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Abstract—In a location tracking system for a moving object, accuracy and real-time processing are essential factors. The Kalman filter, 

as a recursive function, stands out as one of the prominent algorithms for object tracking. It continuously compares measured data 

with predicted values based on the system characteristics in real-time. Then it corrects the error of the predicted values while 

considering the noise of both system and measured data. This paper focuses on designing a hardware based Kalman filter for object 

tracking in two dimensions. Following an analysis of the Kalman filter algorithm, the blocks capable of parallel processing are identified 

and configured to be processed in parallel, effectively reducing data processing time. The clock speed is enhanced by using the pipeline 

technique. In addition, the time-sharing technique is applied to increase the utilization of hardware resources and reduce the area. Data 

was processed at 32-bit floating points to uphold accuracy comparable to software-implemented Kalman filters. The proposed Kalman 

filter architecture is designed using Verilog HDL and then simulated in Synopsys VCS/Verdi. The accuracy is verified by comparing 

results with a software based Kalman filter designed using MATLAB. It was implemented using Zynq ZYNQ-7 ZC702 Programmable 

logic via Xilnix Vivado and can operate at 33MHz. It takes 44 clocks, or 1.32 us, to process one data. Therefore, it was confirmed that 

the designed Kalman filter hardware is suitable for real-time processing. 
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I. INTRODUCTION

Research on moving object tracking has been actively 

conducted in various engineering fields, such as autonomous 

vehicles, robot control, communication systems, and 

navigation [1]–[4]. Measurement data is crucial for estimating 

an object's location, but it often contains significant noise both 

within and outside the system. The noise diminishes the 

accuracy of prediction and estimation. Consequently, several 

algorithms are under investigation to address this challenge, 

and the Kalman filter is a representative algorithm [5]–[7]. 

The Kalman filter is a recursive algorithm [8]–[10]. It 

distinguishes itself from typical filters by dynamically 
updating its filter coefficients, Kalman gain, over time [11]. 

It compares noisy measured data with predicted values based 

on system characteristics. Then, it corrects the predicted value 

using the prediction error and Kalman gain. It provides 

estimated values with noise effectively removed, responds in 

real-time to system state changes, and performs highly 

efficient calculations [8]–[11]. 

The Kalman filter is a model for linear systems. Since 

many systems are nonlinear systems, their application is 

limited. So, the extended Kalman filter (EKF) has been 

studied to model nonlinear systems [12]–[14]. Unlike the 
traditional Kalman filter, the EKF employs a nonlinear 

mathematical model for the system. It dynamically calculates 

and applies a linear model based on the previous estimate rather 

than a predetermined linearization model. Although the EKF is 

more complex than linear systems, it maintains the fundamental 

algorithmic principles of the Kalman filter [15], [16]. 

For more accurate tracking, advanced EKF algorithms 

integrating various sensors have been studied [17], [18]. 

Object tracking using artificial intelligence has recently been 

conducted [19]–[21]. They offer enhanced precision, but their 

complexity necessitates hardware implementation for real-
time processing [22]–[24]. FPGA hardware implementation 

is facilitated within SoC programmable devices like Xilinx 

Zynq [25], [26]. This approach reduces communication 

overhead with software and enhances the efficiency of 

resource allocation between software and hardware [27]–[29]. 
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In this paper, we design a Kalman filter hardware that 

estimates an object's position in two-dimensional space. In 

FPGA design, we focused on increasing overall resource 

efficiency through the utilization of pipeline and parallel 

processing techniques. In the next Section, we introduce the 

Kalman filter algorithm, and the system model and 

parameters used. Then, the proposed hardware structure is 

explained in detail. Section Ⅲ presents the results of hardware 

implementation. Finally, conclusions are drawn in Section Ⅳ. 

II. MATERIALS AND METHOD 

A. Kalman Filter Algorithm 

The Kalman filter algorithm comprises three main 

processes, as shown in Fig. 1: a prediction process, a Kalman 

filter gain calculation process, and an estimation (or update) 

process [30], [31]. 

 
Fig. 1  Kalman filter algorithm 

 

The prediction process involves predicting the state x of a 

system and its error covariance P. These are expressed 

through the following equations: 

 ���� = ������ (1) 

 ��� = ������	 + � (2) 

where the superscripts “-” and “^” mean the predicted value 

and the estimated value, respectively. The subscript “k” 

indicates the kth step. If k represents the current state, (k-1) 

signifies the previous state, and (k+1) signifies the next state. 

