
Vol.13 (2023) No. 3

ISSN: 2088-5334

Variable Precision Multiplier for CNN Accelerators

Based on Booth Algorithm

Duck-Hyun Guem a, Sunhee Kim a,*
a Department of System Semiconductor Engineering, Sangmyung University, Chungcheongnam-do,31066, Republic of Korea

Corresponding author: *happyshkim@smu.ac.kr

Abstract—As the utilization of CNN increases, many studies on lightweight, such as pruning, quantization, and compression, have been

conducted to use CNN models in servers and edge devices. Studies have revealed that quantization greatly reduces the complexity of

CNN models while lowering accuracy to a negligible level. CNN models with bit precision lowered from the existing 64/32 floating point

to 16, 8, and 4 fixed points are being announced. Therefore, this paper proposes a variable precision multiplier that can select between

16 bits and 8 bits of precision. It consists of four 8-bit booth multipliers. When 16-bit multiplication is selected, the final product is

calculated from four partial products, and when 8-bit multiplication is selected, four multiplications are possible simultaneously. The

proposed multiplier was designed with Verilog HDL, and its function was verified in ModelSim. And it was synthesized for Altera

Cyclone III EP3C16F484C6 using Quartus II 13.1.0 Web Edition. The proposed variable multiplier has increased combinational logic

compared to general 8-bit/16-bit booth multipliers, and the clock speed is reduced by 65% and 82%, respectively. However, it can

process four 8-bit multiplications within 1.68 times of normal 8-bit multiplication processing time and can process 16-bit multiplication

within 75% of the normal 16-bit multiplication processing time. Therefore, the proposed multiplier is expected to increase speed and

energy efficiency by selecting bit precision according to the layer in the CNN model.

Keywords—Convolutional neural network; variable precision; booth multiplier.

Manuscript received 8 Dec. 2022; revised 29 Jan. 2023; accepted 30 Mar. 2023. Date of publication 30 Jun. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Recently, research on Convolutional Neural Networks

(CNN) has been actively studied and used in various fields

such as the automobile industry, medical care, and financial

service industries [1], [2]. Deep learning applications using

data collected from Internet of Things devices are one of them
[3]–[5]. In order to prevent various problems such as network

load and personal information leakage that may occur in the

process of sending and receiving collected data to and from

servers, the demand for edge computing that processes data

on its own has been increased [6]–[8].
 Generally, high-performance and high-capacity servers

are required to process collected data and conduct AI learning

for various applications. It may be difficult to process this

process on an edge device [9], [10]. Most edge devices do not

process the training process that requires processing large

amounts of data and only proceed with inference.
Nevertheless, the CNN layer becomes gradually deeper, and

studies to reduce the amount of memory access and

computation, such as pruning, quantization, and compression,

have also been actively conducted [11]–[14].

Early CNN models used 64/32-bit floating points. As

researchers began to study accelerators rather than GPUs,

floating points were converted to fixed points to reduce

computational complexity [15]–[17], and interest in

quantization technology that lowered precision increased [18-

20]. Many CNN models showed that if the precision is

lowered, the hardware complexity is significantly reduced,

and the accuracy reduction is negligible or low [21], [22]. So,
different precisions are applied to each layer of CNN [23],

[24], or CNN models that can select precision according to

system performance are proposed [25]–[27].

CNN accelerators perform many Multiply-Accumulate

(MAC) operations. CNN accelerators that can efficiently

change precision for multiplication and MAC operations are

being introduced [28], [29]. Therefore, this paper proposes a

multiplier capable of selecting bit precision for CNN

networks that require different precision for each layer. The

proposed multiplier is based on the booth algorithm to

increase the efficiency of multiplication operations, and
multiplication can be performed by selecting one precision

1025

between 16-bit and 8-bit multiplication. Using parallel

processing technique in 8-bit unit, the processing time can be

reduced compared to general 8-bit multiplication and 16-bit

multiplication.

Section two of this paper presents the booth algorithm and

architecture of the proposed variable precision multiplier.

Section three reveals the results of verifying the multiplier

designed with Verilog HDL with ModelSim and synthesizing

it with FPGA. The last section of this paper is the conclusion.

