System (ROS). ROS

manages all communication between the vision system,

artificial intelligence, low-level control, and robot

coordination [23]. The camera capture process and field

landmark recognition are synchronized through ROS nodes

so that the robot is able to respond to changes in the field in

real-time [24]–[26].

Fig. 1 ERSOW Robot Vision System

ERSOW vision system runs on a node in the ROS with a

processing speed of 70 fps. Node vision manages several

processes of taking pictures, pre-processing, landmark

recognition using DNN, and calculating the distance of the

landmark to the robot.

A. Image Pre-processing

At the publisher node, the camera captures the image with

a resolution of 1280x720 pixels. The original image from the

camera has an RGB color space.

Fig. 2 Image cropping from 1280x720 to 640x640 pixel

As shown in Fig. 2, 1280x720 pixels image is cropped into

an 640x640 pixels image. Remove parts of the image that are

unnecessary, such as images outside the soccer field that can

become noise.

Fig. 3 Image cropping results. (a).Original image captured by camera.

(b).Cropped image

962

Image cropping is extracting certain segments of an image.

The method is quite easy, namely by slicing the image array.

According to Fig. 3 (a), the image is extracted at the center of

the omnidirectional mirror image. The image cropping

process removes the image as many as 330 pixels for the X

axis and 80 pixels for Y axis. The image is cropped at 0 pixels

to 330 pixels for X axis. For Y axis, the image is cropped from

0 to 80 pixels. The cropped result is an image with a resolution

of 640x640 pixels as shown in Fig. 3 (b). Thus, the remaining

pieces are no longer needed. The publisher node sends the
image to the vision localization node using image transport

for further processing.

B. Data Preparation

The dataset was collected using image data in the PENS

soccer robot field. The total number of landmark L-shape

datasets is 641 images each, as shown in Fig. 4. Image

resolution after going through the pre-processing stage is

640x640 pixels. The dataset is split into 620 data for training
data and 21 data for testing data. The collected datasets need

to be labeled to create a high-quality dataset for model

training [27]. Image labeling focuses on identifying and

marking details where the L-shape line landmarks are in an

image. The images were reviewed manually and labeled in the

form of bounding boxes in the area of the L-shape line

landmarks.

Fig. 4 Landmark L-shape dataset

C. Landmark Recognition Using Deep Neural Network

After the pre-processing stage is complete, the vision

system will recognize L-shape landmarks in real time using

the Deep Neural Network. Based on the calculation of the

distance between the robot and the L-shape landmark, the

coordinates of the L-shape landmark and the robot's

orientation to the field can be determined.

Fig. 5 Model of SSD Algorithm

SSD is an object detection algorithm created by Google

with VGG16 (OxfordNet) as architecture. Fig. 5 shows the

model of SSD Algorithm. SSD predicts objects using multiple

prediction boundary boxes or often referred to as Multibox

[28]–[31]. SSD speeds up the detection process by reducing

the use of Region Proposal Network (RPN) 22. RPN is the

backbone used to detect objects. SSD uses multi-scale

features and default boxes to improve accuracy [11].

ERSOW robot applies machine learning algorithms to

build models and predictions. The training involves using the
deep learning framework that is SSD-MobileNet V2 with a

tensor model. In the model training phase, entering large

amounts of data into the DNN requires powerful

computations. Here the role of the GPU is needed to shorten

the training time. In the DNN training for ERSOW robot

landmark recognition, three stages must be passed: loading

the landmark dataset, training landmarks using DNN, and

saving the training model. 2 data sets of L-shape line

landmarks in front of the goal totaling 641 images each.

Continued with the dataset training process using DNN with

TensorFlow framework. Training a model requires specifying
many parameters. But not all parameters will be used for

inference. Tensorflow is able to identify the parameters

needed for inference in the trained model. The output of the

training results in the form of .pb and .config file models,

which will then be run at the inference phase.