Prediction of the estimate of the current state x is derived from 

the estimate of the previous state and the system model A. 
System model A describes how a system changes over time. 

Therefore, A is a predetermined constant prior to the Kalman 

filter computation, and it is important to reflect the 

characteristics of the actual system mathematically 

accurately.  

The process of predicting the error covariance P requires to 

consider system process noise Q, in addition to the previous 

error covariance and system model A. Similar to the system 

model A, system process noise Q is predetermined by the 

system prior to Kalman filter calculation. As noise arises from 

various factors, it must be treated as a design variable of the 

Kalman filter, and an appropriate value must be determined 
through a trial-and-error process. Noise is typically expressed 

in statistical terms. The Kalman filter assumes that noise 

adheres to a standard normal distribution with a mean of 0. 

Thus, only the variance of the noise needs to be ascertained. 

After the prediction is completed, the Kalman gain K is 

calculated as follows 

 �� = ���	����	 + ���� (3) 

Then, the system state x and its error covariance P are 

updated using the measurements z through the following 

equations. 

 ��� = ���� + ����� − ����� (4) 

 �� = ��� − ����� (5) 

A variable H, one of the system models, signifies the 

relationship between the measurements z and the system state 

x. In equation (4), ���� on the right side is the predicted value 

of the measurements computed from the expected state. 

Consequently, �� − ����  represents the difference between 

the actual measurements and the predicted measurements. So, 
it becomes the prediction error. The estimated value for the 

system state ��� is derived by correcting the state prediction 

value with the prediction error, achieved through the 

multiplication with the Kalman gain. Similarly, error 

covariance is also corrected using the Kalman gain. 

The estimated value's accuracy depends on the Kalman 

gain's effectiveness in rectifying the predicted value. When 

calculating the Kalman gain, P, H, and R are used as in 

Equation (3). R signifies the uncertainty of the measurement 

values. Like system process noise Q, it is assumed to follow a 
normal distribution with a mean of 0. Therefore, only the 

measurement noise variance requires identification, and its 

value must be determined through iterative experimentation. 

If the measurement noise R is large, the Kalman gain 

decreases. Consequently, in the correction of the system state 

outlined in Equation (4), the influence of the measurements 

decreases, resulting in a more gradual adjustment of the state 

estimate. Conversely, as the R decreases, the Kalman gain 

increases, increasing the impact of the measurements.  

If the system noise Q is large, the error covariance P 

becomes large according to Equation (2). As the error 

covariance P increases, the term in the numerator of the 
Kalman gain becomes relatively larger compared to the 

denominator, so the Kalman gain increases. Consequently, 

during the correction of the system state, the influence of the 

measurements increases. If the error covariance P is small, the 

Kalman gain decreases, and the influence of the 

measurements decreases during the correction of the system 

state.  

B. Mathematical Model for Object Tracking 

To track an object moving in a two-dimensional plane, both 

the position and velocity along the horizontal and vertical 

axes are considered as the system state. Consequently, the 

system state x becomes a 4×1 matrix, as shown in the 

following equation 

 � = [��  ��  �� ��]	 (6) 

where the subscripts "x" and "y" represent the horizontal and 

vertical axes, respectively, and p and v indicate position and 

velocity, respectively. The relationship between position and 

velocity is established as follows,  

 �� = ���� +  ���� × ∆�  (7) 

Assuming that the speed is constant, the system model A is 

set as follows 

 � = �1 ∆�0 1 0 00 00 00 0 1 ∆�0 1   (8) 

where ∆t represents the time interval between position 

measurements. In this paper, a time interval Δt is set at 1. 
Since the measurements are the positions along the 

horizontal and vertical axes, the matrix H, which represents 

the relationship between the measured values and the state 

variables, is configured as a 2×4 matrix as follows. 
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  = !1 00 0    0 01 0" (9) 

Since both the system noise Q and the measurement noise 

R are both assumed to follow a normal distribution with a 

mean of 0, they are represented as diagonal matrices of 4×4 

and 2×2, respectively, as follows. 