II. MATERIALS AND METHOD

A. Booth Algorithm

Among arithmetic operators, the multiplier is an operator

that requires a large area and a long calculation time due to its

complicated calculation. Therefore, it is important to speed up

the multiplier to improve the overall hardware performance.

The booth multiplication algorithm is a multiplication

algorithm faster than general multiplication methods [30].

General multiplication operations deal with unsigned
numbers and partial product operations increase by the

number of bits of the multiplier or by the number of 1s present

in the multiplier. On the other hand, the booth algorithm deals

with signed numbers, and when there are n (>=2) consecutive

1s in the multiplier, the operation for the partial product is

limited to 2, which reduces the amount of operation.

Therefore, we use the basic multiplier as the booth multiplier

to design the variable precision multiplier.

A flowchart of the booth algorithm is shown in Fig. 1. The

booth algorithm is based on the fact that when 1 occurs n

times in a row (bnbn-1 ... b1), its value is equal to 2n-1.

Multiplication is performed by replacing the multiplier with -
1 in the b1 position and 2 n in the bn+1 position. Since b1 is the

starting point of a series of 1s, it must be compared with b0

and similarly, bn is the end point of a series of 1s, so it must

be compared with bn+1. Therefore, at the start of the

calculation, a digit lower than the LSB of multiplier Q is made

virtual and initialized to Q-1 = 0, and then the start,

continuation, and end of 1 are distinguished by right-shifting

the multiplier every clock.

Fig. 1 Flowchart of the booth algorithm

B. Variable Precision Multiplier

The precision variable multiplier proposed in this paper is

based on the Radix-2 booth algorithm. The proposed

multiplier merged four 8-bit multipliers to construct a 16-bit
multiplier. Depending on the selection conditions, 8-bit

parallel multiplication, as well as 16-bit multiplication, is

possible.

1) Signed 16-bit multiplier: The multiplication

calculation for the 16-bit multiplicand and multiplier can be

expressed as shown in Fig. 2. The 16-bit multiplicand and

multiplier are divided into upper 8 bits and lower 8 bits,

respectively, and expressed as A, B, and C, D. At this time,

the multiplication of two numbers can be expressed by the

following equation (1).

��, �� × ��, �� = �� × 2� + �� × �� × 2� + ��
 = � × � × 2�� + �� × � + � × �� × 2�

+ � × �

(1)

Fig. 2 Example of the multiplication operation

In Equation (1), the operand multiplied by a power of 2 can

be simply expressed as a left-shift operation. The left-shift

operation fills the lower bits with 0s, and 0 is the addition

identity. Therefore, as shown in Fig. 2, The left-shift

operation is actually not required in hardware

implementation. The lower 8 bits of A×D and B×C are added

with the upper 8 bits of B×D. The upper 8 bits of A×D and
B×C are added to the lower 8 bits of A×C and the carry input.

Finally, the upper 8 bits of A×C and the carry input signal are

added. A 16-bit multiplier can be implemented using four 8-

bit multipliers and 8-bit two-input, three-input, and four-input

adders.

The radix-2 booth multiplication algorithm multiplies

signed numbers. Therefore, when the multiplication of 16-bit

signed numbers is divided into 8-bit booth multipliers, the

signs of each 8-bit data must be considered. This is because

the MSB of the lower 8 bits is not a sign bit.

First, A×C, which is the multiplication of the upper 8 bits,
uses the booth multiplier as it is because both MSBs of A and

C are sign bits. Next, consider the case where only one of the

two inputs is an unsigned number, such as the case of A×D.

In this case, the MSB of the unsigned number D must be

checked. If the MSB of D is 0, the result of A×D

multiplication may be used as it is. If the MSB of D is 1, D is

determined to be a negative number in A×D booth

multiplication, and the following equation is performed.

1026

� × � = � × �−2� + �������

= � × �−2�� + � × ������
(2)

D is an unsigned number, so to obtain the result of A×abs(D),

A×(2^8) can be added to the multiplication calculation result.

However, multiplying by 2^8 can be changed to an 8-bit shift
left, and 0 is the identity of addition. Therefore, A can be

added to the upper 8 bits of the multiplication result. Fig. 3

shows a block diagram of a multiplier for signed A and

unsigned D.

