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Abstract— Weather is essential to human life, but it is difficult to forecast due to its diverse nature. We evaluated and compared the 

accuracy of two machine learning algorithms, GRU and XGBoost, in predicting weather patterns. We used GridSearchCV to tune the 

hyperparameters for the GRU algorithm and Bayesian optimization for the XGBoost algorithm. We used regression to predict weather 

sensor data and classification to predict rainfall in the following four days. We then deployed the best-performing model to the cloud 

server and connected it to the local IoT device with weather sensors in Sedati, Sidoarjo Regency, Indonesia. We conducted tests using 

data from the BMKG Juanda Sidoarjo and data from the local IoT device. The findings indicated that the XGBoost regression model 

outperformed the GRU model in the first stage, with an average RMSE of 1.2728125. In comparison, the average RMSE for GRU 

regression was 1.551666667. In the second stage, however, GRU regression performed better, with an average RMSE of 2.23, while the 

XGBoost regression had 2.28. In the classification tests, the GRU model had a higher F1 score of 0.88 in the first stage, while the 

XGBoost classification was 0.86. Both models had the same accuracy of 0.75 when tested with IoT data. However, the GRU classification 

model was better since it considered the context of the prediction, resulting in a lower likelihood of rain when it was not raining.  
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I. INTRODUCTION

Accurate weather prediction is essential for many 
industries and activities, including agriculture, tourism, 
aviation, and transportation. Weather data is collected using 
observations, sensors, radar, and satellites from 
meteorological stations. The Meteorology, Climatology, and 
Geophysics Agency's current method for developing weather 
forecasts is called Numerical Weather Prediction (NWP) [1]. 
This method requires several factors, mathematical 
assumptions, and complex equations, and it requires a 
thorough understanding of atmospheric dynamics and 
calculations with many variables and data sets. The 
development of modern computer hardware has made 
advances in numerical weather forecasting. The potential for 
improving weather modeling techniques exists thanks to the 
availability of large amounts of data and technological 
advances. We can gain new insights and potentially enhance 
the existing weather modeling methods by utilizing a deep 
learning approach using decades of weather observation 

records. However, a large amount of weather and climate data 
complicates its analysis.  

Researchers have developed a new modeling approach 
using machine learning that has many benefits over traditional 
methods. Unlike physical models or numerical weather 
prediction, machine learning models can provide results in 
seconds and offer accurate forecasts at a lower cost [2]. The 
purpose of the machine learning approach can be divided into 
two categories: description and prediction. A descriptive 
function examines the dynamics of data collection to extract 
meaningful characteristics. On the other hand, the predictive 
function looks for patterns in the data that can be used to 
estimate future outcomes using the variables in the data. 
These patterns are then used to forecast variables that have not 
yet been observed. Training and testing data are required for 
modeling using a machine-learning algorithm.  

This study used 20.5 years of data from the BMKG 
Meteorology Station (Class I, Juanda) in Indonesia. There 
were issues with the data, including missing values and 
outliers. These issues may have resulted from data processing 
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issues, data entry mistakes, climatic anomalies, or sensor 
errors. Therefore, before training the model, it is essential to 
perform various data preparation steps, such as filling in 
missing values (interpolation), data cleansing, transformation, 
and standardization or normalization. 

Munandar [3] has used multivariate time series input data 
using the ARIMA and MLP methods for weather forecasting 
with solar irradiance targets. MLP regression model single-
day output prediction using a multilayer perceptron window 
method model with data from 3 and 7 days before. In order to 
predict future data, the ARIMA model considers parameters 
such as moving average, autoregressive, and data set features. 
The researchers tested two models and found that the MLP 
model using deep learning was more effective than the 
ARIMA model. 

Chen et al. [4] have studied the weather prediction of 
average wind speed, average atmospheric pressure, daily 
minimum and maximum temperature, relative humidity, and 
temperature in Shenzhen, China. The researchers employ a 
fusion model based on LSTM. The method of filtering the 
correlation coefficients of the components of each variable 
decomposed by EMD and then recombining the data into an 
LSTM network maximizes the benefits of EMD in 
decomposing non-stationary data with seasonal trends. It 
minimizes the impact of data noise and seasonal fluctuations. 
The researchers employ a grid search approach for tuning the 
hyperparameters. 

Our proposed research builds on previous work in which 
we developed a model using Internet of Things technology. 
This study used a server-side API endpoint to integrate the 
models deployed on the cloud server with the ESP32 
microcontroller. The ESP32 microcontroller was equipped 
with several sensors to measure meteorological conditions. 
The prediction model used the data collected from these 
sensors as input. We also created a web-based surveillance 
system for this project to allow users to monitor the weather 
in near real-time and view the weather forecast. 

II. MATERIALS AND METHODS 
The model development technique used for weather 

prediction is discussed in this section. Observations of 
weather at the surface were used to generate forecasts. We 

proposed two methods: the first used the GRU algorithm, and 
the second used the XGBoost algorithm. Each algorithm 
consists of a regression model and a classification model. In 
this study, we proposed four models consisting of two 
regression models and two classification models. The 
regression models were used to predict meteorological 
element data, including Maximum Temperature (MAX), 
Minimum Temperature (MIN), Maximum Wind Speed 
(MXWS), Daily Average Temperature (TEMP), Wind 
Current Speed (WS), Humidity (RH), Sea Level Atmospheric 
Pressure (SLP), and Dew Point Temperature (DP).  

