
Vol.13 (2023) No. 3

ISSN: 2088-5334

GRU and XGBoost Performance with Hyperparameter Tuning Using
GridSearchCV and Bayesian Optimization on an IoT-Based Weather

Prediction System
Hendri Darmawan a, Mike Yuliana a,*, Moch. Zen Samsono Hadi a

a Department of Postgraduate, Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, 60111, Indonesia

Corresponding author: *mieke@pens.ac.id

Abstract— Weather is essential to human life, but it is difficult to forecast due to its diverse nature. We evaluated and compared the

accuracy of two machine learning algorithms, GRU and XGBoost, in predicting weather patterns. We used GridSearchCV to tune the

hyperparameters for the GRU algorithm and Bayesian optimization for the XGBoost algorithm. We used regression to predict weather

sensor data and classification to predict rainfall in the following four days. We then deployed the best-performing model to the cloud

server and connected it to the local IoT device with weather sensors in Sedati, Sidoarjo Regency, Indonesia. We conducted tests using

data from the BMKG Juanda Sidoarjo and data from the local IoT device. The findings indicated that the XGBoost regression model

outperformed the GRU model in the first stage, with an average RMSE of 1.2728125. In comparison, the average RMSE for GRU

regression was 1.551666667. In the second stage, however, GRU regression performed better, with an average RMSE of 2.23, while the

XGBoost regression had 2.28. In the classification tests, the GRU model had a higher F1 score of 0.88 in the first stage, while the

XGBoost classification was 0.86. Both models had the same accuracy of 0.75 when tested with IoT data. However, the GRU classification

model was better since it considered the context of the prediction, resulting in a lower likelihood of rain when it was not raining.

Keywords— Gated recurrent unit; XGBoost; multivariate weather prediction; internet of things.

Manuscript received 27 Oct. 2022; revised 27 Dec. 2022; accepted 24 Jan. 2023. Date of publication 30 Jun. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Accurate weather prediction is essential for many
industries and activities, including agriculture, tourism,
aviation, and transportation. Weather data is collected using
observations, sensors, radar, and satellites from
meteorological stations. The Meteorology, Climatology, and
Geophysics Agency's current method for developing weather
forecasts is called Numerical Weather Prediction (NWP) [1].
This method requires several factors, mathematical
assumptions, and complex equations, and it requires a
thorough understanding of atmospheric dynamics and
calculations with many variables and data sets. The
development of modern computer hardware has made
advances in numerical weather forecasting. The potential for
improving weather modeling techniques exists thanks to the
availability of large amounts of data and technological
advances. We can gain new insights and potentially enhance
the existing weather modeling methods by utilizing a deep
learning approach using decades of weather observation

records. However, a large amount of weather and climate data
complicates its analysis.

Researchers have developed a new modeling approach
using machine learning that has many benefits over traditional
methods. Unlike physical models or numerical weather
prediction, machine learning models can provide results in
seconds and offer accurate forecasts at a lower cost [2]. The
purpose of the machine learning approach can be divided into
two categories: description and prediction. A descriptive
function examines the dynamics of data collection to extract
meaningful characteristics. On the other hand, the predictive
function looks for patterns in the data that can be used to
estimate future outcomes using the variables in the data.
These patterns are then used to forecast variables that have not
yet been observed. Training and testing data are required for
modeling using a machine-learning algorithm.

This study used 20.5 years of data from the BMKG
Meteorology Station (Class I, Juanda) in Indonesia. There
were issues with the data, including missing values and
outliers. These issues may have resulted from data processing

851

issues, data entry mistakes, climatic anomalies, or sensor
errors. Therefore, before training the model, it is essential to
perform various data preparation steps, such as filling in
missing values (interpolation), data cleansing, transformation,
and standardization or normalization.

Munandar [3] has used multivariate time series input data
using the ARIMA and MLP methods for weather forecasting
with solar irradiance targets. MLP regression model single-
day output prediction using a multilayer perceptron window
method model with data from 3 and 7 days before. In order to
predict future data, the ARIMA model considers parameters
such as moving average, autoregressive, and data set features.
The researchers tested two models and found that the MLP
model using deep learning was more effective than the
ARIMA model.

Chen et al. [4] have studied the weather prediction of
average wind speed, average atmospheric pressure, daily
minimum and maximum temperature, relative humidity, and
temperature in Shenzhen, China. The researchers employ a
fusion model based on LSTM. The method of filtering the
correlation coefficients of the components of each variable
decomposed by EMD and then recombining the data into an
LSTM network maximizes the benefits of EMD in
decomposing non-stationary data with seasonal trends. It
minimizes the impact of data noise and seasonal fluctuations.
The researchers employ a grid search approach for tuning the
hyperparameters.

Our proposed research builds on previous work in which
we developed a model using Internet of Things technology.
This study used a server-side API endpoint to integrate the
models deployed on the cloud server with the ESP32
microcontroller. The ESP32 microcontroller was equipped
with several sensors to measure meteorological conditions.
The prediction model used the data collected from these
sensors as input. We also created a web-based surveillance
system for this project to allow users to monitor the weather
in near real-time and view the weather forecast.

II. MATERIALS AND METHODS
The model development technique used for weather

prediction is discussed in this section. Observations of
weather at the surface were used to generate forecasts. We

proposed two methods: the first used the GRU algorithm, and
the second used the XGBoost algorithm. Each algorithm
consists of a regression model and a classification model. In
this study, we proposed four models consisting of two
regression models and two classification models. The
regression models were used to predict meteorological
element data, including Maximum Temperature (MAX),
Minimum Temperature (MIN), Maximum Wind Speed
(MXWS), Daily Average Temperature (TEMP), Wind
Current Speed (WS), Humidity (RH), Sea Level Atmospheric
Pressure (SLP), and Dew Point Temperature (DP).

The classification models were used to classify rainfall
prediction (PRCP) for the following four days. We evaluated
these models to determine the most reliable models for
regression and classification. A locally deployed Internet of
Things (IoT) device was used to collect data as inputs for the
most reliable models to provide a comprehensive weather
forecasting system. An ESP32 microcontroller was connected
to BME280, an anemometer, and rain gauge sensors to collect
weather data. The server received this data, which was used
as input for the prediction model. Since we were not using
multilabel classification in this research, the regression model
was used to predict the values input into the classification
model for the next few days. The models were trained using
historical weather data to provide future forecasts. The
hyperparameters of the GRU algorithm were tuned using the
GridSearchCV method, while the XGBoost algorithm was
tuned using Bayesian optimization.

