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Abstract— Control of human hand using surface electromyography (EMG) is already established in various mechanisms, but 

proportionally controlling magnitudes degrees of freedom (DOF) of humanoid hand model is still highly developed in recent years. This 

paper proposes another method to achieve a proportional estimation and control of human’s hand multiple DOFs. Gestures in the form 

of American Sign Language (ABCDFIKLOW) were chosen as the targets, of which ten alphabetical gestures were specifically used 

following their clarity on its 3D model. Then the dataset of the movements gestures was simultaneously recorded using High-density 

electromyography (HD-EMG) and motion capture system. Sensor placements were on intrinsic - extrinsic muscles for HD-EMG and 

finger joints for the motion capture system. To derive the proportional control in time series between both datasets (HD-EMG and 

kinematics data), neural network (NN) and k-Nearest Neighbour were used. The models produced around 70-95 % (R index) accuracy 

for the eleven DOFs in four healthy subjects’ hand. kNN’s performance was better than NN, even if the input features were reduced 

either using manual selections or principal component analysis (PCA). The time series controls could also identify most sign language 

gestures (9 of 10), with difficulty was given on O gesture. The false interpretation was because of nearly identical muscle’s EMG and 

kinematics data between O and C. This paper intends to extend its conference version [1] by adding more in-depth Results and 

Discussion along making other sections more comprehensive. 
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I. INTRODUCTION

A variety of methods and techniques have been developed 

to control a robotic hand using an electromyography (EMG) 

signal. Starting with the simplest linear control, which can 

only reproduce 2-3 degrees of freedom (DOF) of hand 

movement (e.g. [2]), and progressing to more complex non-
linear control, which can reproduce a high order of DOF in 

the finger and wrist (e.g. [3], [4]). Despite their abundance, 

currently commercialized control strategies are low in DOF 

(e.g., Ottobock Hands [5] and Open bionics [6]) and are not 

particularly capable of replicating human hand's complex 

movement, particularly in terms of digits control, limiting 

their functionalities. 

Most research on the estimation of complex hand 

movements has utilized classification methods, which 

estimate gestures discreetly rather than proportionally [5], [6]. 

However, this approach is not sufficient for optimal use of 

advanced robotics, which require continuous and sequential 

control [7], [8]. Natural hand movements involve not only 

discreet movements but also continuous and simultaneous 

control of multiple degrees of freedom. Some researchers 

have attempted to estimate hand movements proportionally, 

but have focused mainly on forearm and wrist movements, 

limiting finger movement to grasping or closing [4]. 

According to the homunculus diagram [9], a significant 

portion of the brain (25%) is dedicated to controlling the 

hands and fingers. This shows the importance of hand 
movement in everyday human activities, such as manipulation 

of objects and communication through gestures, such as sign 

language. Therefore, the ability to control the digits is crucial 

for effectively performing complex gestures, such as sign 

language. 

In recent years, the development of EMG-based hand 

exoskeletons has mostly been focused on grip and grasp 

gestures [10]. This is because attempts to control multiple 

1118



fingers through EMG are typically used for hand prosthetics. 

One study that attempted to estimate multiple finger 

movements was conducted by Smith et al. [11], but it only 

focused on the metacarpophalangeal joints of the hand and did 

not incorporate the other, more distal joints. Hioki et al. [12] 

proposed a method for estimating the angles of the proximal 

interphalangeal joints because of their higher range of motion 

compared to other finger joints. However, this study used only 

four channels and required multiple complex parameters for 

its configuration, resulting in compromises in accuracy. 
In a study conducted by Ngeo et al. [13], multiple finger 

joints were estimated using a high computational regression 

model called Gaussian Process. This allowed for the 

prediction of all five fingers' joints, including more distal 

joints than previous studies. However, the study only 

estimated joint angles from basic flexion-extension gestures 

and required a larger computational time compared to using a 

neural network. The study had previously also controlled a 

finger exoskeleton for comparison with kinematics recording, 

but only for the index finger. 

