
Vol.14 (2024) No. 2

ISSN: 2088-5334

FPGA Implementation of a Pipelined Kalman Filter for Object

Tracking in Two Dimensions

Jonghuy Choi a, Yonghyeok Yoon a, Taekyeong Song a, Sunhee Kim a,*
a Department of System Semiconductor Engineering, Sangmyung University, 31, Sangmyeongdae-gil, Dongnam-gu, Cheonan-si,

Chungcheongnam-do, 31066, Republic of Korea

Corresponding author: *happyshkim@smu.ac.kr

Abstract—In a location tracking system for a moving object, accuracy and real-time processing are essential factors. The Kalman filter,

as a recursive function, stands out as one of the prominent algorithms for object tracking. It continuously compares measured data

with predicted values based on the system characteristics in real-time. Then it corrects the error of the predicted values while

considering the noise of both system and measured data. This paper focuses on designing a hardware based Kalman filter for object

tracking in two dimensions. Following an analysis of the Kalman filter algorithm, the blocks capable of parallel processing are identified

and configured to be processed in parallel, effectively reducing data processing time. The clock speed is enhanced by using the pipeline

technique. In addition, the time-sharing technique is applied to increase the utilization of hardware resources and reduce the area. Data

was processed at 32-bit floating points to uphold accuracy comparable to software-implemented Kalman filters. The proposed Kalman

filter architecture is designed using Verilog HDL and then simulated in Synopsys VCS/Verdi. The accuracy is verified by comparing

results with a software based Kalman filter designed using MATLAB. It was implemented using Zynq ZYNQ-7 ZC702 Programmable

logic via Xilnix Vivado and can operate at 33MHz. It takes 44 clocks, or 1.32 us, to process one data. Therefore, it was confirmed that

the designed Kalman filter hardware is suitable for real-time processing.

Keywords—Kalman filter; object tracking; FPGA; parallel processing; pipeline.

Manuscript received 11 Oct. 2023; revised 12 Jan. 2024; accepted 14 Feb. 2024. Date of publication 30 Apr. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Research on moving object tracking has been actively

conducted in various engineering fields, such as autonomous

vehicles, robot control, communication systems, and

navigation [1]–[4]. Measurement data is crucial for estimating

an object's location, but it often contains significant noise both

within and outside the system. The noise diminishes the

accuracy of prediction and estimation. Consequently, several

algorithms are under investigation to address this challenge,

and the Kalman filter is a representative algorithm [5]–[7].

The Kalman filter is a recursive algorithm [8]–[10]. It

distinguishes itself from typical filters by dynamically
updating its filter coefficients, Kalman gain, over time [11].

It compares noisy measured data with predicted values based

on system characteristics. Then, it corrects the predicted value

using the prediction error and Kalman gain. It provides

estimated values with noise effectively removed, responds in

real-time to system state changes, and performs highly

efficient calculations [8]–[11].

The Kalman filter is a model for linear systems. Since

many systems are nonlinear systems, their application is

limited. So, the extended Kalman filter (EKF) has been

studied to model nonlinear systems [12]–[14]. Unlike the
traditional Kalman filter, the EKF employs a nonlinear

mathematical model for the system. It dynamically calculates

and applies a linear model based on the previous estimate rather

than a predetermined linearization model. Although the EKF is

more complex than linear systems, it maintains the fundamental

algorithmic principles of the Kalman filter [15], [16].

For more accurate tracking, advanced EKF algorithms

integrating various sensors have been studied [17], [18].

Object tracking using artificial intelligence has recently been

conducted [19]–[21]. They offer enhanced precision, but their

complexity necessitates hardware implementation for real-
time processing [22]–[24]. FPGA hardware implementation

is facilitated within SoC programmable devices like Xilinx

Zynq [25], [26]. This approach reduces communication

overhead with software and enhances the efficiency of

resource allocation between software and hardware [27]–[29].

540

In this paper, we design a Kalman filter hardware that

estimates an object's position in two-dimensional space. In

FPGA design, we focused on increasing overall resource

efficiency through the utilization of pipeline and parallel

processing techniques. In the next Section, we introduce the

Kalman filter algorithm, and the system model and

parameters used. Then, the proposed hardware structure is

explained in detail. Section Ⅲ presents the results of hardware

implementation. Finally, conclusions are drawn in Section Ⅳ.

II. MATERIALS AND METHOD

A. Kalman Filter Algorithm

The Kalman filter algorithm comprises three main

processes, as shown in Fig. 1: a prediction process, a Kalman

filter gain calculation process, and an estimation (or update)

process [30], [31].