A. Research Methodology
The proposed study comprises three main stages, as shown

in Fig. 1. The first stage is data preparation, which involves
collecting data sets and pre-processing the data. Data pre-
processing includes interpolation, treating outlier values,
filtering data using Fast Fourier Transform (FFT),
transforming data, and normalizing data. The second stage is
modeling with two algorithms, GRU and XGBoost. The
hyperparameters of these models need to be tuned to achieve
the best performance and accuracy using GridSearchCV and
Bayesian optimization. The results are then analyzed and
evaluated. The third stage is implementing and integrating the
best model with a local IoT device.

Fig. 1 Research methodology

852

B. Collecting Data
The models were trained using data from the BMKG

Meteorology Station (Class I, Juanda) in Sidoarjo Regency,
Indonesia. The National Climatic Data Center (NCDC) is an
institution that gathers and maintains weather data from
airport weather stations worldwide, which is made available
for download. We used relevant variables from the raw data
as input variables for the model, considering the availability
of sensors. The data collected between January 2000 and June
2021 was divided into sets for testing and training.

Fig. 2 shows the descriptive statistics of the raw data. The
first quartile (Q1) includes data points that are less than 25%
of the total, the second quartile (Q2) includes data points that
are less than 50% of the total, and the third quartile (Q3)
includes data points that are less than 75% of the total,
arranged in ascending order. Fig. 2 shows that the minimum
and maximum values are significantly different from the
values in the first quartile (Q1), the middle quartile (Q2), and
the third quartile (Q3). A significant difference between
quartiles and minimum-maximum values may indicate
skewed data. There may also be outliers in the data.
Histograms and boxplots were also used to further check for
suspected outliers. Another issue with the dataset is missing
values, which were addressed in the data interpolation stage
by adding new data points.

Fig. 2 Descriptive statistics of raw data

C. Pre-Processing Data
The quality of the output of a system, such as a machine

learning model, is directly related to the quality of the input
data. The "garbage in, garbage out" principle states that if the
input data is of poor quality, the resulting output will also be
of poor quality. It is crucial to ensure that the input data is high
quality to build a reliable and accurate model. The raw data
provided by the NCDC had some anomalies and missing
values, so we performed pre-processing to clean the data, as
shown in Fig. 1. By performing pre-processing, we can
improve the quality of the input data and increase the accuracy
of the resulting model.

1) Interpolating Data: Data interpolation is a method for
filling in missing data points by estimating values based on
existing samples. This research employed means imputation,
an interpolation using statistical method [5]. Missing data
points are replaced with the average value from the same day

in other years [6]. For example, if the sea level pressure record
for October 1, 2021, is missing, it would be replaced with the
average sea level pressure from prior years.

2) Treating Outlier: A value much smaller or larger than
the rest of the data is called an extreme point or outlier. A
boxplot is a helpful plot for visualizing data distribution based
on five essential calculations: the lowest value, Q1, Q2, Q3,
and the highest value. We used boxplots for each variable to
identify outliers. The upper and lower bounds of the data set
were used to define the cutoff point, as shown by the boxplot.

3) Filtering Data: FFT is a technique that converts data
from the spatial or time domain into the frequency domain [7],
[8]. It uses a complex exponential function to break the data
into component frequencies. In contrast, Inverse Fast Fourier
Transform (IFFT) transforms data from the frequency domain
back into the spatial or time domain. The FFT equation for X(f)
of x(t) in continuous time is shown in (1).

 ���� � �  �
	�
��� ⋅
	������� (1)

The IFFT equation is written in (2):

 ���� � �  �
	�
��� ⋅
������� (2)

The FFT filter technique converts the data into the
frequency domain, reduces or amplifies high frequencies
(acting as a low pass filter), and then inverts the filtered result
using the IFFT method [9]. This filtering step helps to reduce
high-point fluctuations, to improve the model's performance.
By removing noise from the data, the model can more easily
identify underlying patterns and trends, leading to better
results [10]. This research used a window size (N) of eight to
filter the variables, and a two-point sample was taken from the
FFT (M) retained value. Fig. 3 shows the distribution of plots
after the pre-processing data phase.

4) Transforming Data: In this step, continuous rainfall
data was converted into two categories: no rain (class 0) and
rain (class 1). If a rainfall data point was more significant than
0.5 mm, it was labeled as part of the rain class [11]. However,
the data used in this research was unbalanced, meaning that
some classes occurred less often than others. It can cause the
model to be biased and perform better for frequent classes than
for unusual ones [12]. Several solutions to the imbalanced data
issue include SMOTE [13]. In this research, we did not use
SMOTE to handle imbalanced classes because it produces
unrealistic sequences for time series data, which does not
improve model performance. Instead, we used a weight
penalty to address the imbalanced data. It assigns a lower
weight to the class with more labels and a higher weight with
fewer labels. The classification model naturally gives more
weight to the class with more labels, so we needed to weight
the loss function to counteract this bias. The formula for
estimating penalty weight is shown (3):

n_total_samples

n_class_samples * frequency_each_element (3)

853

Fig. 3 Distribution plot after pre-processing data

Fig. 4 shows the calculated weights for each class, where
the weight is inversely related to the frequency of the data
[14]. These weight penalties were only applied to the GRU
model classification because the XGBoost model can handle
imbalanced data without customization. However, using a
sampling technique may improve the performance of the
XGBoost algorithm [15].

Fig. 4 Weighting value estimation for each class

5) Normalizing Data: Normalizing the data ensured that
all the features were on the same scale, which helped the model
learn more effectively. Data normalization helps the model to
converge faster and produce better results [16]. In this study, a
minimum-maximum scaler was used for data rescaling. The
normalization procedure yields data ranging from 0 to +1 by
scaling each feature [17]. The minimum-maximum equation is
given by (4):

 �i_new� Xi - min�Xi�
 max�Xi�- min�Xi� (4)

D. Modeling

This study used the GRU and XGBoost models for weather
prediction. The GRU model is based on recurrent neural
networks, while XGBoost is a boosting algorithm that uses
decision trees as its base learners. We evaluated the
performance of both models by tuning their hyperparameters
and comparing their results.