 � =
⎣⎢
⎢⎢
⎡&'��( 00 &'((( 0      00      00      00      0 &'))( 00 &'**( ⎦⎥

⎥⎥
⎤
 (10) 

 � = .&/��( 00 &/((( 0 (11) 

Mathworks’ MATLAB is used to verify the algorithm. As 
verification data, coordinate values of a person's face in a 2D 

image are used. System models A, H, Q, and R must be 

predetermined before the Kalman filter calculation. On the 

contrary, the state x and error covariance P are recursively 

updated in real-time, so the initial values must be specified. In 

this paper, the initial values of x and P were set as follows 

  � = [0  0  0  0]	 (12) 

 � = �100 00 100 0     00     00     00     0 100 0   0 100  (13) 

Based on repeated simulations, the covariances of Q and R 
are determined to be 1 and 50, respectively. Consequently, the 

following matrices are formulated 

 � = �1 00 1 0 00 00 00 0 1 00 1  (14) 

 � = !50 00 50" (15) 

By scrutinizing the simulation values for each step, the 

crucial decision regarding bit precision is made for hardware 

implementation. Due to the broad range of values involved, 

performing calculations with a 32-bit floating-point format 

rather than a 32-bit fixed-point format could enhance 

accuracy despite the increased hardware complexity.  

C. Algorithm Analysis for Hardware Structure 

In this paper, a hardware structure of the Kalman filter is 

devised to facilitate parallel processing, minimize latency, 
and optimize area by reusing hardware components. In the 

prediction process, a matrix multiplier is employed to 

compute the product of the 4×4 matrix A and the 4×1 matrix 

x to predict the state x. Additionally, for covariance 

prediction, a matrix multiplier and a matrix adder are 

utilized to process a 4×4 matrix and a 4×1 matrix. To predict 

covariance, matrix multiplication needs to be performed 

twice, which is executed sequentially. Specifically, using a 

single matrix multiplier, �����  is calculated in the initial 

step, followed by the calculation of ������	  in the 

subsequent step.  

Since addition typically requires less processing time than 
multiplication, multiplication and addition operations are 

combined within a single step. Consequently, a total of two 

steps are necessary to predict covariance. When calculating 

the two predicted values, x and P, there is no dependence 

between them. Consequently, the prediction for x and P can 

be executed in parallel. As a result, a total of two matrix 

multipliers and one matrix adder are required for the 

prediction process, which takes two steps.  

Fig. 2 shows the essential hardware components and the 

steps during which each component is utilized. The 

matrix_mul_1 and matrix_mul_2 are matrix multipliers for a 

4×4 matrix multiplied by a 4×1 matrix and for a 4×4 matrix 
multiplied by a 4×4 matrix, respectively. The matrix_add_1 is 

a matrix adder for two 4×4 matrices. In the prediction process, 

the matrix_mul_1 is used during the first step to compute ������ , and the matrix_mul_2 is used during two steps to 

compute  ������	 . The matrix_add_1 operates during the 

second step to compute �� . This parallel processing reduces 

latency in the Kalman filter prediction process. 

 

 

Fig. 2  Essential hardware components and their time schedule 

 

To calculate ���	 included in the Kalman gain, a matrix 

multiplier for a 4×4 matrix multiplied by a 4×2 matrix. 
However, since H is a constant matrix and only two of its eight 

elements are the non-zero value, ���	  can be determined 

solely through positional transformation without any 

arithmetic operation as follows. 
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���	 =
⎣⎢
⎢⎡��,��� ��,�(���,(�� ��,((� ��,�)� ��,�*���,()� ��,(*���,)�� ��,)(���,*�� ��,*(� ��,))� ��,)*���,*)� ��,**� ⎦⎥

⎥⎤ �1 00 00 10 0  

=
⎣⎢
⎢⎡��,��� ��,�)���,(�� ��,()���,)�� ��,))���,*�� ��,*)� ⎦⎥

⎥⎤ 
(16) 

Similarly, the calculation of ���	 can also be achieved 

through a positional transformation as the following equation 

(17). These two positional transformations result in a 2x2 

matrix. 

 ���	 = .��,��� ��,�)���,)�� ��,))� 0 (17)  

Positional transformation does not require separate 

hardware logic. When connecting the calculation result to the 

input of other logic, the position of elements can be converted 

and connected seamlessly. A 2x2 matrix adder is required to 
add a 2x2 matrix R to the calculation result. Since a 2x2 

matrix adder is a subset of a 4x4 matrix adder, the 

matrix_add_1 is used. 

To find the inverse of a 2×2 matrix, the determinant |M| 

must be calculated. Since the 2×2 matrix ����	 + �) is a 

diagonal matrix according to equations (13), (15), and (17), 

its determinant calculation requires one multiplier. Since a 

matrix multiplier includes several multipliers, one multiplier 

included in the matrix_mul_2 calculates the determinant. 