The classification models were used to classify rainfall 
prediction (PRCP) for the following four days. We evaluated 
these models to determine the most reliable models for 
regression and classification. A locally deployed Internet of 
Things (IoT) device was used to collect data as inputs for the 
most reliable models to provide a comprehensive weather 
forecasting system. An ESP32 microcontroller was connected 
to BME280, an anemometer, and rain gauge sensors to collect 
weather data. The server received this data, which was used 
as input for the prediction model. Since we were not using 
multilabel classification in this research, the regression model 
was used to predict the values input into the classification 
model for the next few days. The models were trained using 
historical weather data to provide future forecasts. The 
hyperparameters of the GRU algorithm were tuned using the 
GridSearchCV method, while the XGBoost algorithm was 
tuned using Bayesian optimization. 

A. Research Methodology 
The proposed study comprises three main stages, as shown 

in Fig. 1. The first stage is data preparation, which involves 
collecting data sets and pre-processing the data. Data pre-
processing includes interpolation, treating outlier values, 
filtering data using Fast Fourier Transform (FFT), 
transforming data, and normalizing data. The second stage is 
modeling with two algorithms, GRU and XGBoost. The 
hyperparameters of these models need to be tuned to achieve 
the best performance and accuracy using GridSearchCV and 
Bayesian optimization. The results are then analyzed and 
evaluated. The third stage is implementing and integrating the 
best model with a local IoT device. 

 
Fig. 1  Research methodology 
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B. Collecting Data 
The models were trained using data from the BMKG 

Meteorology Station (Class I, Juanda) in Sidoarjo Regency, 
Indonesia. The National Climatic Data Center (NCDC) is an 
institution that gathers and maintains weather data from 
airport weather stations worldwide, which is made available 
for download. We used relevant variables from the raw data 
as input variables for the model, considering the availability 
of sensors. The data collected between January 2000 and June 
2021 was divided into sets for testing and training.  

Fig. 2 shows the descriptive statistics of the raw data. The 
first quartile (Q1) includes data points that are less than 25% 
of the total, the second quartile (Q2) includes data points that 
are less than 50% of the total, and the third quartile (Q3) 
includes data points that are less than 75% of the total, 
arranged in ascending order. Fig. 2 shows that the minimum 
and maximum values are significantly different from the 
values in the first quartile (Q1), the middle quartile (Q2), and 
the third quartile (Q3). A significant difference between 
quartiles and minimum-maximum values may indicate 
skewed data. There may also be outliers in the data. 
Histograms and boxplots were also used to further check for 
suspected outliers. Another issue with the dataset is missing 
values, which were addressed in the data interpolation stage 
by adding new data points. 

 

 
Fig. 2  Descriptive statistics of raw data 

C. Pre-Processing Data 
The quality of the output of a system, such as a machine 

learning model, is directly related to the quality of the input 
data. The "garbage in, garbage out" principle states that if the 
input data is of poor quality, the resulting output will also be 
of poor quality. It is crucial to ensure that the input data is high 
quality to build a reliable and accurate model. The raw data 
provided by the NCDC had some anomalies and missing 
values, so we performed pre-processing to clean the data, as 
shown in Fig. 1. By performing pre-processing, we can 
improve the quality of the input data and increase the accuracy 
of the resulting model.  

1) Interpolating Data: Data interpolation is a method for 
filling in missing data points by estimating values based on 
existing samples. This research employed means imputation, 
an interpolation using statistical method [5]. Missing data 
points are replaced with the average value from the same day 

in other years [6]. For example, if the sea level pressure record 
for October 1, 2021, is missing, it would be replaced with the 
average sea level pressure from prior years. 

2) Treating Outlier: A value much smaller or larger than 
the rest of the data is called an extreme point or outlier. A 
boxplot is a helpful plot for visualizing data distribution based 
on five essential calculations: the lowest value, Q1, Q2, Q3, 
and the highest value. We used boxplots for each variable to 
identify outliers. The upper and lower bounds of the data set 
were used to define the cutoff point, as shown by the boxplot. 

3) Filtering Data: FFT is a technique that converts data 
from the spatial or time domain into the frequency domain [7], 
[8]. It uses a complex exponential function to break the data 
into component frequencies. In contrast, Inverse Fast Fourier 
Transform (IFFT) transforms data from the frequency domain 
back into the spatial or time domain. The FFT equation for X(f) 
of x(t) in continuous time is shown in (1). 

 ���� � �  �
	� 
��� ⋅ 
	������� (1) 

The IFFT equation is written in (2): 

 ���� � �  �
	� 
��� ⋅ 
������� (2) 

The FFT filter technique converts the data into the 
frequency domain, reduces or amplifies high frequencies 
(acting as a low pass filter), and then inverts the filtered result 
using the IFFT method [9]. This filtering step helps to reduce 
high-point fluctuations, to improve the model's performance. 
By removing noise from the data, the model can more easily 
identify underlying patterns and trends, leading to better 
results [10]. This research used a window size (N) of eight to 
filter the variables, and a two-point sample was taken from the 
FFT (M) retained value. Fig. 3 shows the distribution of plots 
after the pre-processing data phase. 