1) Gated Recurrent Unit (GRU) Algorithm: GRU is a type
of recurrent neural network that can be used to improve the
performance of vanilla Recurrent Neural Networks (RNN) in
predictive modeling tasks. Unlike vanilla RNN, which often
suffers from vanishing gradient issues, GRU uses the update
and reset gates to prevent vanishing gradients. These gates give
GRU a more stable architecture with many hidden layers,
improving model performance. The equations are shown in
(5)-(8).

 ,� � -�./
� 0 1/ℎ�	3 0 4/� (5)

 5� � -�.6
� 0 16ℎ�	3 0 46� (6)

 7� � tanh �.
� 0 1�5� ∘ ℎ�	3� 0 4� (7)

 ℎ� � ,� ∘ ℎ�	3 0 �1 : ,�� ∘ 7� (8)

854

Where σ is the sigmoid activation function, Wu, Bu, Wr, and
Br are weight matrices and bias vectors for the update and
reset gates, xt is the input at time step t, and h(t-1) is the hidden
state at the previous time step. The update (ut) and reset gate
(rt) control the flow of information in the GRU, allowing it to
retain or forget information from previous time steps as
needed. The hidden state candidate (ct) is used to generate the
hidden state (ht), with the result of the update gate calculation
being used to control the effect of the previous hidden state
on the hidden state candidate. This method helps the GRU
model learn and make accurate predictions [18]. To prepare
the data for training with a GRU model, we first rearranged it
into three-dimensional forms compatible with the GRU
compliance layer. The input layer's three-dimensional forms
consist of data samples, the number of time steps, and
dimensions. Each pattern represents a single sample of data,
one measurement point within the sample represents one
historical window (time step), and each feature represents a
measurement point within the time step. It allowed us to train
the GRU model on the pre-processed data [6].

Hyperparameters in machine learning algorithms affect
model performance. Tuning hyperparameters can improve
prediction accuracy for specific datasets. This study examined
the effects of different time-step periods, including two,
seven, fourteen, and twenty-one days. GridSearchCV was
used to find the optimal hyperparameters for the regression
model. The GridSearchCV method for tuning
hyperparameters generates and assesses the model for each
pair of the provided hyperparameters [19]. Table 1 and Table
2 present the hyperparameter values of the regression and
classification models using GRU, along with the results that
show which hyperparameters were the most reliable.

TABLE I
HYPERPARAMETERS FOR GRU REGRESSION MODEL

Hyperparameter Range of Values Best Value

Time step 2; 7; 14; 21 14
Bidirectional
GRU units on
layer 1

16; 32; 64; 128; 256; 512 16

Dense units on
layer 2

16; 32; 64; 128; 256; 512 512

Batch size 16; 32; 64; 128; 256; 512 128

TABLE II
HYPERPARAMETERS FOR GRU CLASSIFICATION MODEL

Hyperparameter Range of Values Best Value

Time step 2; 7; 14; 21 2
GRU units on
layer 1

16; 32; 64; 128; 256 128

Dense units on
layer 2

16; 32; 64; 128; 256 64

Batch size 16; 32; 64; 128; 256 128

In order to optimize the hyperparameters for the rain
category prediction, we manually varied the time step, GRU,
Dense units on the hidden layer, and the batch size number.
We evaluated the impact on the model performance. The
adjustments were made one at a time, and the results from the
most successful iteration were used to tune the
hyperparameters for the next iteration. This process was
repeated until the optimal hyperparameters were found.

We first defined the model architecture to build the GRU
models and then used optimization algorithms and loss

functions. The regression model was compiled using mean
squared loss, while sequence classification model used
categorical cross-entropy loss. Loss functions measure how
much actual results differ from predicted results.
Backpropagation through time is used to adjust the weights
and biases in the GRU model to reduce the cost incurred
during training.

The optimization algorithm repeatedly adjusts the network
weights based on the training data. In this study, we used the
adaptive optimization Adam because the default settings are
usually practical. We also used a reduced learning rate on
plateau function with a starting learning rate 0.001 [20]. A
large learning rate is desirable at the beginning of training
because it can lead to a higher generalization effect. If the
metrics are not improving during training, slowing the
learning rate can help the algorithm find an optimal solution
and avoid oscillations around that solution [21]. If the metrics
show no improvement after a predetermined number of
epochs, we use the ReduceLROnPlateau callback to reduce
the learning rate [22]. We also used early stopping to prevent
overfitting by stopping the training process if the validation
loss increases significantly. We can determine the optimal
number of epochs by early stopping because the training
process will automatically stop at a certain epoch [23].
Finally, we saved the best weights during training using the
ModelCheckPoint callback, which was then used for
deployment.

2) Extreme Gradient Boosting (XGBoost) Algorithm:
XGBoost is a popular machine-learning algorithm often used
for regression and classification tasks [24]. It is an ensemble
learning method that combines the predictions of multiple
weak models to create a more accurate final model. XGBoost
uses decision trees as its base learners and trains them in an
iterative process to improve the model's overall performance.
Combining multiple weak models to create a more robust
model is known as gradient boosting. This method allows
XGBoost to produce highly accurate predictions, making it a
popular choice for many machine-learning applications.
During each iteration, the error residuals from the preceding
model are used to fit the subsequent model. The final
prediction is derived by a weighted summation of all the
individual tree predictions. The XGBoost algorithm may be
thought of as an additive model that is made up of K CART
trees, ���
;� is a representation of the predicted value that may
be produced by feeding the i-th sample xi into the t-th tree, <=;
is a representation of the prediction outcome of xi, and F is the
set space containing all the regression trees [15]. The final
prediction result formula is given by (9):

 <=; � ∑  ?�@3 ���
;�, �� ∈ C (9)

The objective function (loss function and regularization) at
iteration t that has to be minimized is as follows (10):

 ℒ��� � ∑  E;@3 F G<; , <=;
��	3� 0 ���x;�H 0 Ω��� � (10)

The XGBoost model's hyperparameters were optimized
using the Bayesian optimization method. This approach is
more efficient than traditional search methods, such as
random and grid searches, because it uses a probabilistic
model to optimize the process [25]. Bayesian optimization
uses Bayes' theorem to search global optimization problems

855

efficiently [26]. Bayesian optimization involves iteratively
searching for the hyperparameters that minimize the objective
loss function, using a surrogate function to represent the
objective and an acquisition function to guide the search. This
method can also reduce computational costs compared to grid
search. The optimum hyperparameter values for multilabel
regression using XGBoost are shown in Table 3. Determining
the range of samples hyperparameters for the classification
model on Bayesian optimization processes follows the same
pattern as determining the range of samples for the regression
model. Table 4 presents the optimal hyperparameter values
for the XGBoost classifier, as determined by the Bayesian
optimization method.

