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Abstract—As the utilization of CNN increases, many studies on lightweight, such as pruning, quantization, and compression, have been 

conducted to use CNN models in servers and edge devices. Studies have revealed that quantization greatly reduces the complexity of 

CNN models while lowering accuracy to a negligible level. CNN models with bit precision lowered from the existing 64/32 floating point 

to 16, 8, and 4 fixed points are being announced. Therefore, this paper proposes a variable precision multiplier that can select between 

16 bits and 8 bits of precision. It consists of four 8-bit booth multipliers. When 16-bit multiplication is selected, the final product is 

calculated from four partial products, and when 8-bit multiplication is selected, four multiplications are possible simultaneously. The 

proposed multiplier was designed with Verilog HDL, and its function was verified in ModelSim. And it was synthesized for Altera 

Cyclone III EP3C16F484C6 using Quartus II 13.1.0 Web Edition. The proposed variable multiplier has increased combinational logic 

compared to general 8-bit/16-bit booth multipliers, and the clock speed is reduced by 65% and 82%, respectively. However, it can 

process four 8-bit multiplications within 1.68 times of normal 8-bit multiplication processing time and can process 16-bit multiplication 

within 75% of the normal 16-bit multiplication processing time. Therefore, the proposed multiplier is expected to increase speed and 

energy efficiency by selecting bit precision according to the layer in the CNN model. 
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I. INTRODUCTION

Recently, research on Convolutional Neural Networks 

(CNN) has been actively studied and used in various fields 

such as the automobile industry, medical care, and financial 

service industries [1], [2]. Deep learning applications using 

data collected from Internet of Things devices are one of them 
[3]–[5]. In order to prevent various problems such as network 

load and personal information leakage that may occur in the 

process of sending and receiving collected data to and from 

servers, the demand for edge computing that processes data 

on its own has been increased [6]–[8].  
 Generally, high-performance and high-capacity servers 

are required to process collected data and conduct AI learning 

for various applications. It may be difficult to process this 

process on an edge device [9], [10]. Most edge devices do not 

process the training process that requires processing large 

amounts of data and only proceed with inference. 
Nevertheless, the CNN layer becomes gradually deeper, and 

studies to reduce the amount of memory access and 

computation, such as pruning, quantization, and compression, 

have also been actively conducted [11]–[14]. 

Early CNN models used 64/32-bit floating points. As 

researchers began to study accelerators rather than GPUs, 

floating points were converted to fixed points to reduce 

computational complexity [15]–[17], and interest in 

quantization technology that lowered precision increased [18-

20]. Many CNN models showed that if the precision is 

lowered, the hardware complexity is significantly reduced, 

and the accuracy reduction is negligible or low [21], [22]. So, 
different precisions are applied to each layer of CNN [23], 

[24], or CNN models that can select precision according to 

system performance are proposed [25]–[27].  

CNN accelerators perform many Multiply-Accumulate 

(MAC) operations. CNN accelerators that can efficiently 

change precision for multiplication and MAC operations are 

being introduced [28], [29]. Therefore, this paper proposes a 

multiplier capable of selecting bit precision for CNN 

networks that require different precision for each layer. The 

proposed multiplier is based on the booth algorithm to 

increase the efficiency of multiplication operations, and 
multiplication can be performed by selecting one precision 
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between 16-bit and 8-bit multiplication. Using parallel 

processing technique in 8-bit unit, the processing time can be 

reduced compared to general 8-bit multiplication and 16-bit 

multiplication.  

Section two of this paper presents the booth algorithm and 

architecture of the proposed variable precision multiplier. 

Section three reveals the results of verifying the multiplier 

designed with Verilog HDL with ModelSim and synthesizing 

it with FPGA. The last section of this paper is the conclusion. 

II. MATERIALS AND METHOD 

A. Booth Algorithm 

Among arithmetic operators, the multiplier is an operator 

that requires a large area and a long calculation time due to its 

complicated calculation. Therefore, it is important to speed up 

the multiplier to improve the overall hardware performance. 

The booth multiplication algorithm is a multiplication 

algorithm faster than general multiplication methods [30]. 