4) Transforming Data: In this step, continuous rainfall 
data was converted into two categories: no rain (class 0) and 
rain (class 1). If a rainfall data point was more significant than 
0.5 mm, it was labeled as part of the rain class [11]. However, 
the data used in this research was unbalanced, meaning that 
some classes occurred less often than others. It can cause the 
model to be biased and perform better for frequent classes than 
for unusual ones [12]. Several solutions to the imbalanced data 
issue include SMOTE [13]. In this research, we did not use 
SMOTE to handle imbalanced classes because it produces 
unrealistic sequences for time series data, which does not 
improve model performance. Instead, we used a weight 
penalty to address the imbalanced data. It assigns a lower 
weight to the class with more labels and a higher weight with 
fewer labels. The classification model naturally gives more 
weight to the class with more labels, so we needed to weight 
the loss function to counteract this bias. The formula for 
estimating penalty weight is shown (3): 

 
n_total_samples

n_class_samples * frequency_each_element (3) 
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Fig. 3  Distribution plot after pre-processing data 

 

Fig. 4 shows the calculated weights for each class, where 
the weight is inversely related to the frequency of the data 
[14]. These weight penalties were only applied to the GRU 
model classification because the XGBoost model can handle 
imbalanced data without customization. However, using a 
sampling technique may improve the performance of the 
XGBoost algorithm [15].  

 
Fig. 4  Weighting value estimation for each class 

5) Normalizing Data: Normalizing the data ensured that 
all the features were on the same scale, which helped the model 
learn more effectively. Data normalization helps the model to 
converge faster and produce better results [16]. In this study, a 
minimum-maximum scaler was used for data rescaling. The 
normalization procedure yields data ranging from 0 to +1 by 
scaling each feature [17]. The minimum-maximum equation is 
given by (4): 

 �i_new� Xi - min�Xi�
 max�Xi�- min�Xi� (4) 

D. Modeling 

This study used the GRU and XGBoost models for weather 
prediction. The GRU model is based on recurrent neural 
networks, while XGBoost is a boosting algorithm that uses 
decision trees as its base learners. We evaluated the 
performance of both models by tuning their hyperparameters 
and comparing their results.  

1) Gated Recurrent Unit (GRU) Algorithm: GRU is a type 
of recurrent neural network that can be used to improve the 
performance of vanilla Recurrent Neural Networks (RNN) in 
predictive modeling tasks. Unlike vanilla RNN, which often 
suffers from vanishing gradient issues, GRU uses the update 
and reset gates to prevent vanishing gradients. These gates give 
GRU a more stable architecture with many hidden layers, 
improving model performance. The equations are shown in 
(5)-(8). 

 ,� � -�./
� 0 1/ℎ�	3 0 4/� (5) 

 5� � -�.6
� 0 16ℎ�	3 0 46� (6) 

 7� � tanh �.
� 0 1�5� ∘ ℎ�	3� 0 4� (7) 

 ℎ� � ,� ∘ ℎ�	3 0 �1 : ,�� ∘ 7� (8) 
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Where σ is the sigmoid activation function, Wu, Bu, Wr, and 
Br are weight matrices and bias vectors for the update and 
reset gates, xt is the input at time step t, and h(t-1) is the hidden 
state at the previous time step. The update (ut) and reset gate 
(rt) control the flow of information in the GRU, allowing it to 
retain or forget information from previous time steps as 
needed. The hidden state candidate (ct) is used to generate the 
hidden state (ht), with the result of the update gate calculation 
being used to control the effect of the previous hidden state 
on the hidden state candidate. This method helps the GRU 
model learn and make accurate predictions [18]. To prepare 
the data for training with a GRU model, we first rearranged it 
into three-dimensional forms compatible with the GRU 
compliance layer. The input layer's three-dimensional forms 
consist of data samples, the number of time steps, and 
dimensions. Each pattern represents a single sample of data, 
one measurement point within the sample represents one 
historical window (time step), and each feature represents a 
measurement point within the time step. It allowed us to train 
the GRU model on the pre-processed data [6].  

Hyperparameters in machine learning algorithms affect 
model performance. Tuning hyperparameters can improve 
prediction accuracy for specific datasets. This study examined 
the effects of different time-step periods, including two, 
seven, fourteen, and twenty-one days. GridSearchCV was 
used to find the optimal hyperparameters for the regression 
model. The GridSearchCV method for tuning 
hyperparameters generates and assesses the model for each 
pair of the provided hyperparameters [19]. Table 1 and Table 
2 present the hyperparameter values of the regression and 
classification models using GRU, along with the results that 
show which hyperparameters were the most reliable. 