TABLE III
HYPERPARAMETERS FOR XGBOOST REGRESSION MODEL

Hyperparameter Range of Values Best Value

History window 2; 7; 14; 21 7
subsample Uniform(0.6, 1) 0.72823302704416
colsample_bytree Uniform(0.3, 1) 0.42000701842358
max_depth Randint(4, 11) 7
min_child_weight Uniform(0, 10) 5.76455502635815
learning_rate Uniform(0.01, 0.3) 0.03816683337691
n_estimators Randint(100, 500) 438
gamma Uniform(0, 2.5) 0.00277475809094

TABLE IV
HYPERPARAMETERS FOR XGBOOST CLASSIFICATION MODEL

Hyperparameter Range of Values Best Value

History window 2; 7; 14; 21 14
subsample Uniform(0.6, 1) 0.76743448256266
colsample_bytree Uniform(0.3, 1) 0.50282874177672
max_depth Randint(4, 11) 10
min_child_weight Uniform(0, 10) 2.26328971561941
learning_rate Uniform(0.01, 0.3) 0.09731752061633
n_estimators Randint(100, 500) 102
gamma Uniform(0, 2.5) 0.81687404301826

The hyperparameters of the XGBoost model were
optimized using Bayesian optimization. It involved searching
for the optimal values of the hyperparameters using one
hundred assessments of different models for each historical
window value (the number of past observations used as
features). The Parzen estimators search technique was used to
minimize the objective function for the regression and
classification models. For the regression model, the objective
function was the mean squared loss, while for the
classification model, it was the negative accuracy. By
minimizing these objective functions, we can improve the
performance of the models and achieve better results. The
hyperparameters obtained from Bayesian optimization show
that the XGBoost model for classification is more complex
than the regression model. The large value of depth of each
tree, referred to as max_depth, makes the XGBoost model
more complex. To prevent overfitting due to the increased
complexity of the XGBoost model, we can adjust the values
of two hyperparameters: min child weight and gamma. Min
child weight is the minimum sum of instance weight in each
leaf node, while gamma is the minimum loss reduction to
produce a split. By increasing the values of these
hyperparameters, we can lower the complexity of the model
and prevent it from overfitting to the training data. It can
improve the model's performance and help it generalize better
to unseen data. Setting the ratio of features used, referred to

as colsample_bytree, and the ratio of training instances,
referred to as subsample, to a modest number also can reduce
model complexity. Tables 3 and 4 also show that the
regression model has more boosted trees, or n estimators, than
the classification model. The learning rate of the XGBoost
model was set to a constant value; when this value decreases,
the computation becomes slower but sometimes yields the
best optimum solution. The model was trained using the
optimal hyperparameter values after the tuning process.
Eighty percent of the tabular weather history data were used
for training the model and twenty percent for testing. The
gradient boosting tree technique is used, where XGBoost uses
predictors sequentially and models them based on their
predecessors' errors to assign greater weight to better-
performing predictors. The XGBoost model is trained in three
stages: raw data, residuals from the previous model, and the
sum of the previous models.

E. Evaluation Metrics

To evaluate the performance of the models, we used several
metrics. One of these metrics is the Root Mean Square Error
(RMSE), a commonly used measure for regression models
[27]. A smaller RMSE value indicates that the model's
predictions are closer to the actual values and therefore have
better performance. It calculates the average squared
difference between the predicted values and the true values
and takes the square root of the result as shown in (11):

JKLM � N∑  OPQR �SP	S=P�T
U (11)

We compare the predicted values with the original labels to
evaluate the performance of the classification model, which
allows us to determine the extent to which the model can
accurately predict the correct class for each data point [14].
We used a variety of metrics to assess the model's
performance, including a confusion matrix, accuracy, recall,
precision, and F1. A confusion matrix is a tabular
representation of possible pairs of predicted and observed
values [28]. The matrix consists of four possible outcomes:
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). The formulae for classification
model evaluations can be found given in (12)-(15) [29].

V77,5W7< � XUYXZ
XUYXZY[ZY[U (12)

\5
7]^]_` � XZ
[ZYXZ (13)

J
7WFF � XZ
[UYXZ (14)

C1 � 2 ×Recall × Precision
 Recall Y Precision (15)

F. Microcontroller and Model Deployment

After selecting the most accurate model, the next step was
integrating it with a local IoT device and other components
into a complete system. The integrated system allowed for the
automatic processing of weather predictions and providing
them to users through the application shown in Fig. 5. The
sensors connected to an ESP32 microcontroller include a rain
gauge, an anemometer, and a BME280. These sensors provide
data on rain, wind, sea level atmospheric pressure,
temperature, dew point, and relative humidity. The schematic

856

diagram of the microcontroller and sensors used in this
research can be seen in Fig. 6. The ESP32 chip includes
various communication interfaces such as Wi-Fi, Bluetooth,
SPI, and I2C/UART. The availability of two separate
processing cores is a significant advantage of the ESP32 chip
[30]. In this project, ESP32 was used in dual-core mode, with
the first core running the rain gauge sensor function and the
second core running the anemometer and BME280 sensor
functions. This separation of cores was implemented to
eliminate delays in reading the rain gauge sensor and improve
the overall performance.