General multiplication operations deal with unsigned 
numbers and partial product operations increase by the 

number of bits of the multiplier or by the number of 1s present 

in the multiplier. On the other hand, the booth algorithm deals 

with signed numbers, and when there are n (>=2) consecutive 

1s in the multiplier, the operation for the partial product is 

limited to 2, which reduces the amount of operation. 

Therefore, we use the basic multiplier as the booth multiplier 

to design the variable precision multiplier.  

A flowchart of the booth algorithm is shown in Fig. 1. The 

booth algorithm is based on the fact that when 1 occurs n 

times in a row (bnbn-1 ... b1), its value is equal to 2n-1. 

Multiplication is performed by replacing the multiplier with -
1 in the b1 position and 2 n in the bn+1 position. Since b1 is the 

starting point of a series of 1s, it must be compared with b0 

and similarly, bn is the end point of a series of 1s, so it must 

be compared with bn+1. Therefore, at the start of the 

calculation, a digit lower than the LSB of multiplier Q is made 

virtual and initialized to Q-1 = 0, and then the start, 

continuation, and end of 1 are distinguished by right-shifting 

the multiplier every clock. 

 

 
Fig. 1  Flowchart of the booth algorithm 

 

B. Variable Precision Multiplier 

The precision variable multiplier proposed in this paper is 

based on the Radix-2 booth algorithm. The proposed 

multiplier merged four 8-bit multipliers to construct a 16-bit 
multiplier. Depending on the selection conditions, 8-bit 

parallel multiplication, as well as 16-bit multiplication, is 

possible. 

1)   Signed 16-bit multiplier: The multiplication 

calculation for the 16-bit multiplicand and multiplier can be 

expressed as shown in Fig. 2. The 16-bit multiplicand and 

multiplier are divided into upper 8 bits and lower 8 bits, 

respectively, and expressed as A, B, and C, D. At this time, 

the multiplication of two numbers can be expressed by the 

following equation (1).  

��, �� × ��, �� = �� × 2� + �� × �� × 2� + �� 
     =  � × � × 2�� + �� × � + � × �� × 2�

+ � × � 

(1) 

 
Fig. 2  Example of the multiplication operation 

 

In Equation (1), the operand multiplied by a power of 2 can 

be simply expressed as a left-shift operation. The left-shift 

operation fills the lower bits with 0s, and 0 is the addition 

identity. Therefore, as shown in Fig. 2, The left-shift 

operation is actually not required in hardware 

implementation. The lower 8 bits of A×D and B×C are added 

with the upper 8 bits of B×D. The upper 8 bits of A×D and 
B×C are added to the lower 8 bits of A×C and the carry input. 

Finally, the upper 8 bits of A×C and the carry input signal are 

added. A 16-bit multiplier can be implemented using four 8-

bit multipliers and 8-bit two-input, three-input, and four-input 

adders.  

The radix-2 booth multiplication algorithm multiplies 

signed numbers. Therefore, when the multiplication of 16-bit 

signed numbers is divided into 8-bit booth multipliers, the 

signs of each 8-bit data must be considered. This is because 

the MSB of the lower 8 bits is not a sign bit. 

First, A×C, which is the multiplication of the upper 8 bits, 
uses the booth multiplier as it is because both MSBs of A and 

C are sign bits. Next, consider the case where only one of the 

two inputs is an unsigned number, such as the case of A×D. 

In this case, the MSB of the unsigned number D must be 

checked. If the MSB of D is 0, the result of A×D 

multiplication may be used as it is. If the MSB of D is 1, D is 

determined to be a negative number in A×D booth 

multiplication, and the following equation is performed. 

 

1026



 

� × � = � × �−2� + ������� 

= � × �−2�� + � × ������ 
(2) 

D is an unsigned number, so to obtain the result of A×abs(D), 

A×(2^8) can be added to the multiplication calculation result. 

However, multiplying by 2^8 can be changed to an 8-bit shift 
left, and 0 is the identity of addition. Therefore, A can be 

added to the upper 8 bits of the multiplication result. Fig. 3 

shows a block diagram of a multiplier for signed A and 

unsigned D. 