After the training phase is complete and produces the best

DNN model, the inference phase is next. Pre-trained models

loaded using the DNN module of the Single Shot Detector

(SSD-MobileNet V2) deep learning framework. Fig. 6 shows

Landmark Detection Process in ERSOW robot inference.

Camera-captured images are used as input for the inference
system where the image display is a reflection of the field via

an omnidirectional mirror.

Fig. 6 Landmark Detection Process

The vision-localization ROS node runs a landmark

detection program. The program calculates the landmark

image's blob value and displays the predicted result on the

frame. The output of object detection is the object's pixel

coordinates. An object detection method works to detect an

object in an image. Next, the location of the object in the

image frame can be detected. The bounding box determines

the location of the object. Models can make live data-driven

963

predictions to produce actionable results. There is a challenge

in minimizing latency issues during the inference process to

make decisions in real-time. The landmarkRecognition

function is executed based on a ROS::rate loop

rate(frequency) of 5 Hz.

DNN::blobFromImage will detect existing blobs in a
'readyframe' image with a scale factor = 1.0, and a spatial size

= {300x300} pixels. The spatial size is set equal to the spatial

size of the completed training phase.

Set input "blobimg" before passing to 'Recognize' image.

The blob's threshold is set to 0.5; anything below that value

will be disregarded. The program performs a scan along

recognitionMat.rowsThis is repeated to determine the

detected object's pixel coordinates for x, y, width, and height.

At the x and y coordinates that have been found, a bounding

box can be made based on the width and height of the

recognized object. The recognized object is displayed on the

readyframe with a delay in the form of a waitkey of 1 ms. The
outcome of L-shaped landmark recognition is seen in Fig. 7.

Fig. 7 Result of L-shaped Landmark Recognition

D. Landmark coordinate

The process to find the coordinates of the L-shape

landmark begins with calculating the distance of the robot to

the L-shape landmark. The distance between the landmarks to

the robot can be calculated easily using mathematical

equations. The values of X1, Y1, Width2, and Height2 are the

inputs of the Rect function. Next, it would be pushed back to

rect_det. The x, y, width, and height coordinates of a rectangle

are handled by the Rect function. The formula center x +

center w/2 may be used to determine the x-coordinate value

for the Xpixel variable. While the Ypixel variable's y-

coordinate value is determined using the formula center y +

center h/2.

The distance between the robot and the landmark point can

be found using the Euclidean equation as shown in the Fig. 8.

Fig. 8 View of landmark from camera with omnidirectional mirror perception

If the system can recognize the landmark and pass the

validation, the landmark coordinates (��, ��) will be

displayed, and a visual line will be drawn to the center point

of the robot camera (�����	 ,
����).

 ���
 ����� � �������� � ���� � ��������
 (1)

Where � � is distance of landmark L-shape to camera center

in pixel, (�!� , �!�) is coordinate of landmark L-shape.

(�����	 ,
����) is coordinate of center camera on image

frame. The value of the "# angle is obtained using equation

(2).

 $%
 &�'(%)���(������
���(������* + %,-

. (2)

964

Distances in pixels are converted to distances in

centimeters using linier regression.

 �
 / � 0� (3)

Linear regression output, which shows the real distance in cm

is y. A is coefficient A, B is coefficient B and x is input

distance in pixel unit.

E. Estimation of Robot Position

Estimating the robot's position begins with finding the

robot's orientation. Fig. 9 shows an illustration of calculating

the robot's orientation with camera perception. An auxiliary

line ℎ2 is needed that connects point C to the center point of

the robot. Point C is the midpoint of the line in front of the

goal or the line connecting two L landmarks.

Fig. 9 Illustration to get robot orientation

Referring to the robot soccer field that has been
determined, it is known that the length of line C is 300 cm.

Line C is divided in half into c1 and c2. Both have the same

length, which is 150 cm. The value of ℎ2 can be obtained

using the equation (5).