Fig. 5 Display of the website-based application

Fig. 6 Microcontroller and sensor schematic diagram

The weather data JSON was posted to the API endpoint via
HTTP every minute using Wi-Fi [31]. The API, developed
using Python Flask, then connected to the database and
performed the necessary prediction processes. After receiving
the data, the data was stored in MySQL (a relational database)
and Google's Firebase Real-time Database [32]. The Firebase
Real-time Database (a NoSQL database) was used to store the
information provided by the website-based application, as it
allows for immediate updates to the data in the application
when it is changed [33]. Meanwhile, MySQL maintained a
record of all sensor readings necessary for weather
forecasting, and we used a query program to retrieve the data.
The server then fetched the data from MySQL for a certain
number of time steps, which were used as predictors for the
prediction model. The average value of a day's sensor
readings was calculated and used as input for the model at

23:59 WIB. These values were then used to generate the
output predictions.

III. RESULT AND DISCUSSION
The model's accuracy was evaluated by comparing its

predicted outcomes to the labeled data. The RMSE value was
calculated to determine the regression model's effectiveness.
A lower RMSE value indicates that the model's predictions
are closer to the actual data, with a zero-value representing
perfect accuracy. RMSE is commonly used in weather
modeling, air quality studies, and climate studies to measure
the accuracy of regression models [34]. The evaluation of the
classification model is performed separately due to the
categorical nature of its predictions. We used a variety of
metrics, including the confusion matrix, accuracy, recall,
precision, and F1, to assess the model's performance. We can
determine the model's ability to accurately predict the
different classes by analyzing these metrics. Overall, the
evaluation of both the regression and classification models
allows us to determine the effectiveness of the proposed
model in predicting weather data.

A. Multi-Step Regression Model Testing With a 4-Day Lead

Time
This section will present the results of evaluating the tuned

model using the Root Mean Squared Error (RMSE) test. The
GRU and XGBoost models could forecast the values of
various weather parameters, including dew point, maximum
temperature, minimum temperature, maximum wind flow
speed, sea level atmospheric pressure, temperature, wind flow
speed, and relative humidity, for four days in advance. The
evaluation was conducted using the weather sensor data
collected by the BMKG Meteorology Station (Class I,
Juanda) from March 25, 2017, to June 30, 2021.

1) Gated Recurrent Unit (GRU): We tested the regression
model using the results from GridSearchCV's tuning approach
of the model hyperparameters by varying the time steps. The
optimal hyperparameters for the GRU regression model were
as follows: a Bidirectional GRU with 16 units in the first layer,
a Dense layer with 512 units in the second layer, a Dense layer
with 32 units in the output layer, a time step (historical) of
fourteen days, and a batch size of 128. Fourteen-time steps
mean that four days of predictions were made using fourteen
days of historical data. The neurons in the recurrent neural
network receive their input (the predictors) from the previous
data based on the number of time steps. Fig. 7 shows the
RMSE values for the GRU model's best-fitting model. The
chart shows that the RMSE value increases as the prediction
time increases, likely due to external factors that were not
accounted for during the training process.

The location of an area plays a crucial role in the accuracy
of weather predictions. In middle latitudes, weather forecasts
can be made up to two weeks in advance [35], but in tropical
areas, they can only be made up to four days in advance [36].
Long-term forecasting is not reliable as it tends to generate
large errors. A high value of RMSE indicates a significant
error in the prediction. The weather variables of temperature,
maximum temperature, minimum temperature, sea level
atmospheric pressure, and average daily dew point all had low
RMSE values, indicating that they were accurately predicted.

857

It could be due to these variables' lack of significant
fluctuations, particularly over the four days. On the other hand,
the RMSE values for wind flow speed, relative humidity, and
maximum wind speed were higher due to their greater
fluctuation and volatility.

2) Extreme Gradient Boosting (XGBoost): The regression
model using XGBoost with a seven-day history window, 0.73
subsamples, 0.42 colsample_bytree, seven max_depth, 5.76
min_child_weight, 0.038 learning rate, 438 n_estimators, and
0.0028 gammas yielded the optimal hyperparameters found
using Bayesian optimization. Four days of predictions were
made using seven-day of historical data. In contrast to the
GRU method, which can analyze sequential input models, the
XGBoost algorithm predicts using past data as all model
features at once. Large dimensions are susceptible to
dimensionality issues, which refers to the explosive nature of
rising data dimensions and the exponential increase in
computational work required for processing. The RMSE
values for the optimal XGBoost model on the test data are
shown in Fig. 8.

The comparison of the RMSE values between the XGBoost
regressor and the GRU regressor model shows that the
XGBoost model has a smaller average RMSE value of
1.2728125 for all variables compared to the GRU regression
model's value of 1.551666667. It indicates that it performs
better in predicting the test data. Fig. 8 also reveals that the
RMSE value increases as the duration of the forecasted day
increases, and the pattern is similar to the GRU regression
model's RMSE pattern. This could be due to external factors
not being considered during training. Overall, the XGBoost
regressor model is a more effective for predicting weather data
because it only uses seven-day historical data.

Fig. 7 RMSE of GRU regressor over four days

Fig. 8 RMSE of XGBoost regressor over four days

B. Classification Model Testing

This section presents the results of evaluating the
classification models using the GRU sequence classifier and
XGboost classifier algorithms. We compared the performance
of the models by evaluating their scores from May 16, 2019,
to June 30, 2021.

1) Gated Recurrent Unit (GRU): In this case, the sequence
classification model was trained on weather data and was used
to make predictions about the likelihood of rain. It was
optimized by adjusting various parameters, including the time
step, GRU units, number of dense units, and batch size. After
testing different combinations of these parameters, the optimal
model was found to have a batch size of 128, a time step of
two days, and 128 GRU units in the first layer and 64 dense
units in the second layer. Using categorical cross entropy as
the loss function, the model could make binary predictions
about the likelihood of rain. By considering the past two days
of data, the model was able to predict the weather for the
following day accurately. The results of testing this model are
shown in Table 5, where it can be seen that the model achieved
F1 score and an accuracy of 0.88.

Additionally, the model was more successful at predicting
the likelihood of rain (class 1) than the likelihood of no rain
(class 0), as indicated by the higher recall value for class 1. The
false positive and false negative rates were 7.97% and 5.14%,
respectively, indicating that the model was more likely to
predict rain when it was not going to rain. Overall, the
optimized sequence classification model performed well in
predicting the likelihood of rain.