Fig. 1 Kalman filter algorithm

The prediction process involves predicting the state x of a

system and its error covariance P. These are expressed

through the following equations:

 ���� = ������ (1)

 ��� = ������	 + � (2)

where the superscripts “-” and “^” mean the predicted value

and the estimated value, respectively. The subscript “k”

indicates the kth step. If k represents the current state, (k-1)

signifies the previous state, and (k+1) signifies the next state.

Prediction of the estimate of the current state x is derived from

the estimate of the previous state and the system model A.
System model A describes how a system changes over time.

Therefore, A is a predetermined constant prior to the Kalman

filter computation, and it is important to reflect the

characteristics of the actual system mathematically

accurately.

The process of predicting the error covariance P requires to

consider system process noise Q, in addition to the previous

error covariance and system model A. Similar to the system

model A, system process noise Q is predetermined by the

system prior to Kalman filter calculation. As noise arises from

various factors, it must be treated as a design variable of the

Kalman filter, and an appropriate value must be determined
through a trial-and-error process. Noise is typically expressed

in statistical terms. The Kalman filter assumes that noise

adheres to a standard normal distribution with a mean of 0.

Thus, only the variance of the noise needs to be ascertained.

After the prediction is completed, the Kalman gain K is

calculated as follows

 �� = ���
	�
���
	 + ���� (3)

Then, the system state x and its error covariance P are

updated using the measurements z through the following

equations.

 ��� = ���� + ����� −
����� (4)

 �� = ��� − ��
��� (5)

A variable H, one of the system models, signifies the

relationship between the measurements z and the system state

x. In equation (4),
���� on the right side is the predicted value

of the measurements computed from the expected state.

Consequently, �� −
���� represents the difference between

the actual measurements and the predicted measurements. So,
it becomes the prediction error. The estimated value for the

system state ��� is derived by correcting the state prediction

value with the prediction error, achieved through the

multiplication with the Kalman gain. Similarly, error

covariance is also corrected using the Kalman gain.

The estimated value's accuracy depends on the Kalman

gain's effectiveness in rectifying the predicted value. When

calculating the Kalman gain, P, H, and R are used as in

Equation (3). R signifies the uncertainty of the measurement

values. Like system process noise Q, it is assumed to follow a
normal distribution with a mean of 0. Therefore, only the

measurement noise variance requires identification, and its

value must be determined through iterative experimentation.

If the measurement noise R is large, the Kalman gain

decreases. Consequently, in the correction of the system state

outlined in Equation (4), the influence of the measurements

decreases, resulting in a more gradual adjustment of the state

estimate. Conversely, as the R decreases, the Kalman gain

increases, increasing the impact of the measurements.

If the system noise Q is large, the error covariance P

becomes large according to Equation (2). As the error

covariance P increases, the term in the numerator of the
Kalman gain becomes relatively larger compared to the

denominator, so the Kalman gain increases. Consequently,

during the correction of the system state, the influence of the

measurements increases. If the error covariance P is small, the

Kalman gain decreases, and the influence of the

measurements decreases during the correction of the system

state.

B. Mathematical Model for Object Tracking

To track an object moving in a two-dimensional plane, both

the position and velocity along the horizontal and vertical

axes are considered as the system state. Consequently, the

system state x becomes a 4×1 matrix, as shown in the

following equation

 � = [�� �� �� ��]	 (6)

where the subscripts "x" and "y" represent the horizontal and

vertical axes, respectively, and p and v indicate position and

velocity, respectively. The relationship between position and

velocity is established as follows,

 �� = ���� + ���� × ∆� (7)

Assuming that the speed is constant, the system model A is

set as follows

 � = �1 ∆�0 1 0 00 00 00 0 1 ∆�0 1 (8)

where ∆t represents the time interval between position

measurements. In this paper, a time interval Δt is set at 1.
Since the measurements are the positions along the

horizontal and vertical axes, the matrix H, which represents

the relationship between the measured values and the state

variables, is configured as a 2×4 matrix as follows.

541

 = !1 00 0 0 01 0" (9)

Since both the system noise Q and the measurement noise

R are both assumed to follow a normal distribution with a

mean of 0, they are represented as diagonal matrices of 4×4

and 2×2, respectively, as follows.