Chen et al. [14] conducted a study in 2019 that explored 
the potential use of motor unit discharge to determine the 

movement of five joints in hand. This was done using HD-

EMG in the forearm to decode the discharge. However, the 

study was limited in that it only examined the correlation 

between the motor unit discharge and joint movement. Blana 

et al. [15] later conducted a study in the same year that 

proposed using an EMG-driven biomechanical model to 

control a hand prosthesis in a proportional manner. This 

model allowed for real-time control of the hand based on 

EMG signals, although it only estimated the movement of 

three joints in the thumb, index, and middle finger. 
The purpose of Serdana [1] study is to propose a new 

approach to proportional hand control using high-density 

electromyography (HD-EMG). Previous research has 

demonstrated the potential of HD-EMG for controlling hand 

and finger movements [16]. In this study, we used HD-EMG 

to investigate whether simpler regression methods, such as 

neural networks and k-nearest neighbor, could be effective in 

controlling hand movements. We also examined the high-

dimensional features of HD-EMG recordings to determine the 

optimal arrangement of surface electromyography. To reduce 

the complexity of future EMG recording experiments, we also 

used visual selection and principal component analysis to 
reduce the dimensionality of HD-EMG [3], [14]. 

In contrast to the common practice of only using extrinsic 

muscles for precise or proportional control of the hand [15], 

[17], we decided to include intrinsic muscles in our control 

scheme [18], [19]. Based on previous research on using 

intrinsic muscles for hand control, we believed that this would 

improve performance. We also studied whether using only 

intrinsic muscles for control would be sufficient for 

proportional control of the hand. Instead of using general 

bipolar surface EMG, which limited the finger exoskeleton's 

ability to grip/grasp, we used four-mm-spaced HD-EMG to 
provide a more detailed spatial representation of the small 

intrinsic muscle movements [20], [21]. 

In this study, we used high-density electromyography (HD-

EMG) to estimate the kinematics of the fingers rather than 

their forces, unlike previous studies by Barsotti et al. [22]. 

The kinematics of the finger were recorded concurrently with 

the HD-EMG recording and were used for training and testing 

in proportional control, similar to the approach Ngeo et al. 

took[13]. However, our study focused on more complex 

gestures in the form of American Sign Language alphabets to 

examine the dexterity of human fingers in proportional 

control of hand exoskeletons. We employed neural network 

and k-nearest neighbor methods to map the HD-EMG features 

to the kinematics recordings. Our study presents a new 

proportional control method for estimating complex finger 

movements using multiple degrees of freedom and HD-EMG 
signals. 

II. MATERIAL AND METHODS 

A. Subject 

In previous research, a new proportional control method for 

the hand was developed [13], [16]. In this study, healthy 

individuals with normal limbs were selected. Four male 

volunteers (aged 24±2.58) participated, all of whom were 

right-handed. Prior to the experiment, all subjects provided 
informed consent according to the ethical guidelines for 

research. Ethical approval was obtained for the study. 

 

 
 

Fig. 1  a.) Placement of the HD-EMG grid, two 8 mm grids on the forearm 
(Extrinsic 1-2), and three 4  mm grids  on  the  hand  (Thenar,  Interossei  1- 
2). b.) Marker placement for kinematics recording [25], StyR-U: the styloid 
process of ulnar and radius respectively, Met1-5: metacarpal, Pro1-5: 
proximal phalanges, Dist1: a distal phalanx of the thumb, and Mid2-5: 
middle phalanges of other fingers. c.) The position of the subject, 
surrounded by eight motion capture cameras focusing on the hand of the 
subject 

B. Data Acquisition: HD-EMG 

This study used two types of high-density 

electromyography (HD-EMG) grids to record muscle activity 

in the right arm. The 8 mm and 4 mm spaced grids were 

placed on the extrinsic and intrinsic muscles of the hand 

responsible for finger flexion and extension. The grids, 

produced by OT Bioelettronica, consisted of 13 columns and 

five rows. Two 8 mm spaced grids were placed around the 

circumference of the forearm, while three 4 mm spaced grids 
were placed on the intrinsic muscles of the hand. The subject's 
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skin was shaved and cleaned with alcohol prior to grid 

placement. This method was based on the suggestions of 

Muceli and Farina [16]. Electromyography (EMG) signals 

were collected using a monopolar configuration with 150 gain 

and a sampling rate of 2048 Hz. The signals were filtered with 

a bandpass filter set to a range of 10-500 Hz and digitally 

converted with 16 bits of precision. Two ground electrodes 

were placed on the wrist of the right arm. (Quattrocento, OT 

Bioelettronica, Torino, Italy) was the equipment used. 