2) Extreme Gradient Boosting (XGBoost): The XGBoost
classifier model achieved optimal hyperparameters using
Bayesian optimization based on the tuning results. These
hyperparameters include a maximum depth of 10, a minimum
child weight of 2.26, a learning rate of 0.097, a number of
estimators of 102, a gamma of 0.85, a subsample of 0.77, a
colsample bytree of 0.50, and a fourteen-day history window.
Table 5 displays the results of the performance metrics test,
which demonstrate that the proposed GRU model outperforms
the XGBoost when applied to test data. The XGBoost model's
accuracy was 0.86, with a weighted average F1-Score of 0.86.
Furthermore, the recall in class 0 (no rain) is lower than in class
1 (rain). The confusion matrix in Fig. 9b has the same spectrum
form as the confusion matrix of the GRU model, which has a
higher false positive rate of 9.54% than a false negative rate of
4.84%.

TABLE V
THE PERFORMANCE OF GRU AND XGBOOST CLASSIFICATION MODEL

Model Class Recall Precision F1 Acc

GRU
Not rain 0.87 0.92

0.88 0.88
Rain 0.89 0.83

XGBoost
Not rain 0.83 0.91

0.86 0.86
Rain 0.89 0.80

858

(a) (b)

Fig. 9 Confusion matrix on test data: (a) GRU; (b) XGBoost

C. Evaluation of Model Performance Using Microcontroller

Observation Data

Before testing the best model with local IoT data, the
sensor values from our device were compared to the data from
the sensors at the BMKG Meteorology Station (Class I,
Juanda). This approach aims to reduce the error margin by
standardizing the sensors' characteristics. The following
differential values were obtained for dew point, sea level
pressure, temperature, and wind flow speed: 0.94; -1.70; -
1.12; -1.48; 1.01. For the next four days, sensor regressions
were predicted using two weeks of data (GRU) and one week
of data (XGBoost). The classification algorithm was then
applied to the predicted sensor data to provide four-day rain
category predictions.

1) Gated Recurrent Unit (GRU): Fig. 10 shows the results
of sensor prediction based on the most reliable regressor
model. The actual data for comparison was collected from the
BMKG Meteorology Station (Class I, Juanda). The actual data
is in orange, while the forecasted data is in yellow. The data
from Fig. 10 can be used to calculate the RMSE and determine
how well the model performs in the implementation phase.
The average RMSE for the predictions of dew point, maximum
temperature, minimum temperature, maximum wind speed,
sea level pressure, temperature, wind flow speed, and humidity
for the next four days is 0.55, 1.78, 3.04, 2.47, 0.57, 1.56, 2.3,
and 5.6, respectively. Since the sea level pressure and dew
point variables varied very little over the four-day test, the
RMSE values for these variables were quite acceptable.

The RMSE for the humidity variable was the highest among
all other variables. The forecasted values for humidity fell
between 77.4 and 83.6, while the actual values were between
82 and 88. The model's forecast values had a smaller range
than the observed data for humidity. The RMSE values were
also relatively high for temperature, minimum, and maximum
temperature, indicating that the forecasted values span a wider
range than the observed data for these variables. Despite this,
the model's forecasts accurately represent the natural
environment's features. In their natural states, temperature and
humidity are inversely related; when temperatures are high,
humidity is often low. The differences in ambient sensor
conditions between the BMKG Meteorology Station (Class I,
Juanda) sensors and the sensors used in this study may be the
reason for the large RMSE results for humidity and other
variables. The meteorological station's temperature and
relative humidity sensors are protected by radiation shields,
which shield them from radiant heat and other environmental
influences.

In this research, the sensors were not protected by radiation
shields, so they were susceptible to interference from wind,
sunshine, and other external factors. Next, we will discuss the

results of the classification model. As shown in Table 6, the
test using local IoT data yielded three accurate predictions and
one incorrect one. The incorrect forecast occurred on June 2,
when the model predicted rain but did not rain. However,
there was a 32.81% increase in the likelihood that it would not
rain on June 2 compared to the previous day.

Additionally, the likelihood of rain on June 3 increased by
9.14% compared to the previous day. The model predicted
rain, but there were only 0.55 millimeters of precipitation. On
June 4, the probability of precipitation decreased by 8.37%,
but the model accurately predicted rainfall of 4 millimeters.
Overall, the accuracy of the prediction system using
microcontroller input data was 0.75 for predicting the next
four days. However, to guarantee the performance of the
sequence model, it is necessary to collect more observational
data, mainly when it is evaluated with local IoT data as model
predictors. The threshold for defining a rain forecast category
can also be calculated using the ROC curve metric by
examining more data results.

2) Extreme Gradient Boosting (XGBoost): This section
discusses the results of testing the XGBoost model using local
IoT data. We will begin by examining the performance of the
multilabel regression model on the original sensor observation
data. Fig. 10 shows a chart of the regression model with seven-
day input leading to four-day output. The orange line in the
graph represents the observed data, while the green line
represents the data predicted by the model. Based on the
evaluation, the RMSE for four-day forecasts of dew point,
maximum temperature, minimum temperature, maximum
wind speed, sea level pressure, temperature, wind flow speed,
and relative humidity was 0.31, 1.81, 1.08, 3.95, 0.37, 1.01,
3.62, and 6.16, respectively. These values were obtained by
using local IoT data as model predictors.

According to this, the RMSE of sea level atmospheric
pressure and the dew point had the lowest RMSE values
compared to other variables, which were less than 1. The
RMSE for all variable values was smaller than the RMSE
obtained by the GRU model, except for humidity, wind flow
speed, maximum wind flow speed, and maximum temperature.
However, when the average RMSE was calculated for all
variables, the RMSE produced by the XGBoost regressor was
2.28, while the RMSE produced by the GRU regressor was
2.23. Although the difference in performance was
insignificant, the XGBoost regression model was more
feasible to implement because it only needed seven days of
history window. In comparison, the GRU model required
fourteen days of history window (time step). More history
windows make the computation slower because the model
must process more predictors as model inputs.