TABLE I 
HYPERPARAMETERS FOR GRU REGRESSION MODEL 

Hyperparameter Range of Values Best Value 

Time step 2; 7; 14; 21 14 
Bidirectional 
GRU units on 
layer 1 

16; 32; 64; 128; 256; 512 16 

Dense units on 
layer 2 

16; 32; 64; 128; 256; 512 512 

Batch size 16; 32; 64; 128; 256; 512 128 

TABLE II 
HYPERPARAMETERS FOR GRU CLASSIFICATION MODEL 

Hyperparameter Range of Values Best Value 

Time step 2; 7; 14; 21 2 
GRU units on 
layer 1 

16; 32; 64; 128; 256 128 

Dense units on 
layer 2 

16; 32; 64; 128; 256 64 

Batch size 16; 32; 64; 128; 256 128 
 

In order to optimize the hyperparameters for the rain 
category prediction, we manually varied the time step, GRU, 
Dense units on the hidden layer, and the batch size number. 
We evaluated the impact on the model performance. The 
adjustments were made one at a time, and the results from the 
most successful iteration were used to tune the 
hyperparameters for the next iteration. This process was 
repeated until the optimal hyperparameters were found.  

We first defined the model architecture to build the GRU 
models and then used optimization algorithms and loss 

functions. The regression model was compiled using mean 
squared loss, while sequence classification model used 
categorical cross-entropy loss. Loss functions measure how 
much actual results differ from predicted results. 
Backpropagation through time is used to adjust the weights 
and biases in the GRU model to reduce the cost incurred 
during training.  

The optimization algorithm repeatedly adjusts the network 
weights based on the training data. In this study, we used the 
adaptive optimization Adam because the default settings are 
usually practical. We also used a reduced learning rate on 
plateau function with a starting learning rate 0.001 [20]. A 
large learning rate is desirable at the beginning of training 
because it can lead to a higher generalization effect. If the 
metrics are not improving during training, slowing the 
learning rate can help the algorithm find an optimal solution 
and avoid oscillations around that solution [21]. If the metrics 
show no improvement after a predetermined number of 
epochs, we use the ReduceLROnPlateau callback to reduce 
the learning rate [22]. We also used early stopping to prevent 
overfitting by stopping the training process if the validation 
loss increases significantly. We can determine the optimal 
number of epochs by early stopping because the training 
process will automatically stop at a certain epoch [23]. 
Finally, we saved the best weights during training using the 
ModelCheckPoint callback, which was then used for 
deployment. 

2) Extreme Gradient Boosting (XGBoost) Algorithm: 
XGBoost is a popular machine-learning algorithm often used 
for regression and classification tasks [24]. It is an ensemble 
learning method that combines the predictions of multiple 
weak models to create a more accurate final model. XGBoost 
uses decision trees as its base learners and trains them in an 
iterative process to improve the model's overall performance. 
Combining multiple weak models to create a more robust 
model is known as gradient boosting. This method allows 
XGBoost to produce highly accurate predictions, making it a 
popular choice for many machine-learning applications. 
During each iteration, the error residuals from the preceding 
model are used to fit the subsequent model. The final 
prediction is derived by a weighted summation of all the 
individual tree predictions. The XGBoost algorithm may be 
thought of as an additive model that is made up of K CART 
trees, ���
;� is a representation of the predicted value that may 
be produced by feeding the i-th sample xi into the t-th tree, <=; 
is a representation of the prediction outcome of xi, and F is the 
set space containing all the regression trees [15]. The final 
prediction result formula is given by (9): 

 <=; � ∑  ?�@3 ���
;�, �� ∈ C (9) 

The objective function (loss function and regularization) at 
iteration t that has to be minimized is as follows (10): 

 ℒ��� � ∑  E;@3 F G<; , <=;
��	3� 0 ���x;�H 0 Ω��� � (10) 

The XGBoost model's hyperparameters were optimized 
using the Bayesian optimization method. This approach is 
more efficient than traditional search methods, such as 
random and grid searches, because it uses a probabilistic 
model to optimize the process [25]. Bayesian optimization 
uses Bayes' theorem to search global optimization problems 
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efficiently [26]. Bayesian optimization involves iteratively 
searching for the hyperparameters that minimize the objective 
loss function, using a surrogate function to represent the 
objective and an acquisition function to guide the search. This 
method can also reduce computational costs compared to grid 
search. The optimum hyperparameter values for multilabel 
regression using XGBoost are shown in Table 3. Determining 
the range of samples hyperparameters for the classification 
model on Bayesian optimization processes follows the same 
pattern as determining the range of samples for the regression 
model. Table 4 presents the optimal hyperparameter values 
for the XGBoost classifier, as determined by the Bayesian 
optimization method. 