C. Data Acquisition: HD-EMG 

Seventeen small infrared reflective markers were attached 

to the bones on the back of the hand (Figure 1b). Two markers 

were placed on the styloid process of the radius and ulnar 

bones, five markers on the heads of the metacarpal bones and 

proximal phalanges of each finger, four markers on the heads 

of the middle phalanges of the index to little finger, and one 

marker on the head of the distal phalange of the thumb. The 

markers were 8 mm in size and had a semi-hemispherical 
shape. No markers were placed on the distal head of the index 

to little fingers because the calculation of distal 

interphalangeal joints was not considered. The study utilized 

a motion capture system consisting of 8 infrared cameras 

(Smart-DX 6000, BTS Bioengineering, Quincy-USA) to 

capture markers on the subject. The data was then analyzed 

using the SmartTracker application. To minimize marker loss, 

6 cameras were placed at the same height as the subject and 2 

cameras were positioned at a higher position behind the 

subject (as shown in Figure 1c). This camera placement setup 

effectively ensured that at least 2-3 cameras were able to 

capture all markers. The sampling rate for recording 
kinematics was set to 250 Hz, and the calibration volume was 

adjusted to an extra small size (20 cm in all axes) along with 

the use of extra small markers (8 mm) to accurately capture 

the hand kinematics. This configuration was also utilized to 

prevent motion capture flickering and noise caused by marker 

switching and errors from closely spaced markers. 

D. Experimental Procedures 

The participants were asked to sit in a standard chair and 
position their elbow on a small table. They were allowed to 

adjust the height and rotation of the chair and table to ensure 

their comfort during the procedure. While in this position, 

they were instructed to maintain a static position with their 

hand, avoiding any movements except for finger movement. 

This was done to obtain clear recordings of finger muscle 

electromyography (EMG) and to prevent activation of 

muscles responsible for wrist movement. The distal side of 

the hand was required to be facing the front cameras, while 

the dorsal and palmar sides were visible to the side cameras. 

The hand was not allowed to supinate, pronate, or radially 

ulnar deviate during the recording (although in a resting state). 
This was done to prevent other muscles' activation and ensure 

the cameras captured all markers. 

This study used American Sign Language (ASL) gestures 

for proportional tracking and recognition. The subjects were 

asked to perform ten alphabet gestures from a resting position. 

These gestures were selected for their variability and 

feasibility for motion capture [23], [24]. Prior to the 

experiment, the subjects were trained to avoid lag in their 

gestures. During the task, the subjects were given auditory 

cues to begin and end the gestures. The study involved 

recording the resting position of the subjects' fingers, as well 

as the position of their fingers when performing a specific 

gesture. 

 
Fig. 2  10 alphabets of American Sign Language used for the experiments 
[26]. 

 

The study involved recording the resting position of the 

subjects' fingers, as well as the position of their fingers when 

performing a specific gesture. The resting position was 

recorded one second before and after the gesture was 

performed. During the gesture, the subjects were instructed to 

maintain the position for approximately four seconds without 

exerting excessive force. The gesture involved repeating ten 

alphabets in random order, and a total of 30 data points were 
collected from each subject. The subjects were allowed to take 

breaks during the recording process, but after 15 recordings, 

they were required to rest their hands to avoid fatigue. Both 

HD-EMG and kinematic data were recorded from the 

subjects' right arm simultaneously. Mirroring movements [16] 

was not used due to the potential for complications with the 

complexity of ASL gestures. An Arduino Uno was utilized to 

synchronize the Quattrocento and Smart DX 6000 systems 

using a rectangular signal triggered by the operator 

simultaneously with the auditory cues. The data was truncated 

synchronously with the stop auditory cue to eliminate 

unwanted recordings. 