 
Fig. 3  Block diagram of a multiplier for signed A and unsigned D 

 

Similarly, in the case of B×C, the MSB of B, which is an 
unsigned number, is checked. When it is 0, the multiplication 

result is used as it is, and when it is 1, C is added to the upper 

8 bits of the multiplication result. B and D are the lower 8-bit 

data of multiplicand and multiplier, respectively, and both do 

not contain a sign. Therefore, when multiplying B and D, the 

MSB of both B and D should be checked. If the MSB of both 

numbers is 0, the result of the booth multiplier can be used as 

it is. If only the MSB of B is 1, as seen above, D can be added 

to the upper 8 bits of the result of the multiplier. Conversely, 

if only the MSB of D is 1, B can be added to the upper 8 bits 

of the result of the multiplier. Finally, if the MSB of both 

numbers is 1, the sum of B and D is added to the upper 8 bits 
of the multiplier result according to the following equation. 

� × � = �−2� + ������� × �−2� + ������� 

= �2��� + ������� + ������� × �−2��
+ ������ × ������ 

(3) 

Considering all these cases, the B×D multiplier can be 

expressed as shown in Fig. 4. 

 

 
Fig. 4  Block diagram of a multiplier for unsigned B and unsigned D 

 

Finally, in order to obtain a 16-bit signed product, four 

multiplication results must be added in bitwise alignment as 

in the multiplication of unsigned numbers. In this case, the 

multiplication result of B×D is an unsigned number, but the 

multiplication results of A×D, B×C, and A×C are signed 

numbers. Therefore, when adding for the upper 8-bit data of 

A×C, in multiplication of unsigned numbers, only the carry of 

addition of A×D and B×C was added, but in multiplication of 

signed numbers, in addition to the carry signal, after 

extending the sign bits of A×D and B×C to 8 bits each, the 

sign bits must be added together.  

There are some things to consider when using the booth 

multiplication algorithm using two's complement. The booth 

multiplier compares Qn and Qn-1 of multiplier Q and then adds 

or subtracts the multiplicand. Subtraction operations in 

hardware consist of adding the two's complements of the 

number to be subtracted. The two's complement of a number 

is obtained by adding 1 to the inverted value of each bit. 
However, due to the nature of two's complement, the two's 

complement of 8-bit 1000_00002 becomes the same value as 

1000_00002. Therefore, when multiplicand has a value of 

1000_00002 in the booth multiplier, the absolute value of the 

result is the same as the original multiplication value, but the 

sign is reversed. A negative result is obtained when the 

original result is positive, and a positive result is obtained 

when the original result is negative. Therefore, in the 

multiplier proposed in this paper, when the 8-bit multiplicand 

is 1000_00002, the sign of the output result of the booth 

multiplier is changed, and then the addition is performed. Fig. 
5 shows a block diagram when the proposed multiplier 

operates in 16-bit mode. 

 

 
Fig. 5  Block diagram of the proposed multiplier in 16-bit mode 

2)   Four signed 8-bit multipliers: Since the proposed 

multiplier consists of four signed 8-bit booth multipliers, it 

can simultaneously process four multiplications for 8-bit 

signed multiplicand and multiplier. Unlike in the 16-bit mode, 

in the 8-bit mode, there is no additional process after each 

multiplication, and the number of bits of input and output data 

is changed. 

First, the number of bits in the output data is increased from 

32 bits to 64 bits. In 16-bit mode, the multiplication result is 

32 (=16x2) bits. In the 8-bit multiplication mode, when four 

multiplications are performed simultaneously, there are a total 

of four 16 (= 8x2) bit results, so the multiplication result is 64 
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bits in total. Therefore, output ports must be added to operate 

in 8-bit multiplication mode. 

The input part is again divided into two structures. The first 

case is when four 8-bit multipliers operate on independent 

data. In 16-bit mode, two 16-bit data are input. That is, four 

8-bit data are input. Therefore, using the same input port as in 

16-bit mode, only two independent 8-bit multipliers are 

possible at the same time, using only two A×C (P4) and two 

B×D (P1), or only two A×D (P2) and B×C (P3).  To use all 

four 8-bit multipliers simultaneously, four 8-bits data, that is, 
32-bits data are added to the input data. Depending on the 

number of bits of multiplicand and multiplier, the method of 

connecting input data to the boot multiplier is different. 