Fig. 3 Block diagram of a multiplier for signed A and unsigned D

Similarly, in the case of B×C, the MSB of B, which is an
unsigned number, is checked. When it is 0, the multiplication

result is used as it is, and when it is 1, C is added to the upper

8 bits of the multiplication result. B and D are the lower 8-bit

data of multiplicand and multiplier, respectively, and both do

not contain a sign. Therefore, when multiplying B and D, the

MSB of both B and D should be checked. If the MSB of both

numbers is 0, the result of the booth multiplier can be used as

it is. If only the MSB of B is 1, as seen above, D can be added

to the upper 8 bits of the result of the multiplier. Conversely,

if only the MSB of D is 1, B can be added to the upper 8 bits

of the result of the multiplier. Finally, if the MSB of both

numbers is 1, the sum of B and D is added to the upper 8 bits
of the multiplier result according to the following equation.

� × � = �−2� + ������� × �−2� + �������

= �2��� + ������� + ������� × �−2��
+ ������ × ������

(3)

Considering all these cases, the B×D multiplier can be

expressed as shown in Fig. 4.

Fig. 4 Block diagram of a multiplier for unsigned B and unsigned D

Finally, in order to obtain a 16-bit signed product, four

multiplication results must be added in bitwise alignment as

in the multiplication of unsigned numbers. In this case, the

multiplication result of B×D is an unsigned number, but the

multiplication results of A×D, B×C, and A×C are signed

numbers. Therefore, when adding for the upper 8-bit data of

A×C, in multiplication of unsigned numbers, only the carry of

addition of A×D and B×C was added, but in multiplication of

signed numbers, in addition to the carry signal, after

extending the sign bits of A×D and B×C to 8 bits each, the

sign bits must be added together.

There are some things to consider when using the booth

multiplication algorithm using two's complement. The booth

multiplier compares Qn and Qn-1 of multiplier Q and then adds

or subtracts the multiplicand. Subtraction operations in

hardware consist of adding the two's complements of the

number to be subtracted. The two's complement of a number

is obtained by adding 1 to the inverted value of each bit.
However, due to the nature of two's complement, the two's

complement of 8-bit 1000_00002 becomes the same value as

1000_00002. Therefore, when multiplicand has a value of

1000_00002 in the booth multiplier, the absolute value of the

result is the same as the original multiplication value, but the

sign is reversed. A negative result is obtained when the

original result is positive, and a positive result is obtained

when the original result is negative. Therefore, in the

multiplier proposed in this paper, when the 8-bit multiplicand

is 1000_00002, the sign of the output result of the booth

multiplier is changed, and then the addition is performed. Fig.
5 shows a block diagram when the proposed multiplier

operates in 16-bit mode.

Fig. 5 Block diagram of the proposed multiplier in 16-bit mode

2) Four signed 8-bit multipliers: Since the proposed

multiplier consists of four signed 8-bit booth multipliers, it

can simultaneously process four multiplications for 8-bit

signed multiplicand and multiplier. Unlike in the 16-bit mode,

in the 8-bit mode, there is no additional process after each

multiplication, and the number of bits of input and output data

is changed.

First, the number of bits in the output data is increased from

32 bits to 64 bits. In 16-bit mode, the multiplication result is

32 (=16x2) bits. In the 8-bit multiplication mode, when four

multiplications are performed simultaneously, there are a total

of four 16 (= 8x2) bit results, so the multiplication result is 64

1027

bits in total. Therefore, output ports must be added to operate

in 8-bit multiplication mode.

The input part is again divided into two structures. The first

case is when four 8-bit multipliers operate on independent

data. In 16-bit mode, two 16-bit data are input. That is, four

8-bit data are input. Therefore, using the same input port as in

16-bit mode, only two independent 8-bit multipliers are

possible at the same time, using only two A×C (P4) and two

B×D (P1), or only two A×D (P2) and B×C (P3). To use all

four 8-bit multipliers simultaneously, four 8-bits data, that is,
32-bits data are added to the input data. Depending on the

number of bits of multiplicand and multiplier, the method of

connecting input data to the boot multiplier is different.