E. Data Post Processing: HD-EMG 

In order to eliminate undesired noises such as motion 

artifacts, an offline bandpass filter (a 4th-order zero-lag 

Butterworth digital filter with a cut-off frequency of 20-400 

Hz) was applied to the HD-EMG signals. After this, the EMG 

recordings were carefully examined to remove any channels 

with poor contact. The monopolar recordings were then 

transformed into bipolar channels aligned with the muscle 
fiber vector, reducing the number of channels from 320 to 267 

and ensuring a common-mode rejection rate was applied to 

the recordings. The Fourier analysis of the post-processing 

showed that the HD-EMG data had an optimal frequency of 

less than 30 Hz. In order to only acquire muscle activity, a 16 

Hz low pass filter (a 2nd order, zero lag, Butterworth digital 

filter) was also applied to the HD-EMG data [16]. 

The RMS features of the HD-EMG signals were extracted 

using a 15-millisecond window step, resulting in a low control 

rate of 60 Hz. RMS is commonly used in EMG feature 

extraction because it provides a reasonable estimate of EMG 

activity over a time window. Unlike previous studies [13], 
[16], the HD-EMG signals and their derivative features were 

not down-sampled to match the kinematics recording rate in 

order to avoid information loss [3]. 
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Fig. 3  a.) The model of the hand following Figure 1b with some links that interconnected each of the markers. This model can be the base for designing the 
soft exoskeleton. b.) Joint angle calculation based on Carpinella et al.[25], FIF = proximal interphalangeal joint flexion angle; MPF = metacarpophalangeal 
joint flexion angle; TIF = thumb interphalangeal joint flexion angle; TAP = thumb ante position angle; TAB = thumb abduction angle. 

 

F. Data Post Processing: Kinematics Recording 

The kinematics recording initially provided the position of 

markers in 2D space for each motion capture camera. Using 

Smart Tracker software, the 2D recording was then 

reconstructed into 3D space and a linked model was applied 

to the markers to create a visual representation of a real hand 
model. Eleven 1-dimensional angles were then calculated 

using Smart Analyzer software. The measurements did not 

include the distal interphalangeal joints of the index and little 

finger due to their low impact on hand gestures and their 

similar movement to the proximal interphalangeal joints [13]. 

Similarly, the abduction angles of the index and little fingers 

were also excluded from the calculations. 

TABLE I 

THE JOINT AND THEIR OWN THREE MARKERS USED TO CALCULATE THEIR 

ANGLES. 2-5 SPECIFY THE FINGER FROM THE RADIAL SIDE (INDEX, MIDDLE, 

RING AND LITTLE FINGER) 

Joint MarkersItalic 

TIF Met1-Pro1-Dis1 
TAB Pro1-Met1-Met2 
TAP Pro1-Met1-StyR 
FIF2 Mid2-Pro2-Met2 

FIF3 Mid3-Pro3-Met3 
FIF4 Mid4-Pro4-Met4 
FIF5 Mid5-Pro5-Met5 
MPF2 Pro2-Met2-StyR 
MPF3 Pro3-Met3-StyR 
MPF4 Pro4-Met4-StyU 
MPF5 Pro5-Met5-StyU 

 

The angle data of the joints was then increased in its 

sampling rate to match the HD-EMG data (2048 Hz). As 

previously mentioned, some markers may be lost during the 

recording process of kinematics. Therefore, an interpolation 

or extrapolation was applied to compensate for this loss. 

Additionally, the noisy kinematics data caused by vibrating 

markers was smoothed using a moving average Gaussian 

filter, which functioned as a low-pass filter with a cut-off 

frequency of 1 Hz. Compared to other techniques, this filter 
was selected for its ability to produce output resembling a 

natural hand movement. 

G. Feature Analysis 

The use of high-density electromyography (HD-EMG) 

allows for the capture of a high number of features due to the 

small spacing between its channels. However, this also leads 

to a high degree of correlation between adjacent channels, 

resulting in redundant information within the dataset. This 
redundancy can be reduced through the use of visual selection 

and principal component analysis. 

In this research, the visual selection was determined by the 

direction of the muscle's vector. For Extrinsic 1-2 and 

Interossei 1-2, a horizontal linear array of 14 bipolar channels 

and seven equally spaced channels were chosen. For the 

Thenar grid, a vertical linear array of five channels and three 

equally spaced channels were selected [16]. 