The second structure of the input part is to use the same 

structure as the 16-bit mode. As mentioned above, four 

independent multiplication results cannot be obtained if 8-bit 

multiplication is performed with a 16-bit mode structure. This 

is because the multipliers and multiplicands of the two input 

pairs cross each other and the multiplication results in four 

cases are output. This operation can be usefully used in 2-D 

convolution or matrix operation. Fig. 6 shows an example of 
convolution operations that are widely used in CNNs. To 

obtain 3×3 a-data by convolving 5×5 C-data and 3×3 W-data, 

multiplication and addition are repeated while W-data moves. 

As in the example of Fig. 6, if 8-bit C2 and C3 are input to the 

16-bit multiplicand (A, B) and 8-bit W1 and W2 are input to 

the 16-bit multiplier (C, D), P1, P2, P3, and P4 all become 

meaningful values.  

 

 
Fig. 6  Example of 2-D convolution operation 

 

Fig. 7 shows the block diagram of the proposed multiplier. 
Input and output data are 64 (= 8×2×4) bits, and the multiplier 

can operate in 16-bit, 8-bit, independent, and 8-bit association 

modes depending on operation selection. 

III. RESULT AND DISCUSSION 

A. HDL design and simulation results 

The proposed variable precision multiplier was designed 

with Verilog-HDL, and the functions were confirmed with 

ModelSim. Multiplication results were confirmed for all 

cases. Table 1 and Fig. 8 show the simulation results for 

several cases. It included exceptional situations to consider, 

and a simple test data was selected to facilitate understanding 

of the results. 

 

 
Fig. 7  Block diagram of the proposed multiplier 

TABLE I 

MULTIPLICATION RESULTS FOR 5 CASES 

Case 
Multiplicand 

Hex (Dec) 

Multiplier 

Hex (Dec) 

Product result Hex 

(Dec) 

1 0001 (1) 0001 (1) 0000_0001 (1) 
2 0101 (257) FFFF (-1) FFFF_FEFF (-257) 
3 FFFF (-1) 0101 (257) FFFF_FEFF (-257) 

4 
80FF (-
32513) 

80FF (-
32513) 

3F01FE01 
(1,057,095,169) 

5 
8080 (-
32640) 

0101 (257) 
FF800080 (-
8,388,480) 

 

In cases 1-4, the multiplication of unsigned B and unsigned 

D was tested. In cases 1, 2, 3, and 4, the MSB of B and the 

MSB of D are 002, 012, 102, and 112, respectively. The 
processing of booth multiplication results is different for the 

four cases, and it is confirmed that it operates correctly in each 

case. 

In cases 2 and 3, when unsigned D is multiplied by signed 

A, the MSB of D is 1 and 0, respectively. Conversely, in cases 

2 and 3, when unsigned B and signed C are multiplied, the 

MSB of B is 0 and 1, respectively. When multiplying an 

unsigned number and a signed number, the process, which 

checks the MSB of the unsigned number and then adds the 

signed number to the upper bit of the multiplication result 

according to the MSB, is confirmed. 
In case 5, the operation was confirmed when both 

multiplicand A and B values were 1000_00002. Signed A is 

calculated as -128, and unsigned B is calculated as +128. 

Finally, case 4 is the case where both multiplicand A and 

multiplier C are 1000_00002. It was confirmed that post-

processing for 1000_00002 was performed only for 

multiplicand. 
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Fig. 8  Simulation results for 5 cases 

 

In the simulation results shown in Fig. 8, the output data 
w_data for two input data, multiplicand, and multiplier, are 

marked with arrows. Moreover, the solid line is the part where 

each data is expressed in hexadecimal, and the dotted line is 

the part where the same data is expressed in decimal. 

Intermediate result values are shown between the input and 

output parts marked with a solid line, showing the results of 

the four booth multipliers and the modified results 

considering exceptional cases. Since the booth multiplier has 

to shift as many as the number of bits of the multiplier after 

the multiplication input data are given, the total latency is 11 

clock cycles, including flip-flops of the input/output ports. 

B.  FPGA Implementation and Results 

After functional verification of the Verilog-HDL design, 

the proposed variable precision multiplier was synthesized for 

Altera Cyclone III EP3C16F484C6 using Quartus II 13.1.0 

Web Edition. To compare the performance of variable 

precision multipliers, a 16-bit booth multiplier was 

additionally designed. 