TABLE III 
HYPERPARAMETERS FOR XGBOOST REGRESSION MODEL 

Hyperparameter Range of Values Best Value 

History window 2; 7; 14; 21 7 
subsample Uniform(0.6, 1) 0.72823302704416 
colsample_bytree Uniform(0.3, 1) 0.42000701842358 
max_depth Randint(4, 11) 7 
min_child_weight Uniform(0, 10) 5.76455502635815 
learning_rate Uniform(0.01, 0.3) 0.03816683337691 
n_estimators Randint(100, 500) 438 
gamma Uniform(0, 2.5) 0.00277475809094 

TABLE IV 
HYPERPARAMETERS FOR XGBOOST CLASSIFICATION MODEL 

Hyperparameter Range of Values Best Value 

History window 2; 7; 14; 21 14 
subsample Uniform(0.6, 1) 0.76743448256266 
colsample_bytree Uniform(0.3, 1) 0.50282874177672 
max_depth Randint(4, 11) 10 
min_child_weight Uniform(0, 10) 2.26328971561941 
learning_rate Uniform(0.01, 0.3) 0.09731752061633 
n_estimators Randint(100, 500) 102 
gamma Uniform(0, 2.5) 0.81687404301826 

The hyperparameters of the XGBoost model were 
optimized using Bayesian optimization. It involved searching 
for the optimal values of the hyperparameters using one 
hundred assessments of different models for each historical 
window value (the number of past observations used as 
features). The Parzen estimators search technique was used to 
minimize the objective function for the regression and 
classification models. For the regression model, the objective 
function was the mean squared loss, while for the 
classification model, it was the negative accuracy. By 
minimizing these objective functions, we can improve the 
performance of the models and achieve better results. The 
hyperparameters obtained from Bayesian optimization show 
that the XGBoost model for classification is more complex 
than the regression model. The large value of depth of each 
tree, referred to as max_depth, makes the XGBoost model 
more complex. To prevent overfitting due to the increased 
complexity of the XGBoost model, we can adjust the values 
of two hyperparameters: min child weight and gamma. Min 
child weight is the minimum sum of instance weight in each 
leaf node, while gamma is the minimum loss reduction to 
produce a split. By increasing the values of these 
hyperparameters, we can lower the complexity of the model 
and prevent it from overfitting to the training data. It can 
improve the model's performance and help it generalize better 
to unseen data. Setting the ratio of features used, referred to 

as colsample_bytree, and the ratio of training instances, 
referred to as subsample, to a modest number also can reduce 
model complexity. Tables 3 and 4 also show that the 
regression model has more boosted trees, or n estimators, than 
the classification model. The learning rate of the XGBoost 
model was set to a constant value; when this value decreases, 
the computation becomes slower but sometimes yields the 
best optimum solution. The model was trained using the 
optimal hyperparameter values after the tuning process. 
Eighty percent of the tabular weather history data were used 
for training the model and twenty percent for testing. The 
gradient boosting tree technique is used, where XGBoost uses 
predictors sequentially and models them based on their 
predecessors' errors to assign greater weight to better-
performing predictors. The XGBoost model is trained in three 
stages: raw data, residuals from the previous model, and the 
sum of the previous models. 

E. Evaluation Metrics

To evaluate the performance of the models, we used several
metrics. One of these metrics is the Root Mean Square Error 
(RMSE), a commonly used measure for regression models 
[27]. A smaller RMSE value indicates that the model's 
predictions are closer to the actual values and therefore have 
better performance. It calculates the average squared 
difference between the predicted values and the true values 
and takes the square root of the result as shown in (11): 

JKLM � N∑  OPQR �SP	S=P�T
U (11) 

We compare the predicted values with the original labels to 
evaluate the performance of the classification model, which 
allows us to determine the extent to which the model can 
accurately predict the correct class for each data point [14]. 
We used a variety of metrics to assess the model's 
performance, including a confusion matrix, accuracy, recall, 
precision, and F1. A confusion matrix is a tabular 
representation of possible pairs of predicted and observed 
values [28]. The matrix consists of four possible outcomes: 
True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN). The formulae for classification 
model evaluations can be found given in (12)-(15) [29]. 

V77,5W7< �  XUYXZ
XUYXZY[ZY[U (12) 

\5
7]^]_` �  XZ
[ZYXZ (13) 

J
7WFF �  XZ
[UYXZ (14) 

C1 �   2 ×Recall × Precision 
 Recall Y Precision  (15) 

F. Microcontroller and Model Deployment

After selecting the most accurate model, the next step was
integrating it with a local IoT device and other components 
into a complete system. The integrated system allowed for the 
automatic processing of weather predictions and providing 
them to users through the application shown in Fig. 5. The 
sensors connected to an ESP32 microcontroller include a rain 
gauge, an anemometer, and a BME280. These sensors provide 
data on rain, wind, sea level atmospheric pressure, 
temperature, dew point, and relative humidity. The schematic 
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diagram of the microcontroller and sensors used in this 
research can be seen in Fig. 6. The ESP32 chip includes 
various communication interfaces such as Wi-Fi, Bluetooth, 
SPI, and I2C/UART. The availability of two separate 
processing cores is a significant advantage of the ESP32 chip 
[30]. In this project, ESP32 was used in dual-core mode, with 
the first core running the rain gauge sensor function and the 
second core running the anemometer and BME280 sensor 
functions. This separation of cores was implemented to 
eliminate delays in reading the rain gauge sensor and improve 
the overall performance.  
 