A principal component analysis was conducted on each 

grid's root mean square (RMS) features[16]. The first 

principal components were able to explain 70% of the 
variance in the RMS features for all subjects. Therefore, we 

examined the potential use of the first 14-7-1 components as 

input for training a regression model. (See Section 3.A for 

further details.) 

In a previous section, we examined whether the use of 

extrinsic and intrinsic hand muscles resulted in different 

outcomes. The features were divided into two groups based 

on the recorded muscle type. The Extrinsic 1-2 grids were 

considered extrinsic features, while the Interossei 1-2 and 

Thenar grids were considered intrinsic features. 

In order to compare the performance of the various feature 

configurations, a 3-way Analysis of Variance (ANOVA) was 
conducted with three main factors: subject, regression 

method, and input features. A post hoc Tukey-Kramer test 

was also used to determine significant differences among the 

groups within each factor. In addition, focused ANOVAs 

were performed to isolate and examine the specific 

differences between individual factors. 

An investigation was conducted to determine if reducing 

the number of degrees of freedom in a hand model was 

possible. Although the results of the analysis were not 

implemented in this study, which focused on estimating 

multiple degrees of freedom simultaneously, it could 
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potentially be used as a method for recognizing American 

Sign Language gestures. 

H. Joint Angle Estimation 

In previous research, it has been demonstrated that 

electromyography (EMG) activity is closely related to muscle 

force [22], but some studies have also shown that it can be 

used to estimate joint angles [16]. In this study, we utilized 
neural network and k-nearest neighbor algorithms for training 

a regression model that predicts joint angles based on high-

density EMG data. 

This study utilized a convolutional neural network (NN) 

with two hidden Rectified Linear Unit (ReLU) layers. This 

type of NN was selected due to its demonstrated success in 

predicting complex bio-signals while maintaining low 

computational demands [26]. The two hidden layers had 100 

and 50 neurons, respectively, which were determined to be the 

optimal hyperparameters. The input layer's neuron count 

depended on the number of input features used, and the output 
layer had a single output, resulting in 11 separate NNs trained 

for each angle. Using a single NN to estimate all angles 

yielded mediocre performance. However, for fairness in 

comparison, the hyperparameters of the NNs were not 

specifically modified for each angle. The dataset was divided 

into three parts for cross-validation during NN training, with 

2/3 of the data used as the training/validation dataset (70/30% 

split) and the remaining part serving as an unseen dataset for 

testing the NN's performance. 

K-Nearest Neighbour (kNN) is commonly utilized for 

classification purposes, but it can also be applied to regression 

or estimation tasks [27], particularly when working with a 
large dataset as input. This study utilized the kNN model with 

the same input and output characteristics as the previously 

discussed neural network. The hyperparameter k was set to 5 

for all angle estimation comparisons to ensure fairness. 

 

 
Fig. 4  The percentage of explained variance in each of the grids for seven 
first principal components. The Ext1-2 are Extrinsic grids, Int1-2 are 
Interossei grids, and Thenar is the thumb grid. 

 

In order to make the output of the regression resemble 

natural movement, the same post-processing techniques used 

for kinematics recording were applied. This included 

smoothing with a Gaussian method and filtering with a low-

pass Butterworth digital filter [13], [16]. The accuracy of the 
joint angle estimations was evaluated using Pearson's 

Correlation Coefficient and root mean square error. These 

metrics allowed for the determination of the variability and 

residual error between predicted and actual values [13]. 

III. RESULTS AND DISCUSSION 

A. Data Analysis 

In this study, the high dimensionality of high-density 

electromyography (HD-EMG) was found to provide 

redundant information due to the large number of 

electrodes/channels. However, during the development phase, 

this feature can be useful in identifying the optimal EMG 
configuration for future use. Therefore, principal component 

analysis (PCA) was employed to analyze the potential optimal 

EMG configuration using HD-EMG grids. The first principal 

component overall accounted for 70% of the data, with 

varying percentages for different groups (70.78 ± 14.98 for 

Ext1, 79.18 ± 12.72 for Ext2, 62.67 ± 23.098 for Int1, 65.24 

± 19.36 for Int2, and 66.81 ± 16.73 for Thenar) (Figure 4). 