 3
 456678 9�:�;��(<��
�:� = (4)

 ><
 ?<%� � �� � �@<% ∗ �B ∗ 678 @CB (5)

 C
 456678 9�D�;��(:��
�D� = (6)

Base on equation (4) - (6). line a is the distance between

landmark L-shape 1 and robot. Line b connects landmark 2

with the center of the robot. Lines a and b produce an angle

called α. EF is formed from the angle of ∠@H � IℎJKL1B →O → @�PQPRB. EF can be obtained through the equation (7).

While "F angle is formed from angle of �PQPR → ∠O →@H � IℎJKL2B. The addition of EF and "F angles produce a

value of 180 as shown ini equation (8).

 T�
 456678 U9<%�;><�(��=
�@<%∗><B V (7)

 $�
 %,- � T� (8)

To estimate the robot's orientation level, the

omnidirectional mirror image is divided into areas 1 to 4. The

angle is mapped to be positive with a value of 0° to 180° and

negative with a range between 0° to -180° as shown in Fig.

10. The positive corner is on the right and the negative corner

is on the left.

Fig. 10 Angle Mapping for Omnidirectional Images

W angle is formed from line ℎ2 and robot orientation from

camera perception or camera y axis. β value is provided via

the equation (9). @�< , �< B is point C coordinate.

 W
 &�'(%)�<(������
�<(������* (9)

 Z�[:[&
 W (10)

The orientation of the robot is made referring to point C.

it's based on target kick on goal setting. So, the robot's

orientation Z�[:[& is equal to W. If the robot is facing at point

C, then it means the robot has an orientation of 0°. At this

stage, the orientation of the robot has been brought to

orientation to the field.

Furthermore, the position of the robot can be calculated
based on the known landmark distances. Fig. 11 show an

illustration for calculating the robot's position based on the

landmark in front of the goal.

Fig. 11 Illustration of Robot Position Based on landmark

Whereas a is the penalty line's length in front of the goal,

which is equal to 300 cm, b is distance of L1 landmark with

robot center point (cm), c is distance of L2 landmark with

robot center point (cm), t is the height of the right triangle

between the robot and the L2 landmark with respect to the

field (cm) and r is length of line between the robot's center

and the penalty line's center (cm).

The robot's position must first be projected to calculate the

robot's x-coordinate value and the robot's y-coordinate on the
field. If Fig. 11 is projected on the x-axis and y-axis of the

field, the results are shown in Fig. 12.

Fig. 12 The results of the projection of the robot's position on the field

965

 _
 �;:;<
� (11)

%
� �&
 ?_ @_ � �B@_ � :B@_ � <B (12)

 `
 √:� � &� (13)

s is half the perimeter of the triangle. t is the height of the right

triangle between the robot and the L2 landmark. So, to get the

coordinates of the y_robot above the field:

 ��[:[&
 ��� � & (14)

 ��[:[&
 ��% � ` (15)

�F is y-coordinate landmark L-shape L2 and ��# is x-

coordinate landmark L-shape L1. K is the length of the

triangular base line between land mark L and the robot.

III. RESULT AND DISCUSSION

A. Model Performance Evaluation

The model was trained in Google Colab with Laptop Core

i7 Gen 8 CPU @1.80GHz (8 core), 8GB RAM, OS Ubuntu
20.04 LTS 64 bit version, OpenCV library version 4.4.5.

Inference run on ROS Noetic with same spec CPU. The

distribution of training data and testing is 620 data for training

data (include for validation) and 21 data for testing data. Data

Validation, is used to validate the model and prevent

overfitting. This strategy will combine training data with

validation data. Validation dataset is data that has never been

"seen" from the model. The training and validation process

are carried out consecutively for each epoch or learning

iteration. A validation procedure follows each training

session.

Fig. 13 Model and validation accuracy

Fig. 13 shows the results of the accuracy and validation

accuracy of the resulting model. The horizontal axis

represents the completed epoch. It can be seen that in the first

epoch, the accuracy is less than 0.50 and so is the accuracy

validation. The longer the training process, the fluctuations in

accuracy and accuracy validation occur. However, the

direction tends to increase closer to the value of 1. When the

epoch is at the value of 60, the accuracy increases but the

accuracy validation starts to lag behind. The train process is

stopped at the 100th epoch to prevent overfitting. The

accuracy value is 0.838 and the validation accuracy is 0.806.