TABLE Ⅱ 

COMPARISON OF IMPLEMENTATION RESULTS WITH FPGA (FAMILY: CYCLONE 

III, DEVICE : EP3C16F484C6, QUARTUS II VERSION : 13.1.0 WEB EDITION) 

 8-bit 

booth 

16-bit 

booth 

This 

paper 

Total combinational 
functions 

67 118 327 

Dedicated logic 
registers 

48 89 199 

Total logic elements 68 123 352 

Total registers 48 89 199 

Max clock rate (MHz) 
269.61 

(3.71ns) 
214.87 

(4.65ns) 
176.77 

(5.65ns) 
Latency (clock cycle) 10 18 11 
Latency (ns) 37.1 83.7 62.15 

 

As can be seen from Table Ⅱ, the variable precision 

multiplier has about four times more total registers than the 8-

bit booth multiplier and about five times more total 

combinatorial functions. This multiplier has about twice as 

many total registers as 16-bit booth multipliers and about 

three times as many total combination functions. Since the 

variable precision multiplier consists of four 8-bit booth 
multipliers, the total register number represents a proportional 

relationship with a single boot multiplier. However, a single 

boot multiplier uses the multiplication result as the output, 

while a variable precision multiplier includes logic circuit that 

combines four multiplication results into one result. 

Therefore, the variable precision multiplier uses more total 

combinatorial functions than the single bit multiplier. 

The clock speed of the proposed multiplier is slower than 

the 8-bit booth multiplier and the 16-bit booth multiplier. As 

explained above, the proposed multiplier requires logic circuit 

to be added after the booth multiplier operation is finished. 
However, comparing the latency, the 8-bit booth multiplier 

has a total of 37.1 ns with 10 clock cycles, the 16-bit booth 

multiplier has a total of 83.7 ns with 18 clock cycles, and the 

proposed circuit is 62.15 ns. When the proposed circuit 

operates in 16-bit mode, the latency is lower than that of a 

general 16-bit booth multiplier because it performs parallel 

calculations by dividing into four 8-bit multiplications. In 

addition, when operating in an 8-bit mode, four multiplication 

results can be obtained only in about 1.68 times the operating 

time of a general 8-bit booth multiplier. 

IV. CONCLUSION 

This paper proposes an 8/16 variable precision multiplier 

based on the boot algorithm. As the network layer of CNN 

becomes deeper, quantization techniques are being studied to 

reduce computation. Moreover, even if the precision is 

lowered in many CNN models, the performance is sufficiently 

maintained. Therefore, a variable precision multiplier suitable 

for CNN models with different precision for each layer was 

studied. By configuring four 8-bit boot multipliers in parallel, 
four 8-bit multiplications may be processed simultaneously.  

Currently, four multipliers can obtain four multiplication 

results for four different data pairs. Alternatively, the two 

multipliers perform multiplications for two different pairs of 

data, and the other two multipliers perform multiplication by 

changing only the multiplier of the two pairs of data. In order 

to operate with 16-bit multiplication, the calculation is 

performed by dividing the multiplicand and multiplier into 

upper 8 bits and lower 8 bits, performing partial 
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multiplication, and then combining them. After designing the 

proposed variable precision multiplier with Verilog HDL, the 

operation verification was completed for all input data using 

ModelSim.  

After it was synthesized for Altera Cyclone III 

EP3C16F484C6 using Quartus II 13.1.0 Web Edition, the 

area, and speed were compared with general 8-bit and 16-bit 

boot multiplication. The number of registers and 

combinational functions were four times and five times more 

than the 8-bit multiplier, respectively, and two times and three 
times more than the 16-bit multiplier, respectively. The 

combinational function is more than the value proportional to 

the number of bits because the proposed multiplier adds a 

logic circuit in the process of combining them after partial 

multiplication. The added combinational function makes the 

clock speed slower than other multipliers.  

However, because it is based on parallel processing, four 

8-bit multiplications can be processed within 1.68 times the 

processing time of one 8-bit multiplication, and 16-bit 

multiplication can be performed at 75% of the processing time 

of the 16-bit multiplier. Therefore, the proposed multiplier is 
expected to increase speed and energy efficiency by selecting 

bit precision according to the layer in the CNN model that 

requires different precision for each layer. 
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