The first 7 principal components were found to explain 

90% of the data [16], constituting a good explanation of the 

entire dataset. Therefore, these 7 components were used to 

train the regression model. For a more detailed explanation of 
the data, the first 14 principal components were also used, 

explaining 95% of the data. A repeatability test of finger 

angles showed that the kinematics recordings were all 

repeatable for each alphabet in all four subjects [25]. In this 

study, the first seven principal components were found to 

adequately explain 90% of the data, and these components 

were used to train a regression model. To provide a more 

comprehensive explanation of the data, the first 14 principal 

components were also utilized, which explained 95% of the 

data. The repeatability of the kinematic recordings was 

confirmed (p>0.05) through an analysis of variance, 

indicating that the recordings were consistent across subjects 
for all alphabets tested (Carpinella et al. 2006 [25]).  

While each individual subject had multiple p-values above 

0.05, this did not occur consistently across all angles and 

letters. As previously noted by Weiss and Flanders [23], the 

high degrees of freedom in the hand may be further reduced 

by using several degrees of freedom. Four principal 

components of the kinematics data were able to explain 90% 

of the data, as shown in Figure 5a. 

In this study, we did not reduce the dimension of kinematic 

data in the regression phase as we focused on simultaneously 

controlling multiple degrees of freedom of the hand. 
However, it is still possible to design proportional control by 

reducing the kinematics dimension through the use of 

principal component analysis (PCA) [28]. Our findings show 

that the PCA provides information about the kinematics 

dataset's variability and that the different alphabets' PCs have 

distinct variability for each subject. The distribution of the 

first two PCs in Figure 5b demonstrates that the alphabets 

used did not overlap, not even in their standard deviation. The 

closest alphabets were only D and K, and O and C (as they are 

identical, as shown in Figure 2). 

B. Overall Results 

After conducting regression analysis, the simultaneous 

estimation of all eleven joint angles was performed using both 

neural network (NN) and k-nearest neighbor (kNN) 

regressors. The regressors were trained using 66% of the 

dataset and then tested on the remaining third. In general, both 

regressors were able to accurately follow the target joint 

angles, although there were some instances of significant 
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deviation. In the best cases, the R-value for the 

metacarpophalangeal and proximal interphalangeal joints 

reached 95% and 90%, respectively. However, the abduction 

of the thumb had poor performance compared to the other 

joints. In terms of root mean squared error (RMSE), the 

overall residual error was approximately 10%, with the lowest 

possible error being 5%. 

In order to compare the various parameters modified in the 

regression process, Figure 7 can be utilized. The RMSE 

metric did not provide a clear significant difference between 
the input feature configurations, although the estimation 

accuracy was clearer in R. The best configuration was found 

to be using full grids as the input feature, as previously 

reported by Muceli and Farina [16], with kNN as the 

regression method (Overall R= 78.09 ± 5.49 % and RMSE= 

12.21 ± 5.09 %). Using PCA1 in NN resulted in the most 

inferior performance, although it was faster (Overall R= 65.03 

± 2.66 % and RMSE= 11.67 ± 4.64 %). When ranking the 

performance, although not significantly different in most 

cases, PCA14 performed better than PCA7, and Sel14 

performed better than Sel7. 
In the analysis comparing the performance of NN and kNN 

regression models using PCA14 and Sel14 input features, no 

significant differences were found between the two 

configurations regarding R and RMSE values, except for the 

TAB angle. However, significant differences were observed 

between PCA7 and Sel7 in some angles in the NN model. In 

addition, the full grids feature in the NN model showed 

significantly different results compared to both reduced 

features in most angles, using both PCA and selection 

methods. There were no significant differences between NN 

and kNN when using full grids as input features. Furthermore, 
a post hoc Tukey-Krame’s test revealed that kNN performed 

better than NN in most cases, with an overall improvement of 

approximately 4% (p<<0.001). 

The results of the study showed that the use of extrinsic-

only grids performed poorly compared to the full grids and 

even intrinsic grids only (R= 60% and RMSE= 20%). There 

were also significant differences between extrinsic-only and 

full-grid configurations in most angles with p<0.05. 