Like the GRU sequence classification model, the XGBoost
classifier method predicted three outcomes correctly and one
incorrectly. The same incorrect forecast occurred on June 2.
Even though there was no actual precipitation on June 2, the
likelihood of rain increased by 20.57% compared to the
previous day. This is worse than the GRU sequence
classification model, which predicted a lower probability of
rain than the previous day. Despite this, the accuracy of the
XGBoost classification model using local IoT data can still be
calculated at 0.75. However, further observation data is
desirable to confirm the accuracy when applied to locally
collected IoT data.

859

TABLE VI
RAIN PROBABILITY AND PRESENT WEATHER USING GRU AND XGBOOST

Date

GRU Probability XGBoost Probability Actual

Not Rain Rain Not Rain Rain Rainfall

June 1 0.18315 0.81684 0.25595 0.74404 13.5 mm

Date

GRU Probability XGBoost Probability Actual

Not Rain Rain Not Rain Rain Rainfall

June 2 0.24325 0.75674 0.10286 0.89713 0 mm
June 3 0.17405 0.82594 0.10438 0.89561 0.55 mm
June 4 0.21837 0.78162 0.07185 0.92814 4 mm

Fig. 10 Forecasting value from June 1, 2022, through June 4, 2022, using GRU and XGBoost

IV. CONCLUSION
The research compares the performance of two methods,

GRU and XGBoost, for forecasting weather data over the next
four days. We used GridSearchCV and Bayesian optimization
to tune the models. The multilabel XGBoost sensor regression
model outperformed the GRU model overall, with an average

RMSE of 1.2728125 compared to the GRU model's
1.551666667. However, when evaluated with local IoT data,
the GRU regression model performed better, with an RMSE
of 2.23 compared to XGBoost's 2.28.

We also proposed a rainfall classification model, where the
GRU model had a weighted F1 score of 0.88 and an accuracy
of 0.88. The XGBoost model had a weighted F1 score of 0.86

860

and an accuracy of 0.86. When tested with microcontroller
data from local IoT devices, the GRU model performed better
because it could use context to make more accurate
predictions about the likelihood of rain. However, we plan to
improve future research by using more local IoT data and data
from other weather sensors, such as UV and wind direction
sensors.

ACKNOWLEDGMENT

We thank the BMKG Class I Juanda Meteorological
Station for permitting us to calibrate our weather sensors
using their station's equipment. We also appreciate the
support of the Directorate General of DIKTI RISTEK through
their PKM 2022 program, which provided funding for this
research.

REFERENCES
[1] M. G. Schultz et al., “Can deep learning beat numerical weather

prediction?,” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, vol. 379, no. 2194.
Royal Society Publishing, Apr. 05, 2021. doi: 10.1098/rsta.2020.0097.

[2] S. F. Tekin, O. Karaahmetoglu, F. Ilhan, I. Balaban, and S. S. Kozat,
“Spatio-temporal weather forecasting and attention mechanism on
convolutional LSTMs,” ArXiv, Feb. 2021, doi:
10.48550/ARXIV.2102.00696.

[3] D. Munandar, “Multilayer perceptron (MLP) and autoregressive
integrated moving average (ARIMA) models in multivariate input
time series data: solar irradiance forecasting,” International Journal

on Advanced Science Engineering Information Technology, vol. 9, no.
1, 2019, doi: 10.18517/ijaseit.9.1.6426.

[4] G. Chen, S. Liu, and F. Jiang, “Daily weather forecasting based on
deep learning model: A case study of Shenzhen city, China,”
Atmosphere (Basel), vol. 13, no. 8, Aug. 2022, doi:
10.3390/atmos13081208.

[5] X. Chen, Y. Liu, Y. Shen, K. Zhang, and H. Wei, “A data interpolation
method for missing irradiance data of photovoltaic power station,” in
2020 Chinese Automation Congress (CAC), Nov. 2020, pp. 4735–
4740. doi: 10.1109/CAC51589.2020.9326730.

[6] M. Chhetri, S. Kumar, P. P. Roy, and B. G. Kim, “Deep BLSTM-GRU
model for monthly rainfall prediction: A case study of Simtokha,
Bhutan,” Remote Sens (Basel), vol. 12, no. 19, pp. 1–13, Oct. 2020,
doi: 10.3390/rs12193174.

[7] T. E. Putra, Husaini, D. Asrina, and M. Dirhamsyah, “The ability of
the fast fourier transform to de-noise a strain signal,” in IOP

Conference Series: Materials Science and Engineering, Oct. 2020,
vol. 931, no. 1. doi: 10.1088/1757-899X/931/1/012011.

[8] A. González-Díez, J. A. Barreda-Argüeso, L. Rodríguez-Rodríguez,
and J. Fernández-Lozano, “The use of filters based on the Fast Fourier
Transform applied to DEMs for the objective mapping of karstic
features,” Geomorphology, vol. 385, Jul. 2021, doi:
10.1016/j.geomorph.2021.107724.

[9] S. U. Khan, M. H. Siddiqi, and Y. Alhwaiti, “Signal-to-noise ratio
comparison of several filters against Phantom image,” J Healthc Eng,
vol. 2022, p. 4724342, 2022, doi: 10.1155/2022/4724342.

[10] P. Bellavista, A. Corradi, and C. Giannelli, “Evaluating filtering
strategies for decentralized handover prediction in the wireless
internet,” in 11th IEEE Symposium on Computers and

Communications (ISCC’06), 2006, pp. 167–174. doi:
10.1109/ISCC.2006.70.

[11] H. Darmawan, M. Yuliana, and Moch. Z. S. Hadi, “Real-time weather
prediction system using GRU with daily surface observation data from
IoT,” in 2022 International Electronics Symposium (IES), 2022, pp.
221–226. doi: 10.1109/IES55876.2022.9888468.

[12] M. Steininger, K. Kobs, P. Davidson, A. Krause, and A. Hotho,
“Density-based weighting for imbalanced regression,” Mach Learn,
vol. 110, no. 8, pp. 2187–2211, Aug. 2021, doi: 10.1007/s10994-021-
06023-5.

[13] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with
class imbalance,” J Big Data, vol. 6, no. 1, Dec. 2019, doi:
10.1186/s40537-019-0192-5.

[14] H. Patel, D. Singh Rajput, G. Thippa Reddy, C. Iwendi, A. Kashif
Bashir, and O. Jo, “A review on classification of imbalanced data for
wireless sensor networks,” International Journal of Distributed Sensor

Networks, vol. 16, no. 4. SAGE Publications Ltd, Apr. 01, 2020. doi:
10.1177/1550147720916404.