The second structure of the input part is to use the same

structure as the 16-bit mode. As mentioned above, four

independent multiplication results cannot be obtained if 8-bit

multiplication is performed with a 16-bit mode structure. This

is because the multipliers and multiplicands of the two input

pairs cross each other and the multiplication results in four

cases are output. This operation can be usefully used in 2-D

convolution or matrix operation. Fig. 6 shows an example of
convolution operations that are widely used in CNNs. To

obtain 3×3 a-data by convolving 5×5 C-data and 3×3 W-data,

multiplication and addition are repeated while W-data moves.

As in the example of Fig. 6, if 8-bit C2 and C3 are input to the

16-bit multiplicand (A, B) and 8-bit W1 and W2 are input to

the 16-bit multiplier (C, D), P1, P2, P3, and P4 all become

meaningful values.

Fig. 6 Example of 2-D convolution operation

Fig. 7 shows the block diagram of the proposed multiplier.
Input and output data are 64 (= 8×2×4) bits, and the multiplier

can operate in 16-bit, 8-bit, independent, and 8-bit association

modes depending on operation selection.

III. RESULT AND DISCUSSION

A. HDL design and simulation results

The proposed variable precision multiplier was designed

with Verilog-HDL, and the functions were confirmed with

ModelSim. Multiplication results were confirmed for all

cases. Table 1 and Fig. 8 show the simulation results for

several cases. It included exceptional situations to consider,

and a simple test data was selected to facilitate understanding

of the results.

Fig. 7 Block diagram of the proposed multiplier

TABLE I

MULTIPLICATION RESULTS FOR 5 CASES

Case
Multiplicand

Hex (Dec)

Multiplier

Hex (Dec)

Product result Hex

(Dec)

1 0001 (1) 0001 (1) 0000_0001 (1)
2 0101 (257) FFFF (-1) FFFF_FEFF (-257)
3 FFFF (-1) 0101 (257) FFFF_FEFF (-257)

4
80FF (-
32513)

80FF (-
32513)

3F01FE01
(1,057,095,169)

5
8080 (-
32640)

0101 (257)
FF800080 (-
8,388,480)

In cases 1-4, the multiplication of unsigned B and unsigned

D was tested. In cases 1, 2, 3, and 4, the MSB of B and the

MSB of D are 002, 012, 102, and 112, respectively. The
processing of booth multiplication results is different for the

four cases, and it is confirmed that it operates correctly in each

case.

In cases 2 and 3, when unsigned D is multiplied by signed

A, the MSB of D is 1 and 0, respectively. Conversely, in cases

2 and 3, when unsigned B and signed C are multiplied, the

MSB of B is 0 and 1, respectively. When multiplying an

unsigned number and a signed number, the process, which

checks the MSB of the unsigned number and then adds the

signed number to the upper bit of the multiplication result

according to the MSB, is confirmed.
In case 5, the operation was confirmed when both

multiplicand A and B values were 1000_00002. Signed A is

calculated as -128, and unsigned B is calculated as +128.

Finally, case 4 is the case where both multiplicand A and

multiplier C are 1000_00002. It was confirmed that post-

processing for 1000_00002 was performed only for

multiplicand.

1028

Fig. 8 Simulation results for 5 cases

In the simulation results shown in Fig. 8, the output data
w_data for two input data, multiplicand, and multiplier, are

marked with arrows. Moreover, the solid line is the part where

each data is expressed in hexadecimal, and the dotted line is

the part where the same data is expressed in decimal.

Intermediate result values are shown between the input and

output parts marked with a solid line, showing the results of

the four booth multipliers and the modified results

considering exceptional cases. Since the booth multiplier has

to shift as many as the number of bits of the multiplier after

the multiplication input data are given, the total latency is 11

clock cycles, including flip-flops of the input/output ports.

B. FPGA Implementation and Results

After functional verification of the Verilog-HDL design,

the proposed variable precision multiplier was synthesized for

Altera Cyclone III EP3C16F484C6 using Quartus II 13.1.0

Web Edition. To compare the performance of variable

precision multipliers, a 16-bit booth multiplier was

additionally designed.