Interestingly, the intrinsic grids feature had no significant 

difference in most angles compared with the full grids feature 

(R≥ 70% and RMSE≤ 11%). By using the first two principal 

components of the kinematic recording and prediction, the 
regression results could be classified into different gestures 

(which were not fully explored in this paper). As seen in 

Figure 5b, most distinct alphabet predictions (9 of 10 ASL 

gestures) provided a more unambiguous classification as they 

fell into the areas of real alphabet measurements (or closer to 

the real alphabet). However, identical alphabet (O-C) 

prediction results could be falsely interpreted. The O 

predictions were only in the areas of actual C, potentially 

resulting in false-positive results of O predictions as C. 

This study developed a new method to simultaneously 

estimate eleven joint angles of the hand using high-density 
surface EMG. This method performed similarly to previous 

studies [13]–[15], despite using more complex gestures for 

estimation. The use of a simple Neural Network and k-Nearest 

Neighbour algorithms allowed for faster and lighter 

computation than the Gaussian Process proposed by Ngeo et 

al. [13].Despite using time-domain features (RMS), the 

inclusion of intrinsic hand muscles in this study resulted in 

equivalent performance to the method proposed by Chen et 

al. [14]. 

 

 
 
Fig. 5  a.) Percentage of kinematics data explained by its PCs. 2 PCs 
already explained   80 % of the data, although in[23], using all ASL 
alphabets, 4   PCs were needed to explain >80% of the data. b.) The scatter 
plot for the average of 2 first PCs in the kinematics dataset of all subjects. 
Each unfilled     dot represents the ASL alphabets used in the experiment, 
along with their standard deviations. The diamond-shaped markers were 
the two first PCs of the predicted joint angles in Subject 3 using kNN with 
average RMSE = 10.78 ± 4.64 % and R = 80.65 ± 6.92 % in all DOFs. 

 

Fig. 6  An example of joint angle estimation between Neural Network (NN), 
k-Nearest Neighbour (kNN) and its actual output. Only A B C D F gestures, 
TIF, TAP, MPF2, FIF2 and MPF3 joint angles were shown for clarity. The 
dataset used was from Subject 3 using all bipolar channels as input. The 
overall performance for NN was R = 72.67 +/- 4.55 %, RMSE = 10.08 +/- 
0.25 %; and for kNN was R = 80.4 +/- 0.82 %, RMSE = 11.37 +/- 0.83 %. 
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C. Feature Dimensions 

The use of 14 channels along the length of the HD-EMG 

grids was shown to provide a reasonable estimation of joint 

angles, comparable to the use of the full grid. The use of seven 
channels also estimated joint angles well, with a correlation 

of 70% and an RMSE of 11%. However, using principal 

component analysis (PCA) delivered a slightly better 

estimation, as the values in PCA were projected values of all 

dimensions, unlike the visually selected features. Although 

the first principal component explained 70% of the data, the 

resulting estimation using this feature did not perform as well, 

with a correlation of 65% and an RMSE of 19%. Previous 

research [16] has also found that the more channels used, the 

better the performance of regression. The full grid performed 

significantly better than the reduced-channel configuration in 
a previous study. 

In the real world, the use of a large array of bipolar 

electrodes placed perpendicular to the direction of muscle 

fibers was effective in controlling a hand exoskeleton. This is 

because the muscles in the hand are arranged radially [29]. 

Most commercial myo-control products also utilize this 

perpendicular electrode placement. The inclusion of intrinsic 

muscles in the configuration resulted in improved 

performance compared to using only extrinsic muscles, with 

an overall improvement of 10%. This is due to the fact that 

the extrinsic muscles include additional muscles that actuate 

the wrist, which will alter the EMG recording [30]. As shown 
in section 3.B and Figure 7c, both regressors (NN and kNN) 

paired with just intrinsic muscles as input characteristics 

performed similarly to the complete grids arrangement and 

much better than the extrinsic alone configuration. This 

indicates we can only anticipate finger kinematics using 

intrinsic muscles [31]. The size of the output feature (many 

DOFs of the hand) may also be lowered because most hand 

posture/gesture may be described by its various components 

[23]. 