[15] P. Zhang, Y. Jia, and Y. Shang, “Research and application of XGBoost
in imbalanced data,” Int J Distrib Sens Netw, vol. 18, no. 6, Jun. 2022,
doi: 10.1177/15501329221106935.

[16] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization
techniques in training DNNs: Methodology, analysis and application,”
Sep. 2020, doi: 10.48550/arXiv.2009.12836.

[17] G. Aksu, C. O. Güzeller, and M. T. Eser, “The effect of the
normalization method used in different sample sizes on the success of
artificial neural network model,” International Journal of Assessment

Tools in Education, pp. 170–192, Apr. 2019, doi:
10.21449/ijate.479404.

[18] X. Zhou, J. Xu, P. Zeng, and X. Meng, “Air pollutant concentration
prediction based on GRU method,” in Journal of Physics: Conference

Series, Mar. 2019, vol. 1168, no. 3. doi: 10.1088/1742-
6596/1168/3/032058.

[19] R. G. S. K., A. Kumar Verma, and S. Radhika, “K-nearest neighbors
and grid search cv based real time fault monitoring system for
industries,” in 2019 5th International Conference for Convergence in

Technology (I2CT), 2019, pp. 1–5.
[20] I. S. Isa, M. S. A. Rosli, U. K. Yusof, M. I. F. Maruzuki, and S. N.

Sulaiman, “Optimizing the hyperparameter tuning of YOLOv5 for
underwater detection,” IEEE Access, vol. 10, pp. 52818–52831, 2022,
doi: 10.1109/ACCESS.2022.3174583.

[21] K. Nakamura, B. Derbel, K. J. Won, and B. W. Hong, “Learning-rate
annealing methods for deep neural networks,” Electronics

(Switzerland), vol. 10, no. 16, Aug. 2021, doi:
10.3390/electronics10162029.

[22] K. Mukherjee, A. Khare, and A. Verma, “A simple dynamic learning
rate tuning algorithm for automated training of DNNs,” ArXiv, Oct.
2019, doi: 10.48550/ARXIV.1910.11605.

[23] P. Cu Thi, J. E. Ball, and N. H. Dao, “Early stopping technique using
a genetic algorithm for calibration of an urban runoff model,”
International Journal of River Basin Management, 2021, doi:
10.1080/15715124.2021.1910517.

[24] A. Ibrahem Ahmed Osman, A. Najah Ahmed, M. F. Chow, Y. Feng
Huang, and A. El-Shafie, “Extreme gradient boosting (Xgboost)
model to predict the groundwater levels in Selangor Malaysia,” Ain

Shams Engineering Journal, vol. 12, no. 2, pp. 1545–1556, Jun. 2021,
doi: 10.1016/j.asej.2020.11.011.

[25] M. Miranda, K. Valeriano, and J. Sulla-Torres, “A detailed study on
the choice of hyperparameters for transfer learning in covid-19 image
datasets using Bayesian optimization,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 4, pp. 327–
335, 2021, doi: 10.14569/IJACSA.2021.0120441.

[26] Q. Liang et al., “Benchmarking the performance of Bayesian
optimization across multiple experimental materials science domains,”
NPJ Comput Mater, vol. 7, no. 1, Dec. 2021, doi: 10.1038/s41524-
021-00656-9.

[27] M. Alizamir et al., “Advanced machine learning model for better
prediction accuracy of soil temperature at different depths,” PLoS One,
vol. 15, no. 4, Apr. 2020, doi: 10.1371/journal.pone.0231055.

[28] C. Esposito, G. A. Landrum, N. Schneider, N. Stiefl, and S. Riniker,
“GHOST: Adjusting the decision threshold to handle imbalanced data
in machine learning,” J Chem Inf Model, vol. 61, no. 6, pp. 2623–2640,
Jun. 2021, doi: 10.1021/acs.jcim.1c00160.

[29] I. M. de Diego, A. R. Redondo, R. R. Fernández, J. Navarro, and J. M.
Moguerza, “General performance score for classification problems,”
Applied Intelligence, vol. 52, no. 10, pp. 12049–12063, Aug. 2022,
doi: 10.1007/s10489-021-03041-7.

[30] P. Foltýnek, M. Babiuch, and P. Šuránek, “Measurement and data
processing from Internet of Things modules by dual-core application
using ESP32 board,” Measurement and Control (United Kingdom),
vol. 52, no. 7–8, pp. 970–984, Sep. 2019, doi:
10.1177/0020294019857748.

[31] Y. S. Mandza and A. Raji, “IoTivity cloud-enabled platform for energy
management applications,” IoT, vol. 3, no. 1, pp. 73–90, Dec. 2021,
doi: 10.3390/iot3010004.

[32] D. S. Anindya, M. Yuliana, and Moch. Z. S. Hadi, “IoT based climate
prediction system using long short-term memory (LSTM) algorithm as
part of smart farming 4.0,” in 2022 International Electronics

Symposium (IES), 2022, pp. 255–260. doi:
10.1109/IES55876.2022.9888486.

861

[33] M. Ohyver, J. v. Moniaga, I. Sungkawa, B. E. Subagyo, and I. A.
Chandra, “The comparison firebase real-time database and MySQL
database performance using wilcoxon signed-rank test,” in Procedia

Computer Science, 2019, vol. 157, pp. 396–405. doi:
10.1016/j.procs.2019.08.231.

[34] T. O. Hodson, “Root mean square error (RMSE) or mean absolute
error (MAE): when to use them or not,” Geosci Model Dev, vol. 15,
no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-2022-64.

[35] F. Zhang et al., “What is the predictability limit of midlatitude
weather?” J Atmos Sci, vol. 76, no. 4, pp. 1077–1091, 2019, doi:
10.1175/JAS-D-18-0269.1.

[36] H. Zhu, M. C. Wheeler, A. H. Sobel, and D. Hudson, “Seamless
precipitation prediction skill in the tropics and extratropics from a
global model,” Mon Weather Rev, vol. 142, no. 4, pp. 1556–1569,
2014, doi: 10.1175/MWR-D-13-00222.1.

862