Then, each element of the matrix is divided by the 

determinant. As the matrix is diagonal, two dividers are 

required. The calculation of the Kalman gain is completed by 

performing matrix multiplication using the matrx_mul_2 for ���	 and  ����	 + ����.  

In the Kalman gain calculation process, two dividers are 

added. In one step, ���	 ,   ����	 + � ) and the 

determinants are calculated. Subsequently, division and 

matrix multiplication are performed in two separate steps. 

Therefore, a total of three steps are needed. Like in the 
prediction process, in the estimation process, there is no 

dependency between state and error covariance, both can be 

executed in parallel. To estimate covariance, matrix 

multiplication of the 4×2 matrix Kalman gain and 2×4 matrix 

H is required. This is accomplished using the matrix_mul_2. 

Simultaneously, for state update, matrix multiplication of the 

4×2 matrix Kalman gain and 2×1 matrix z is calculated using 

the matrix_mul_1. The reason why ���� is not calculated first 

is that it cannot be calculated with the matrix_mul_1. Unless 

a matrix multiplier is newly added, the covariance and state 

cannot be calculated simultaneously. In the second step of the 

covariance estimation, �����  is calculated using the 

matrix_mul_2, followed by subtraction from P using the 

matrix add_1. 

To estimate the state, �� calculated in the previous step 

is multiplied by ����using the matrix_mul_1, followed by two 

additional 4 × 1 matrix addition. In the final step of the 

estimation process, three 4×1 matrix adder with four elements 

is needed. As shown in Fig. 2, the proposed Kalman filter 

needs two matrix multipliers, three matrix adders, and two 

divisors and requires a total of seven steps. 

A. Hardware Structure  

The proposed Kalman filter hardware for 2D object 
tracking consists of two matrix multipliers, three matrix 

adders, two dividers, some combinational logic and controller 

shown in Fig. 2. There are measurements z as inputs to the 

system. The input measurements are converted into an IEEE 

754 single precision format, and each operation is processed 

in a pipeline structure. 

1)   [4×4] × [4×4] Matrix Multiplier: To multiply a 4×4 

matrix A and a 4×4 matrix B, each element in one row of A 

must be multiplied with each element in one column of B, and 

the resulting four values must be added to calculate one 

element of the resulting matrix C. Since C is a 4×4 matrix, 
this process must be repeated 16 times. In other words, a 

matrix multiplication of a 4×4 matrix and a 4×4 matrix 

requires 64 multiplication operations.  

The matrix multiplier in the proposed hardware design 

consists of four multipliers. As shown in Fig. 3, matrix A and 

matrix B elements are fed into the multiplier, and the resulting 
element is computed as the sum of the products of 

corresponding elements of matrix A and matrix B. An element 

C [0][0] of a resulting matrix C is (A [0][0] ×B [0][0]) + 

(A[0][1]  × B [1] [0]) + (A[0][2] × B[2][0]) + 

(A[0][3]×B[3][0]). Generally, C[i][j] is (A[i][0] ×B [0] [j]) + 

(A[i][1] ×B [1] [j]) + (A[i][2] ×B[2][j]) + (A[i][3] ×B[3][j]). 

Thus, four elements of one row of matrix A are arranged as 

the same number input port of the four multiplexers, 

respectively.  When sel_mode_A = i, A[i][0], A[i][1], A[i][2], 
and A[i][3] are selected and used as multiplier inputs, 

respectively. On the other hand, the four elements of one 

column of matrix B are arranged as the same number input 

port of the four multiplexers, respectively. When sel_mode_B 

= j, B[0][j], B[1][j], B[2][j], and B[3][j] are selected and used 

as multiplier inputs, respectively. Therefore, eight elements 

required for C[i][j] are selected by the signals, sel_mode_A 

and sel_mode_B. In this case, the sel_mode_B changes its 

value every clock cycle, iterating through 0→1→2→3 four 

times, to select elements from different columns of B. The 

sel_mode_A changes its value every four clock cycles, 
iterating through 0→1→2→3 once, to select elements from 

different rows of B. This process computes C [0][0], C [0][1], 

C [0][2], … , C[3][2], C[3][3] in order. A total of 16 clock 

cycles are required.  

This matrix multiplier, initially designed for 4×4 matrix 

multiplication by 4×4 matrix, is also used 4×2 matrix 

multiplication by 2×2 matrix. In this configuration, a total of 

8 elements needs to be calculated for the resulting 4×2 matrix. 