The study found that using two principal components of 

hand kinematics was sufficient to explain 80% of the data 
variance. This reduction in the number of components could 

also improve the practical aspect of regression in terms of 

alphabet recognition, as shown in Figure 5b. However, the 

distribution of the first two PCs in Figure 5b can lead to a false 

positive recognition of the letter O as a letter C, as the 

differences between the two letters are difficult to distinguish 

in terms of joint angles and muscle activity (as shown in 

Figure 2). Using the distribution of the first three PCs was 

found to be more challenging in terms of alphabet recognition, 

as the predicted kinematics did not fall within the target 

alphabet areas. 

D. Regression Methods 

The k-Nearest Neighbour method performed similarly to 

the commonly used Neural Network in a regression analysis. 

However, when the input features were reduced, kNN showed 

better performance than NN. This difference in performance 

can be attributed to the techniques used in each regressor. The 

NN is a data-driven method that requires more data for 

accurate predictions, whereas the kNN is a pattern-driven 

method that can recognize patterns with any input features 
[27]. 

 
Fig. 7  RMSE and R-value in a.) NN and b.) kNN with different input 
features size. c.) RMSE and R-value in both NN and kNN, along with the 
use of only extrinsic/intrinsic muscles. The x-axis represents the joint 
angles, Full: using all bipolar channels, PCA14-7-1: using 14,7,1 first 
principal components, Sel14-7: using 14,7 selected channels, Ext: using 
only extrinsic grids, and  Int: using only intrinsic grids. 
 

In comparison to the Gaussian Process model proposed by 

Ngeo et al. [13], the k-nearest neighbor algorithm (kNN) 

demonstrated faster processing speeds with similar or 

comparable performance. Additionally, the kNN was able to 

predict a greater number of hand degrees of freedom 

compared to the biomechanical model of Blana et al. [15], 

with similar processing time. In practical application, the kNN 

also showed significantly faster performance than neural 

networks, depending on the machine used. This increased 

efficiency could be beneficial in implementing real-time 

proportional control of hand exoskeleton technology, as lower 

computational time can reduce the lag between user muscle 
activity and exoskeleton actuation. 

E. Future and Implementations 

In this study, the process of estimating joint angles was 

conducted offline, but the proposed method could also be 

applied in an online setting. It is worth noting that the high 

dimensionality of the HD-EMG data, using only the RMS 

feature, allows for the use of simple regression methods (NN 

and kNN) which reduces processing time compared to more 
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complex features and regressors used in other studies. This 

means that the delay in practical application will be minimal 

(around 100 ms) for real-time proportional control, although 

improved computational power in practical devices could 

enhance the processing time of more advanced methods. In 

future research, it may be worthwhile to explore the use of a 

real or virtual exoskeleton hand to evaluate the practicality of 

the proposed method. The subjects in this study were limited 

to a small number of healthy individuals with normal body 

composition. 
In future research, it would be beneficial to include a larger 

sample size and a wider range of participants, including those 

who are not healthy, to strengthen the study results. The 

current experiment was limited to a static arm and wrist 

position in order to eliminate the influence of wrist motion. 

However, this issue can potentially be addressed by 

incorporating intrinsic muscle activity as a feature in the 

analysis. In order to apply this approach in clinical settings, a 

simpler setup for measuring hand kinematics, such as using 

IMU sensors for each finger, could be utilized [32]. Both HD-

EMG and hand kinematics provide redundant information on 
muscular-postural activities. Applying the postural and 

muscular synergy analysis could help reduce this redundancy 

and improve cost-effectiveness, though this may be specific 

to the task at hand if the muscle-posture activities in the study 

are not varied enough. 

IV. CONCLUSION 

This study proposes a method for simultaneously 

estimating the eleven degrees of freedom of American Sign 
Language gestures using high-density electromyography 

(HD-EMG) data from extrinsic and intrinsic hand muscles. 

The reduction of HD-EMG data did not impact the system's 

performance, and the intrinsic muscles were found to be more 

effective than extrinsic muscles for estimating hand 

kinematics. The k-nearest neighbor regressor outperformed 

the neural network, particularly when using reduced input 

features. Our proposed approach has potential applications in 

the development of exoskeleton systems for hand kinematics 

estimation. 
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