The results of the loss value and loss validation are shown in
Fig. 14.

Fig. 14 Loss and validation loss from model

The presence of a loss value can make the model "learn"

until the loss is reduced. The horizontal axis shows the

running epoch. At the start of training, the loss value is 0.70

and the loss validation is 0.698. After the epoch increases, the

loss value and validation loss tend to decrease. However,

there are times when it increases, as in the 33rd epoch

validation loss towards the 35th epoch, which increased in

value from 0.461 to 0.516. The increase in the loss value also

occurs at certain epochs. After the epoch reaches 100, the

result is a loss value of 0.352 and a validation loss value of
0.35. Contrary to accuracy validation, if the loss value of the

validation process increases, the training model is stopped to

prevent overfitting.

B. Landmark L-shape Detection Result

This test is carried out to find out how far the landmark

object can be detected. The results of the landmark detection

test by the robot are shown in Table I. dLR is distance of

landmark L-shape to robot (cm). At a distance of 40-60 cm,

the robot can detect both landmarks L-shape well. At a
distance of 80 cm, the landmark L-shape 2 was recognized,

but the landmark L-shape 1 was not. Up to a distance of 240

cm from the robot, the two landmarks L-shape are still easy

to detect. Above that distance, L-shape landmarks are difficult

to detect. According to visual observation, the white line

looks small at distances above 240 cm. The further away, the

smaller it looks. So, this reduces detection accuracy. In the

field there are several robots that can communicate with each

other. The robot closest to the landmark can share landmark

detection information with other robots. Thus, detection

results will be obtained that maintain the level of accuracy.

TABLE I

TESTING OF LANDMARK L-SHAPE DETECTION IN VARIOUS DISTANCES

dLR (cm) L-shape1 L-shape2

40 detected detected
60 detected detected
80 not detected detected

100 detected detected

120 detected detected
140 detected detected
160 detected not detected
180 detected detected
200 detected detected
220 not detected detected
240 detected not detected
260 not detected detected
280 not detected not detected

300 not detected not detected
320 not detected not detected

966

The distance data in pixels have been converted into actual

distance units using linear regression. The results of the

conversion error are presented in Table II. dLRV is distance of

landmark L-shape to robot calculated by vision.

TABLE II

TESTING OF DISTANCE LANDMARK L-SHAPE TO ROBOT ESTIMATION

dLR (cm) dLRV (cm) Error (cm)

40 49 9
60 57 3
80 81 1
100 103 3
120 125 5
140 143 3
160 161 1
180 180 0

200 199 1
220 218 2
240 242 2
260 256 4

Error average 2.83

In this test, the image used is a sample image that

successfully detects the L line landmark every 20 cm taken at

a distance of 40 cm to 260 cm as much as 12 data. There is a

difference in value between the actual distance and the

distance measured by the robot using vision. The largest error

value obtained is 9 cm, and the average error is 2.83 cm. In

addition to the linear regression formula, which cannot
produce 100% accuracy values, the results of the reflection of

the hyperbolic omnidirectional mirror, and the added lens on

the camera, most likely affect the accuracy of the conversion

of pixel distances to actual distances.

C. Robot Position Data Estimation Result

Testing the position coordinates of the robot based on the

localization of the sight using the L-shape reference of the

landmark. The test location is in the penalty area field in front
of the goal. The test results at this stage only use image data

that has successfully detected two landmarks simultaneously.

This is to find out how accurate the calculation results of the

robot's coordinates are from the sight, because if the test

includes image data that fails to detect two landmark lines, it

will damage the data analysis.

Fig. 15 Testing the robot's position at (350,716)

Fig. 15 presents a test of the robot's position at (350,716)

cm. According to the estimation results made by the robot, the

robot is at (348.25,718.68) cm. So, there is an error x of 2 cm

and an error of y of 3 cm. Table III contains all of the test

results in their entirety.