So, the inputs of the multiplexer and the signals, sel_mode_A 

and sel_mode_B, must be changed. In Fig. 3, the inputs of the 

top two multipliers remain unchanged, while the inputs of the 
bottom two multipliers are modified.  
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Fig. 3  Block diagram of a 4×4 matrix multiplier by a 4×4 matrix 

 

The inputs of multiplexers that select the elements of 

matrix A are changed to A[2][0], A[3][0], A[2][1], and 

A[3][1] instead of A[0][2], A[1][2], A[0][3], and A[1][3], 

respectively. The multiplexers that select the elements of the 

matrix B are not used. Instead, the elements of B selected in 

the upper multiplexers are utilized as multiplier inputs. The 

sel_mode_B repeats sequentially from 0 to 1 twice every 

clock cycle, while the sel_mode_A changes from 0 to 1 once 

every two clock cycles. Therefore, the operation requires a 

total of 4 clock cycles to compute the resulting 4×2 matrix.  

2)   [4×4] ×[4×1] Matrix Multiplier:  Fig. 4 shows a 4×4 

matrix multiplier by a 4×1 matrix. In contrast to the 4×4 

matrix multiplier by 4×4 matrix, this design does not require 

a multiplexer for matrix B. That is, only sel_mode_A changes 

sequentially from 0 to 3 every clock cycle, indicating the row 

selection from a matrix A. The calculation is completed in a 

total of 4 clocks.  The calculation is completed in a total of 4 

clock cycles, as each clock cycle processes one row of the 

matrix A. The matrix multiplier, originally designed for 4×4 

matrix multiplication by 4×1 matrix, is repurposed for 4×2 

matrix multiplication by 2×1 matrix. In Fig. 4, the inputs of 
the top two multipliers remain unchanged. On the other hand, 

the inputs of the bottom two multipliers are changed. The 

inputs of multiplexers that select the elements of matrix A are 

changed to A20, A30, A21 and A31 instead of A02, A12, A03, and 

A13, respectively. The multiplexers that select the elements of 

the matrix B are not used. Instead, the elements of B selected 

in the upper multiplexers are utilized as the multiplier inputs. 

The sel_mode_A changes from 0 to 1 once every clock. 

Therefore, a total of 2 clocks are required to complete the 

operation. 

 
Fig. 4  Block diagram of a 4×4 matrix multiplier by a 4×1 matrix 

3)   Matrix adders: A matrix adder consists of adders 

between elements in each matrix position. Since the largest 

matrix of this Kalman filter is 4x4 matrix, at least 16 adders 

are required to perform matrix addition within one clock 

cycle. Three matrix additions are calculated in step 7 of the 

Kalman filter operation. In detail, two 4x1 matrix adders and 
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one 4x4 matrix adder are required, resulting in 24 adders. In 

2 and 3 steps, the 4x4 matrix adder is utilized among them. 

Furthermore, matrix adders are also utilized as submodules of 

the matrix multipliers. A 4x4 matrix multiplier by 4×4 matrix 

and a 4×4 matrix multiplier by 4×1 matrix contains three 4×4 

matrix adders and three 4×1 matrix adders, respectively. 

4)   Floating point multiplier: The matrix multipliers 

consist of floating-point multipliers. The floating-point 

multiplier operates by separately calculating the 

multiplication of mantissas and the addition of exponents. 
And then, normalization is done to meet single precision 

standards. 

5)   Floating point divider: Floating point dividers are 

needed to calculate the inverse of a matrix. Similar to the 

floating-point multiplier, the floating-point divider operates 

by separately handling the division of mantissas and the 

addition of exponents. And then, normalization is done to 

meet single precision standards. 

6)   Floating point adder: Unlike the floating-point 

multiplier and divider, the mantissas are shifted according to 

the difference in exponents, added together, and then 

normalized. 

III. RESULTS AND DISCUSSION 

The proposed Kalman filter hardware is designed using 

Verilog HDL and functionally verified using Synopsys' 

VCS/Verdi. Its simulation results are compared with the 

software Kalman filter designed in Mathwork’s MATLAB. 

As test data comprise the human face coordinates extracted 

from the video using OpenCV and are utilized as 

measurements to both Kalman filters. As simulation results, 

the estimated human face coordinates from the designed 

hardware Kalman filter differ from those of the software 
Kalman filter in the first decimal place. This difference can be 

attributed to various factors. While the software Kalman filter 

uses 64-bit double precision, the hardware Kalman filter uses 

32-bit single precision. In addition, the designed hardware 

uses the clipping method among several rounding techniques. 