 

 

Fig. 5  Display of the website-based application 
 

 
Fig. 6  Microcontroller and sensor schematic diagram 

 

The weather data JSON was posted to the API endpoint via 
HTTP every minute using Wi-Fi [31]. The API, developed 
using Python Flask, then connected to the database and 
performed the necessary prediction processes. After receiving 
the data, the data was stored in MySQL (a relational database) 
and Google's Firebase Real-time Database [32]. The Firebase 
Real-time Database (a NoSQL database) was used to store the 
information provided by the website-based application, as it 
allows for immediate updates to the data in the application 
when it is changed [33]. Meanwhile, MySQL maintained a 
record of all sensor readings necessary for weather 
forecasting, and we used a query program to retrieve the data. 
The server then fetched the data from MySQL for a certain 
number of time steps, which were used as predictors for the 
prediction model. The average value of a day's sensor 
readings was calculated and used as input for the model at 

23:59 WIB. These values were then used to generate the 
output predictions.  

III.  RESULT AND DISCUSSION 
The model's accuracy was evaluated by comparing its 

predicted outcomes to the labeled data. The RMSE value was 
calculated to determine the regression model's effectiveness. 
A lower RMSE value indicates that the model's predictions 
are closer to the actual data, with a zero-value representing 
perfect accuracy. RMSE is commonly used in weather 
modeling, air quality studies, and climate studies to measure 
the accuracy of regression models [34]. The evaluation of the 
classification model is performed separately due to the 
categorical nature of its predictions. We used a variety of 
metrics, including the confusion matrix, accuracy, recall, 
precision, and F1, to assess the model's performance. We can 
determine the model's ability to accurately predict the 
different classes by analyzing these metrics. Overall, the 
evaluation of both the regression and classification models 
allows us to determine the effectiveness of the proposed 
model in predicting weather data.  

A. Multi-Step Regression Model Testing With a 4-Day Lead 

Time 
This section will present the results of evaluating the tuned 

model using the Root Mean Squared Error (RMSE) test. The 
GRU and XGBoost models could forecast the values of 
various weather parameters, including dew point, maximum 
temperature, minimum temperature, maximum wind flow 
speed, sea level atmospheric pressure, temperature, wind flow 
speed, and relative humidity, for four days in advance. The 
evaluation was conducted using the weather sensor data 
collected by the BMKG Meteorology Station (Class I, 
Juanda) from March 25, 2017, to June 30, 2021. 

1) Gated Recurrent Unit (GRU): We tested the regression 
model using the results from GridSearchCV's tuning approach 
of the model hyperparameters by varying the time steps. The 
optimal hyperparameters for the GRU regression model were 
as follows: a Bidirectional GRU with 16 units in the first layer, 
a Dense layer with 512 units in the second layer, a Dense layer 
with 32 units in the output layer, a time step (historical) of 
fourteen days, and a batch size of 128. Fourteen-time steps 
mean that four days of predictions were made using fourteen 
days of historical data. The neurons in the recurrent neural 
network receive their input (the predictors) from the previous 
data based on the number of time steps. Fig. 7 shows the 
RMSE values for the GRU model's best-fitting model. The 
chart shows that the RMSE value increases as the prediction 
time increases, likely due to external factors that were not 
accounted for during the training process.  

The location of an area plays a crucial role in the accuracy 
of weather predictions. In middle latitudes, weather forecasts 
can be made up to two weeks in advance [35], but in tropical 
areas, they can only be made up to four days in advance [36]. 
Long-term forecasting is not reliable as it tends to generate 
large errors. A high value of RMSE indicates a significant 
error in the prediction. The weather variables of temperature, 
maximum temperature, minimum temperature, sea level 
atmospheric pressure, and average daily dew point all had low 
RMSE values, indicating that they were accurately predicted. 
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It could be due to these variables' lack of significant 
fluctuations, particularly over the four days. On the other hand, 
the RMSE values for wind flow speed, relative humidity, and 
maximum wind speed were higher due to their greater 
fluctuation and volatility. 

2) Extreme Gradient Boosting (XGBoost): The regression 
model using XGBoost with a seven-day history window, 0.73 
subsamples, 0.42 colsample_bytree, seven max_depth, 5.76 
min_child_weight, 0.038 learning rate, 438 n_estimators, and 
0.0028 gammas yielded the optimal hyperparameters found 
using Bayesian optimization. Four days of predictions were 
made using seven-day of historical data. In contrast to the 
GRU method, which can analyze sequential input models, the 
XGBoost algorithm predicts using past data as all model 
features at once. Large dimensions are susceptible to 
dimensionality issues, which refers to the explosive nature of 
rising data dimensions and the exponential increase in 
computational work required for processing. The RMSE 
values for the optimal XGBoost model on the test data are 
shown in Fig. 8. 

The comparison of the RMSE values between the XGBoost 
regressor and the GRU regressor model shows that the 
XGBoost model has a smaller average RMSE value of 
1.2728125 for all variables compared to the GRU regression 
model's value of 1.551666667. It indicates that it performs 
better in predicting the test data. Fig. 8 also reveals that the 
RMSE value increases as the duration of the forecasted day 
increases, and the pattern is similar to the GRU regression 
model's RMSE pattern. This could be due to external factors 
not being considered during training. Overall, the XGBoost 
regressor model is a more effective for predicting weather data 
because it only uses seven-day historical data.  