TABLE III

POSITION DATA ESTIMATION TESTING

Data

No.

Position

Estimation by
vision (cm)

Real Position

(cm)

Error (cm)

��[:[& ��[:[& ����b ����b Err x Err y

1 249.63 731.63 250 733 0.37 1.37

2 256.75 780.26 250 784 6.75 3.74

3 269.27 724.44 268 725 1.27 0.56

4 273.78 738.12 275 740 1.22 1.88
5 285.45 716.49 285 715 0.45 1.49
6 307.86 793.01 305 790 2.86 3.01
7 325.64 794.23 325 795 0.64 0.77
8 338.65 745.08 340 745 1.35 0.08
9 344.50 762.67 345 760 0.5 2.67

10 352.25 711.68 360 716 7.75 4.32

Error average (Err x, Err y): 2.32 1.99

The outcomes of evaluating the robot coordinates based on
the computation of vision with reference to the detection of

L-shape markers are shown in Table III. The test was carried

out 10 times. The position of the x robot coordinates is set in

a position range of 250 to 340 cm. The largest error value of

the robot's x coordinate error generated by vision is 7.75 cm

with an average error of 2.32 cm. The robot's Y coordinate

test results are set in the 700 to 800 cm range. With an average

error of 1.99 cm, the largest robot x coordinate error value

produced by vision is 4.32 cm.

IV. CONCLUSION

From the results of the tests that have been carried out,

there is an error in the estimation of the robot position data

based on the landmark L-shape reference using vision. The

biggest error in the estimation of the x position is 7.75 cm with

an average error of 2.31 cm. While the biggest error in the

estimation of the y position is 4.32 cm with an average error

of 1.9 cm. The estimation of robot position data using rotary

encoder-based odometry resulted in an average error of 22.07

cm for x and 20 cm for y [7]. Compared to this, the results of
the estimation of robot position data based on landmark

references using vision are considered more accurate.

Conversion of pixels into real distances using linear

regression still produces quite large errors. Where this

conversion error will also affect the results on the estimation

of the robot position data.

Testing and analyzing position estimation when the robot

moved is recommended for further work. How is the accuracy

of the robot position data estimation system based on

landmark references using vision when robot moved. In

addition, it is also necessary to try using other regression

methods, such as Ab-Exponential regression or a fusion of
linear regression and ab-exponential regression. To reduce

pixel conversion error to real distance.

ACKNOWLEDGMENT

We thank PENS for funding and providing facilities for this

research. And special thanks for ERSOW robotic team

members that assisted in completing this study.

967

REFERENCES

[1] M. Jiono, Y. D. Mahandi, S. Norma Mustika, S. Sendari, and A. M.

Dzikri, “Self Localization Based on Neighborhood Probability

Mapping for Humanoid Robot,” 4th Int. Conf. Vocat. Educ. Training,

ICOVET 2020, pp. 355–359, 2020, doi:

10.1109/ICOVET50258.2020.9230237.

[2] J. Palacín, E. Rubies, and E. Clotet, “Systematic Odometry Error

Evaluation and Correction in a Human‐Sized Three‐Wheeled

Omnidirectional Mobile Robot Using Flower‐Shaped Calibration

Trajectories,” Appl. Sci., 2022, doi: 10.3390/app12052606.

[3] F. Lui Hakim Ihsan, R. Adryantoro Priambudi, M. Mobed Bachtiar,

and I. Kumianto Wibowo, “Heading Calibration in Robot Soccer

ERSOW using Line Landmark on the Field,” IES 2020 - Int. Electron.

Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 226–232, 2020,

doi: 10.1109/IES50839.2020.9231923.

[4] D. R. Phang, W. Lee, and P. Michail, “and IMU Sensor,” 2019 IEEE

Int. Meet. Futur. Electron Devices, Kansai, pp. 2019–2020, 2019.

[5] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “OriNet: Robust 3-D

Orientation Estimation with a Single Particular IMU,” IEEE Robot.

Autom. Lett., 2020, doi: 10.1109/LRA.2019.2959507.