Despite these differences, considering that the object's 

coordinates are expressed in integer units, the error in the first 

decimal place is deemed sufficiently small. Table 1 compares 

the software and hardware results for the first cycle. 

TABLE I 

SIMULATION RESULTS COMPARISON 

 SW Kalman filter HW Kalman filter �� �0.80080.3984 0000 0.80080.3984  �0.79790.3968 0000 0.79790.3968  

��� �497.29247.45217.01107.96  �495.35246.44216.16107.54  

�� �40 1919 61 0 00 00 00 0 40 1919 61  �42 2121 58 0 00 00 00 0 42 2121 58  

 

Fig. 5 shows the prediction and estimation value for the 

coordinates of the human face in the video. It is confirmed 

that the proposed hardware Kalman filter estimates well the 

object’s location according to its movement in continuous 

motion. 
 

 
Fig. 5  Kalman filter results: prediction box(blue) and estimation box(red) 

 
Fig. 6 shows the schematic of the top module confirmed by 

Verdi. After completing functional verification, Xilinx 

Vivado is used for FPGA implementation using Xilinx 
ZYNQ-7 ZC702 Evaluation board. Table 2 provides a 

summary of the number of components, such as slice LUTs 

table and slice registers, utilized by the design. 

 

Fig. 6  Schematic of the designed Kalman filter 

TABLE Ⅱ 

IMPLEMENTATION RESULTS 

Components Number 

Slice LUTs (53200) table 47042 

DSPs (220)  64 
BUFGCTRL (32) 12 
Slice Registers (106400) 12251 

TABLE Ⅲ 

DESIGN TIMING SUMMARY 

Timing Requirements Time 

Setup Worst Negative Slack 0.230 ns 

Worst Hold Slack 0.081 ns 
Worst Pulse Width Slack 14.500 ns 

 

The clock period is set to 30 ns. Table 3 shows the design 

timing summary after the post-fit. These results demonstrate 

that the designed Kalman filter hardware meets the timing 

requirements, allowing it to operate at the desired clock 

frequency of 33.3 MHz. Additionally, it is expected to operate 
at a maximum clock frequency of 34.2 MHz. 

The software Kalman filter operates on an i5-1135G7 CPU 

running at 2.42 GHz with 16 GB of RAM. It takes 

approximately 1.2ms to process one image data. In contrast, 

the designed hardware Kalman filter requires 44 clock cycles 

with a clock period of 30 ns (=33 MHz). This results in a total 
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processing time of 1.32 us. It was confirmed that the latency 

of the proposed hardware Kalman filter is approximately 

1/1000th of the latency of the software Kalman filter. 

The execution time of the software Kalman filter includes 

system overhead, which may not be directly comparable to 

the latency of the hardware Kalman filter. Considering that 

the input data for the hardware Kalman filter is stored in 

memory, the overhead due to communication with software is 

minimal. However, even if the CPU time is around 50% of the 

total execution time for the software Kalman filter, the latency 
of the software implementation is still approximately 600 us. 

Consequently, the hardware Kalman filter demonstrates 

significantly lower processing time than the software 

implementation. The designed Kalman filter is implemented 

using the programmable logic of ZYNQ-7 ZC702. If it is 

implemented in SoC, including processing systems, it is 

expected to enhance both efficiency and performance, making 

the Kalman filter more suitable for real-time applications.  

IV. CONCLUSION 

In this paper, the pipelined Kalman filter for object tracking 

in two dimensions is implemented in hardware. The hardware 

implementation offers advantages such as parallel processing 

and increased resource utilization through pipeline techniques 

and time sharing.  In particular, when the same operation is 

performed using data of different sizes at different times, the 

hardware is designed based on the largest data size and 

selectively used to reduce the hardware area and increase 

efficiency. It is designed with Verilog HDL and compiled 

using Synopsys' VCS/Verdi. Its functionality is verified by 
comparing its simulation results with the Kalman filter in 

Mathwork’s MATLAB. It is implemented on an FPGA using 

ZYNQ-7 ZC702. Approximately 47 k slice LUTs, 64 DSPs, 

and 12 k slice registers are used. The clock speed is 33MHz, 

and 44 clock cycles are required to process one data. 

Therefore, the processing time is 1.32 us. It is confirmed that 

the proposed hardware Kalman filter is more than 1000 times 

faster than the software Kalman filter. In the future, we plan 

to implement it in SoC to enhance its usability further. 
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