TABLE Ⅱ

COMPARISON OF IMPLEMENTATION RESULTS WITH FPGA (FAMILY: CYCLONE

III, DEVICE : EP3C16F484C6, QUARTUS II VERSION : 13.1.0 WEB EDITION)

 8-bit

booth

16-bit

booth

This

paper

Total combinational
functions

67 118 327

Dedicated logic
registers

48 89 199

Total logic elements 68 123 352

Total registers 48 89 199

Max clock rate (MHz)
269.61

(3.71ns)
214.87

(4.65ns)
176.77

(5.65ns)
Latency (clock cycle) 10 18 11
Latency (ns) 37.1 83.7 62.15

As can be seen from Table Ⅱ, the variable precision

multiplier has about four times more total registers than the 8-

bit booth multiplier and about five times more total

combinatorial functions. This multiplier has about twice as

many total registers as 16-bit booth multipliers and about

three times as many total combination functions. Since the

variable precision multiplier consists of four 8-bit booth
multipliers, the total register number represents a proportional

relationship with a single boot multiplier. However, a single

boot multiplier uses the multiplication result as the output,

while a variable precision multiplier includes logic circuit that

combines four multiplication results into one result.

Therefore, the variable precision multiplier uses more total

combinatorial functions than the single bit multiplier.

The clock speed of the proposed multiplier is slower than

the 8-bit booth multiplier and the 16-bit booth multiplier. As

explained above, the proposed multiplier requires logic circuit

to be added after the booth multiplier operation is finished.
However, comparing the latency, the 8-bit booth multiplier

has a total of 37.1 ns with 10 clock cycles, the 16-bit booth

multiplier has a total of 83.7 ns with 18 clock cycles, and the

proposed circuit is 62.15 ns. When the proposed circuit

operates in 16-bit mode, the latency is lower than that of a

general 16-bit booth multiplier because it performs parallel

calculations by dividing into four 8-bit multiplications. In

addition, when operating in an 8-bit mode, four multiplication

results can be obtained only in about 1.68 times the operating

time of a general 8-bit booth multiplier.

IV. CONCLUSION

This paper proposes an 8/16 variable precision multiplier

based on the boot algorithm. As the network layer of CNN

becomes deeper, quantization techniques are being studied to

reduce computation. Moreover, even if the precision is

lowered in many CNN models, the performance is sufficiently

maintained. Therefore, a variable precision multiplier suitable

for CNN models with different precision for each layer was

studied. By configuring four 8-bit boot multipliers in parallel,
four 8-bit multiplications may be processed simultaneously.

Currently, four multipliers can obtain four multiplication

results for four different data pairs. Alternatively, the two

multipliers perform multiplications for two different pairs of

data, and the other two multipliers perform multiplication by

changing only the multiplier of the two pairs of data. In order

to operate with 16-bit multiplication, the calculation is

performed by dividing the multiplicand and multiplier into

upper 8 bits and lower 8 bits, performing partial

1029

multiplication, and then combining them. After designing the

proposed variable precision multiplier with Verilog HDL, the

operation verification was completed for all input data using

ModelSim.

After it was synthesized for Altera Cyclone III

EP3C16F484C6 using Quartus II 13.1.0 Web Edition, the

area, and speed were compared with general 8-bit and 16-bit

boot multiplication. The number of registers and

combinational functions were four times and five times more

than the 8-bit multiplier, respectively, and two times and three
times more than the 16-bit multiplier, respectively. The

combinational function is more than the value proportional to

the number of bits because the proposed multiplier adds a

logic circuit in the process of combining them after partial

multiplication. The added combinational function makes the

clock speed slower than other multipliers.

However, because it is based on parallel processing, four

8-bit multiplications can be processed within 1.68 times the

processing time of one 8-bit multiplication, and 16-bit

multiplication can be performed at 75% of the processing time

of the 16-bit multiplier. Therefore, the proposed multiplier is
expected to increase speed and energy efficiency by selecting

bit precision according to the layer in the CNN model that

requires different precision for each layer.