[6] R. B. Sousa, M. R. Petry, and A. P. Moreira, “Evolution of odometry

calibration methods for ground mobile robots,” 2020, doi:

10.1109/ICARSC49921.2020.9096154.

[7] Z. T. Romadon, H. Oktavianto, I. K. Wibowo, B. Sena Bayu

Dewantara, E. A. Nurrohmah, and R. Adryantoro Priambudi, “Pose

Estimation on Soccer Robot using Data Fusion from Encoders, Inertial

Sensor, and Image Data,” in IES 2019 - International Electronics

Symposium: The Role of Techno-Intelligence in Creating an Open

Energy System Towards Energy Democracy, Proceedings, 2019, pp.

454–459, doi: 10.1109/ELECSYM.2019.8901578.

[8] M. B. Alatise and G. P. Hancke, “Pose estimation of a mobile robot

based on fusion of IMU data and vision data using an extended kalman

filter,” Sensors (Switzerland), vol. 17, no. 10, 2017, doi:

10.3390/s17102164.

[9] S. Luo, H. Lu, J. Xiao, Q. Yu, and Z. Zheng, “Robot detection and

localization based on deep learning,” Proc. - 2017 Chinese Autom.

Congr. CAC 2017, vol. 2017-Janua, pp. 7091–7095, 2017, doi:

10.1109/CAC.2017.8244056.

[10] R. Alves, J. Silva De Morais, and K. Yamanaka, “Cost-effective

indoor localization for autonomous robots using kinect and wifi

sensors,” Intel. Artif., 2020, doi: 10.4114/intartif.vol23iss65pp33-55.

[11] M. Karkoub, O. Bouhali, and A. Sheharyar, “Gas Pipeline Inspection

Using Autonomous Robots with Omni-Directional Cameras,” IEEE

Sens. J., vol. 21, no. 14, pp. 15544–15553, 2021, doi:

10.1109/JSEN.2020.3043277.

[12] S. Barone, M. Carulli, P. Neri, A. Paoli, and A. V. Razionale, “An

omnidirectional vision sensor based on a spherical mirror catadioptric

system,” Sensors (Switzerland), 2018, doi: 10.3390/s18020408.

[13] N. Engel, S. Hoermann, M. Horn, V. Belagiannis, and K. Dietmayer,

“DeepLocalization : Landmark-based Self-Localization with Deep

Neural Networks,” 2019 IEEE Intell. Transp. Syst. Conf., pp. 926–933,

2019.

[14] B. N. Krishna Sai and T. Sasikala, “Object Detection and Count of

Objects in Image using Tensor Flow Object Detection API,” Proc. 2nd

Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2019, no. Icssit, pp. 542–

546, 2019, doi: 10.1109/ICSSIT46314.2019.8987942.

[15] D. Xianzhi, “Research on Camera Calibration Technology Based on

Deep Neural Network in Mine Environment,” Proc. - 2020 Int. Conf.

Comput. Vision, Image Deep Learn. CVIDL 2020, no. Cvidl, pp. 375–

379, 2020, doi: 10.1109/CVIDL51233.2020.00-68.

[16] M. R. Dwijayanto, S. Kurniawan, and B. Sugandi, “Real-Time Object

Recognition for Football Field Landmark Detection Based on Deep

Neural Networks,” Proc. 2019 2nd Int. Conf. Appl. Eng. ICAE 2019,

2019, doi: 10.1109/ICAE47758.2019.9221678.

[17] A. F. Villán, “Mastering OpenCV 4 with Python: A Practical Guide

Covering Topics from Image Processing, Augmented Reality to Deep

Learning with OpenCV 4 and Python 3.7,” Packt Publishing. 2019.

[18] M. J. J. Douglass, “Book Review: Hands-on Machine Learning with

Scikit-Learn, Keras, and Tensorflow, 2nd edition by Aurélien Géron,”

Phys. Eng. Sci. Med., 2020, doi: 10.1007/s13246-020-00913-z.