 

 
Fig. 7  RMSE of GRU regressor over four days 

 
Fig. 8  RMSE of XGBoost regressor over four days 

B. Classification Model Testing 

This section presents the results of evaluating the 
classification models using the GRU sequence classifier and 
XGboost classifier algorithms. We compared the performance 
of the models by evaluating their scores from May 16, 2019, 
to June 30, 2021. 

1) Gated Recurrent Unit (GRU): In this case, the sequence 
classification model was trained on weather data and was used 
to make predictions about the likelihood of rain. It was 
optimized by adjusting various parameters, including the time 
step, GRU units, number of dense units, and batch size. After 
testing different combinations of these parameters, the optimal 
model was found to have a batch size of 128, a time step of 
two days, and 128 GRU units in the first layer and 64 dense 
units in the second layer. Using categorical cross entropy as 
the loss function, the model could make binary predictions 
about the likelihood of rain. By considering the past two days 
of data, the model was able to predict the weather for the 
following day accurately. The results of testing this model are 
shown in Table 5, where it can be seen that the model achieved 
F1 score and an accuracy of 0.88. 

Additionally, the model was more successful at predicting 
the likelihood of rain (class 1) than the likelihood of no rain 
(class 0), as indicated by the higher recall value for class 1. The 
false positive and false negative rates were 7.97% and 5.14%, 
respectively, indicating that the model was more likely to 
predict rain when it was not going to rain. Overall, the 
optimized sequence classification model performed well in 
predicting the likelihood of rain. 

2) Extreme Gradient Boosting (XGBoost): The XGBoost 
classifier model achieved optimal hyperparameters using 
Bayesian optimization based on the tuning results. These 
hyperparameters include a maximum depth of 10, a minimum 
child weight of 2.26, a learning rate of 0.097, a number of 
estimators of 102, a gamma of 0.85, a subsample of 0.77, a 
colsample bytree of 0.50, and a fourteen-day history window. 
Table 5 displays the results of the performance metrics test, 
which demonstrate that the proposed GRU model outperforms 
the XGBoost when applied to test data. The XGBoost model's 
accuracy was 0.86, with a weighted average F1-Score of 0.86. 
Furthermore, the recall in class 0 (no rain) is lower than in class 
1 (rain). The confusion matrix in Fig. 9b has the same spectrum 
form as the confusion matrix of the GRU model, which has a 
higher false positive rate of 9.54% than a false negative rate of 
4.84%.  

TABLE V 
THE PERFORMANCE OF GRU AND XGBOOST CLASSIFICATION MODEL 

Model Class Recall Precision F1 Acc 

GRU 
Not rain 0.87 0.92 

0.88 0.88 
Rain 0.89 0.83 

XGBoost 
Not rain 0.83 0.91 

0.86 0.86 
Rain 0.89 0.80 

 

858



(a) (b) 

Fig. 9  Confusion matrix on test data: (a) GRU; (b) XGBoost 

C. Evaluation of Model Performance Using Microcontroller 

Observation Data 

Before testing the best model with local IoT data, the 
sensor values from our device were compared to the data from 
the sensors at the BMKG Meteorology Station (Class I, 
Juanda). This approach aims to reduce the error margin by 
standardizing the sensors' characteristics. The following 
differential values were obtained for dew point, sea level 
pressure, temperature, and wind flow speed: 0.94; -1.70; -
1.12; -1.48; 1.01. For the next four days, sensor regressions 
were predicted using two weeks of data (GRU) and one week 
of data (XGBoost). The classification algorithm was then 
applied to the predicted sensor data to provide four-day rain 
category predictions.  

1) Gated Recurrent Unit (GRU): Fig. 10 shows the results 
of sensor prediction based on the most reliable regressor 
model. The actual data for comparison was collected from the 
BMKG Meteorology Station (Class I, Juanda). The actual data 
is in orange, while the forecasted data is in yellow. The data 
from Fig. 10 can be used to calculate the RMSE and determine 
how well the model performs in the implementation phase. 
The average RMSE for the predictions of dew point, maximum 
temperature, minimum temperature, maximum wind speed, 
sea level pressure, temperature, wind flow speed, and humidity 
for the next four days is 0.55, 1.78, 3.04, 2.47, 0.57, 1.56, 2.3, 
and 5.6, respectively. Since the sea level pressure and dew 
point variables varied very little over the four-day test, the 
RMSE values for these variables were quite acceptable. 

The RMSE for the humidity variable was the highest among 
all other variables. The forecasted values for humidity fell 
between 77.4 and 83.6, while the actual values were between 
82 and 88. The model's forecast values had a smaller range 
than the observed data for humidity. The RMSE values were 
also relatively high for temperature, minimum, and maximum 
temperature, indicating that the forecasted values span a wider 
range than the observed data for these variables. Despite this, 
the model's forecasts accurately represent the natural 
environment's features. In their natural states, temperature and 
humidity are inversely related; when temperatures are high, 
humidity is often low. The differences in ambient sensor 
conditions between the BMKG Meteorology Station (Class I, 
Juanda) sensors and the sensors used in this study may be the 
reason for the large RMSE results for humidity and other 
variables. The meteorological station's temperature and 
relative humidity sensors are protected by radiation shields, 
which shield them from radiant heat and other environmental 
influences.  