REFERENCES

[1] T. S. Alemayehu, and We. -D. Cho, “Distributed Edge Computing for

DNA-Based Intelligent Services and Applications: A Review,”

Journal of Information Processing Systems, vol. 9. no. 12, pp. 291-

306, 2020, doi: 10.3745/KTCCS.2020.9.12.291.

[2] J. H. Hong, K. C. Lee, and S. Y. Lee, “Trends in Edge Computing

Technology,” Electronics and Telecommunications Trends, vol. 35,

no. 6, pp. 78-87, Dec. 2020, doi: 10.22648/ETRI.2020.J.350608.

[3] Y. B. Zikria, M. K. Afzal, S. W. Kim, A. Marin, and M. Guizani,

“Deep learning for intelligent IoT: Opportunities, challenges and

solutions,” Computer Communications, vol. 164, pp. 50-53, Dec. 2020,

doi: 10.1016/j.comcom.2020.08.017.

[4] H. Li, K. Ota and M. Dong, "Learning IoT in Edge: Deep Learning for

the Internet of Things with Edge Computing," IEEE Network, vol. 32,

no. 1, pp. 96-101, Jan.-Feb. 2018, doi: 10.1109/MNET.2018.1700202.

[5] T. Han, K. Muhammad, T. Hussain, J. Lloret and S. W. Baik, "An

Efficient Deep Learning Framework for Intelligent Energy

Management in IoT Networks," IEEE Internet of Things Journal, vol.

8, no. 5, pp. 3170-3179, 1 March1, 2021, doi:

10.1109/JIOT.2020.3013306.

[6] J. Kim, J. Jeon, M. Kee and G. H. Park, “The Method Using Reduced

Classification Models for Distributed Processing of CNN Models in

Multiple Edge Devices,” Journal of KIISE, vol. 47, no. 08, pp. 787-

792, Aug. 2020, doi: 10.5626/jok.2020.47.8.787.

[7] K. Cao, Y. Liu, G. Meng and Q. Sun, "An Overview on Edge

Computing Research," IEEE Access, vol. 8, pp. 85714-85728, 2020,

doi: 10.1109/ACCESS.2020.2991734.

[8] J. Chen and X. Ran, "Deep Learning With Edge Computing: A

Review," Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674,

Aug. 2019, doi: 10.1109/JPROC.2019.2921977.

[9] T. Sledevič, and A. Serackis, “mNet2FPGA: A Design Flow for

Mapping a Fixed-Point CNN to Zynq SoC FPGA," Electronics, vol. 9,

no. 11: 1823, 2020, doi: 10.3390/electronics9111823.

[10] M. Merenda, C. Porcaro, D. Iero, “Edge Machine Learning for AI-

Enabled IoT Devices: A Review,” Sensors, vol. 20, no. 9, 2533, 2020,

doi: 10.3390/s2009253.

[11] Y. Byun, M. Ha, J. Kim, S. Lee and Y. Lee, "Low-Complexity

Dynamic Channel Scaling of Noise-Resilient CNN for Intelligent

Edge Devices," in 2019 DATE, Florence, Italy, 2019, pp. 114-119,

doi: 10.23919/DATE.2019.8715280.

[12] M. Shao, J. Dai, J. Kuang, and D. Meng, “A dynamic CNN pruning

method based on matrix similarity,” SIViP, vol. 15, pp. 381–389,

March 2021, doi: 10.1007/s11760-020-01760-x

[13] S. K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.

R. Müller, and W. Samek, “Pruning by explaining: A novel criterion

for deep neural network pruning,” Pattern Recognition, vol. 115, July

2021, 107899, doi: 10.1016/j.patcog.2021.107899.

[14] Y. Liang, L. Lu, Y. Jin, J. Xie, R. Huang, J. Zhang, and W. Lin, "An

Efficient Hardware Design for Accelerating Sparse CNNs With NAS-

Based Models," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 41, no. 3, pp. 597-613, March

2022, doi: 10.1109/TCAD.2021.3066563.

[15] C. Y. Lo, F. C. M. Lau and C. Sham, “Fixed-Point Implementation of

Convolutional Neural Networks for Image Classification,” in 2018

International Conference on Advanced Technologies for

Communications, Ho Chi Minh City, Vietnam, 2018, pp. 105-109.