[19] A. M. Taqi, F. Al-Azzo, A. Awad, and M. Milanova, “Skin Lesion

Detection by Android Camera based on SSD-Mo-bilenet and

TensorFlow Object Detection API,” Am. J. Adv. Res., 2019, doi:

10.5281/zenodo.3264022.

[20] T. V. Janahiraman and M. S. M. Subuhan, “Traffic light detection

using tensorflow object detection framework,” 2019, doi:

10.1109/ICSEngT.2019.8906486.

[21] M. Abagiu, D. Popescu, F. L. Manta, and L. C. Popescu, “Use of a

Deep Neural Network for Object Detection in a Mobile Robot

Application,” EPE 2020 - Proc. 2020 11th Int. Conf. Expo. Electr.

Power Eng., no. Epe, pp. 221–225, 2020, doi:

10.1109/EPE50722.2020.9305648.

[22] L. Jing and Y. Tian, “Self-Supervised Visual Feature Learning with

Deep Neural Networks: A Survey,” IEEE Transactions on Pattern

Analysis and Machine Intelligence. 2021, doi:

10.1109/TPAMI.2020.2992393.

[23] Y. Koo and S. H. Kim, “Distributed Logging System for ROS-based

Systems,” 2019 IEEE Int. Conf. Big Data Smart Comput. BigComp

2019 - Proc., pp. 1–3, 2019, doi: 10.1109/BIGCOMP.2019.8679372.

[24] M. Marian, F. Stinga, M. T. Georgescu, H. Roibu, D. Popescu, and F.

Manta, “A ROS-based Control Application for a Robotic Platform

Using the Gazebo 3D Simulator,” Proc. 2020 21st Int. Carpathian

Control Conf. ICCC 2020, 2020, doi:

10.1109/ICCC49264.2020.9257256.

[25] A. Y. R. Ruiz and B. Chandrasekaran, “A Robotic Control System

Using Robot Operating System and MATLAB for Sensor Fusion and

Human-Robot Interaction,” 2020 10th Annu. Comput. Commun. Work.

Conf. CCWC 2020, pp. 550–555, 2020, doi:

10.1109/CCWC47524.2020.9031184.

[26] T. Witte and M. Tichy, “Checking consistency of robot software

architectures in ROS,” Proc. - Int. Conf. Softw. Eng., pp. 1–8, 2018,

doi: 10.1145/3196558.3196559.

[27] X. Liu et al., “Self-supervised Learning: Generative or Contrastive,”

IEEE Trans. Knowl. Data Eng., 2021, doi:

10.1109/TKDE.2021.3090866.

[28] F. Zhang, Q. Li, Y. Ren, H. Xu, Y. Song, and S. Liu, “An expression

recognition method on robots based on mobilenet V2-SSD,” 2019 6th

Int. Conf. Syst. Informatics, ICSAI 2019, no. Icsai, pp. 118–122, 2019,

doi: 10.1109/ICSAI48974.2019.9010173.

[29] G. Yu, L. Wang, M. Hou, Y. Liang, and T. He, “An adaptive dead fish

detection approach using SSD-MobileNet,” Proc. - 2020 Chinese

Autom. Congr. CAC 2020, no. 2018, pp. 1973–1979, 2020, doi:

10.1109/CAC51589.2020.9326648.

[30] Y. Qian, R. Jiacheng, W. Pengbo, Y. Zhan, and G. Changxing, “Real-

Time detection and localization using SSD method for oyster

mushroom picking robot∗,” 2020 IEEE Int. Conf. Real-Time Comput.

Robot. RCAR 2020, pp. 158–163, 2020, doi:

10.1109/RCAR49640.2020.9303258.

[31] X. Song, P. Jiang, and H. Zhu, “Research on Unmanned Vessel

Surface Object Detection Based on Fusion of SSD and Faster-RCNN,”

Proc. - 2019 Chinese Autom. Congr. CAC 2019, pp. 3784–3788, 2019,

doi: 10.1109/CAC48633.2019.8997431.

968