In this research, the sensors were not protected by radiation 
shields, so they were susceptible to interference from wind, 
sunshine, and other external factors. Next, we will discuss the 

results of the classification model. As shown in Table 6, the 
test using local IoT data yielded three accurate predictions and 
one incorrect one. The incorrect forecast occurred on June 2, 
when the model predicted rain but did not rain. However, 
there was a 32.81% increase in the likelihood that it would not 
rain on June 2 compared to the previous day. 

Additionally, the likelihood of rain on June 3 increased by 
9.14% compared to the previous day. The model predicted 
rain, but there were only 0.55 millimeters of precipitation. On 
June 4, the probability of precipitation decreased by 8.37%, 
but the model accurately predicted rainfall of 4 millimeters. 
Overall, the accuracy of the prediction system using 
microcontroller input data was 0.75 for predicting the next 
four days. However, to guarantee the performance of the 
sequence model, it is necessary to collect more observational 
data, mainly when it is evaluated with local IoT data as model 
predictors. The threshold for defining a rain forecast category 
can also be calculated using the ROC curve metric by 
examining more data results.  

2) Extreme Gradient Boosting (XGBoost): This section 
discusses the results of testing the XGBoost model using local 
IoT data. We will begin by examining the performance of the 
multilabel regression model on the original sensor observation 
data. Fig. 10 shows a chart of the regression model with seven-
day input leading to four-day output. The orange line in the 
graph represents the observed data, while the green line 
represents the data predicted by the model. Based on the 
evaluation, the RMSE for four-day forecasts of dew point, 
maximum temperature, minimum temperature, maximum 
wind speed, sea level pressure, temperature, wind flow speed, 
and relative humidity was 0.31, 1.81, 1.08, 3.95, 0.37, 1.01, 
3.62, and 6.16, respectively. These values were obtained by 
using local IoT data as model predictors. 

According to this, the RMSE of sea level atmospheric 
pressure and the dew point had the lowest RMSE values 
compared to other variables, which were less than 1. The 
RMSE for all variable values was smaller than the RMSE 
obtained by the GRU model, except for humidity, wind flow 
speed, maximum wind flow speed, and maximum temperature. 
However, when the average RMSE was calculated for all 
variables, the RMSE produced by the XGBoost regressor was 
2.28, while the RMSE produced by the GRU regressor was 
2.23. Although the difference in performance was 
insignificant, the XGBoost regression model was more 
feasible to implement because it only needed seven days of 
history window. In comparison, the GRU model required 
fourteen days of history window (time step). More history 
windows make the computation slower because the model 
must process more predictors as model inputs. 

Like the GRU sequence classification model, the XGBoost 
classifier method predicted three outcomes correctly and one 
incorrectly. The same incorrect forecast occurred on June 2. 
Even though there was no actual precipitation on June 2, the 
likelihood of rain increased by 20.57% compared to the 
previous day. This is worse than the GRU sequence 
classification model, which predicted a lower probability of 
rain than the previous day. Despite this, the accuracy of the 
XGBoost classification model using local IoT data can still be 
calculated at 0.75. However, further observation data is 
desirable to confirm the accuracy when applied to locally 
collected IoT data. 
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TABLE VI 
RAIN PROBABILITY AND PRESENT WEATHER USING GRU AND XGBOOST 

Date 

GRU Probability XGBoost Probability Actual 

Not Rain Rain Not Rain Rain Rainfall 

June 1 0.18315 0.81684 0.25595 0.74404 13.5 mm 

Date 

GRU Probability XGBoost Probability Actual 

Not Rain Rain Not Rain Rain Rainfall 

June 2 0.24325 0.75674 0.10286 0.89713 0 mm 
June 3 0.17405 0.82594 0.10438 0.89561 0.55 mm 
June 4 0.21837 0.78162 0.07185 0.92814 4 mm 

 
Fig. 10  Forecasting value from June 1, 2022, through June 4, 2022, using GRU and XGBoost 

 

IV. CONCLUSION 
The research compares the performance of two methods, 

GRU and XGBoost, for forecasting weather data over the next 
four days. We used GridSearchCV and Bayesian optimization 
to tune the models. The multilabel XGBoost sensor regression 
model outperformed the GRU model overall, with an average 

RMSE of 1.2728125 compared to the GRU model's 
1.551666667. However, when evaluated with local IoT data, 
the GRU regression model performed better, with an RMSE 
of 2.23 compared to XGBoost's 2.28.  

We also proposed a rainfall classification model, where the 
GRU model had a weighted F1 score of 0.88 and an accuracy 
of 0.88. The XGBoost model had a weighted F1 score of 0.86 
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and an accuracy of 0.86. When tested with microcontroller 
data from local IoT devices, the GRU model performed better 
because it could use context to make more accurate 
predictions about the likelihood of rain. However, we plan to 
improve future research by using more local IoT data and data 
from other weather sensors, such as UV and wind direction 
sensors. 
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