[16] T. Sledevič, A. Serackis, “mNet2FPGA: A Design Flow for Mapping

a Fixed-Point CNN to Zynq SoC FPGA,” Electronics, vol. 9, no. 11,

1823, 2020, doi: 10.3390/electronics9111823.

[17] Z. Nie, Z. Li, L. Wang, S. Guo, Y. Deng, R. Deng and Q. Dou, “Laius:

an energy-efficient FPGA CNN accelerator with the support of a

fixed-point training framework,” International Journal of

Computational Science and Engineering, vol. 21, no. 3, pp. 418-428,

2020, doi: 10.1504/IJCSE.2020.106064.

[18] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of

deep convolutional networks,” in Proc. Int. Conf. Mach. Learn., New

York, NY, USA, 2016, pp. 2849–2858.

[19] Z. Bao, G. Fu, W. Zhang, K. Zhan and J. Guo, "LSFQ: A Low-Bit Full

Integer Quantization for High-Performance FPGA-Based CNN

Acceleration," IEEE Micro, vol. 42, no. 2, pp. 8-15, 1 March-April

2022, doi: 10.1109/MM.2021.3134968.

[20] M. Sailesh, K. Selvakumar, P. Narayanan, “A novel framework for

deployment of CNN models using post-training quantization on

microcontroller,” Microprocessors and Microsystems, vol. 94, 104634,

2022, doi: 10.1016/j.micpro.2022.104634.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. EI-Yaniv, and Y. Bengio,

“Quantized neural networks: Training neural networks with low

precision weights and activations,” J. Mach. Learn. Res., vol. 18, no.

1, pp. 6869–6898, Jan. 2017. [Online]. Available:

https://dl.acm.org/citation.cfm?id=3122009.3242044.

[22] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/W convolutional

network accelerator,” IEEE Trans. Circuits Syst. Video Technol.

(TCSVT), vo. 27, no. 11, pp. 2461–2475, Nov. 2017,

doi: 10.1109/TCSVT.2016.2592330.

[23] Y. Park, Y. Kang, S. Kim, E. Kwon, and S. Kang, “GRLC: Grid-based

Run-length Compression for Energy-efficient CNN Accelerator”, in

Proceedings of the ACM/IEEE International Symposium on Low

Power Electronics and Design, Boston, MA, USA, Aug. 2020, pp. 91-

96, doi: 10.1145/3370748.3406576.

[24] D. Kim, E. Park, and S. Yoo, “Energy-efficient neural network

accelerator based on outlier-aware low-precision computation,” In

2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA), Los Angeles, CA, USA, July 2018, pp. 688–698,

doi: 10.1109/ISCA.2018.00063.

[25] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:An

energy-efficient deep neural network accelerator with fully variable

weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp.

173–185, Jan. 2019. doi: 10.1109/JSSC.2018.2865489.

[26] J. Wang, S. Fang, X. Wang, J. Ma, T. Wang and Y. Shan, "High-

Performance Mixed-Low-Precision CNN Inference Accelerator on

FPGA," IEEE Micro, vol. 41, no. 4, pp. 31-38, 1 July-Aug, 2021,

doi: 10.1109/MM.2021.3081735.

[27] S. -N. Tang, "Area-Efficient Parallel Multiplication Units for CNN

Accelerators With Output Channel Parallelization," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31,

no. 3, pp. 406-410, March 2023, doi: 10.1109/TVLSI.2023.3235776.

[28] W. Liu, J. Lin, and Z. Wang, “A Precision-Scalable Energy-Efficient

Convolutional Neural Network Accelerator,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp.3484-3497,

Oct. 2020, doi: 10.1109/TCSI.2020.2993051.

[29] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and

Benchmarking of Precision-Scalable Multiply-Accumulate Unit

Architectures for Embedded Neural-Network Processing,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol.

9, no. 4, pp.697-711, Dec. 2019, doi: 10.1109/JETCAS.2019.2950386.

[30] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly

Journal of Mechanics and Applied Mathematics, vol. 4, pp. 236-240,

1951.

1030