 � =
⎣⎢
⎢⎢
⎡&'��(00 &'(((0 00 00 00 0 &'))(00 &'**(⎦⎥

⎥⎥
⎤
 (10)

 � = .&/��(00 &/(((0 (11)

Mathworks’ MATLAB is used to verify the algorithm. As
verification data, coordinate values of a person's face in a 2D

image are used. System models A, H, Q, and R must be

predetermined before the Kalman filter calculation. On the

contrary, the state x and error covariance P are recursively

updated in real-time, so the initial values must be specified. In

this paper, the initial values of x and P were set as follows

 � = [0 0 0 0]	 (12)

 � = �100 00 100 0 00 00 00 0 100 0 0 100 (13)

Based on repeated simulations, the covariances of Q and R
are determined to be 1 and 50, respectively. Consequently, the

following matrices are formulated

 � = �1 00 1 0 00 00 00 0 1 00 1 (14)

 � = !50 00 50" (15)

By scrutinizing the simulation values for each step, the

crucial decision regarding bit precision is made for hardware

implementation. Due to the broad range of values involved,

performing calculations with a 32-bit floating-point format

rather than a 32-bit fixed-point format could enhance

accuracy despite the increased hardware complexity.

C. Algorithm Analysis for Hardware Structure

In this paper, a hardware structure of the Kalman filter is

devised to facilitate parallel processing, minimize latency,
and optimize area by reusing hardware components. In the

prediction process, a matrix multiplier is employed to

compute the product of the 4×4 matrix A and the 4×1 matrix

x to predict the state x. Additionally, for covariance

prediction, a matrix multiplier and a matrix adder are

utilized to process a 4×4 matrix and a 4×1 matrix. To predict

covariance, matrix multiplication needs to be performed

twice, which is executed sequentially. Specifically, using a

single matrix multiplier, ����� is calculated in the initial

step, followed by the calculation of ������	 in the

subsequent step.

Since addition typically requires less processing time than
multiplication, multiplication and addition operations are

combined within a single step. Consequently, a total of two

steps are necessary to predict covariance. When calculating

the two predicted values, x and P, there is no dependence

between them. Consequently, the prediction for x and P can

be executed in parallel. As a result, a total of two matrix

multipliers and one matrix adder are required for the

prediction process, which takes two steps.

Fig. 2 shows the essential hardware components and the

steps during which each component is utilized. The

matrix_mul_1 and matrix_mul_2 are matrix multipliers for a

4×4 matrix multiplied by a 4×1 matrix and for a 4×4 matrix
multiplied by a 4×4 matrix, respectively. The matrix_add_1 is

a matrix adder for two 4×4 matrices. In the prediction process,

the matrix_mul_1 is used during the first step to compute ������ , and the matrix_mul_2 is used during two steps to

compute ������	 . The matrix_add_1 operates during the

second step to compute �� . This parallel processing reduces

latency in the Kalman filter prediction process.

Fig. 2 Essential hardware components and their time schedule

To calculate ���
	 included in the Kalman gain, a matrix

multiplier for a 4×4 matrix multiplied by a 4×2 matrix.
However, since H is a constant matrix and only two of its eight

elements are the non-zero value, ���
	 can be determined

solely through positional transformation without any

arithmetic operation as follows.

542

���
	 =
⎣⎢
⎢⎡��,��� ��,�(���,(�� ��,((� ��,�)� ��,�*���,()� ��,(*���,)�� ��,)(���,*�� ��,*(� ��,))� ��,)*���,*)� ��,**� ⎦⎥

⎥⎤ �1 00 00 10 0

=
⎣⎢
⎢⎡��,��� ��,�)���,(�� ��,()���,)�� ��,))���,*�� ��,*)� ⎦⎥

⎥⎤
(16)

Similarly, the calculation of
���
	 can also be achieved

through a positional transformation as the following equation

(17). These two positional transformations result in a 2x2

matrix.

���
	 = .��,��� ��,�)���,)�� ��,))� 0 (17)

Positional transformation does not require separate

hardware logic. When connecting the calculation result to the

input of other logic, the position of elements can be converted

and connected seamlessly. A 2x2 matrix adder is required to
add a 2x2 matrix R to the calculation result. Since a 2x2

matrix adder is a subset of a 4x4 matrix adder, the

matrix_add_1 is used.

To find the inverse of a 2×2 matrix, the determinant |M|

must be calculated. Since the 2×2 matrix �
���
	 + �) is a

diagonal matrix according to equations (13), (15), and (17),

its determinant calculation requires one multiplier. Since a

matrix multiplier includes several multipliers, one multiplier

included in the matrix_mul_2 calculates the determinant.

Then, each element of the matrix is divided by the

determinant. As the matrix is diagonal, two dividers are

required. The calculation of the Kalman gain is completed by

performing matrix multiplication using the matrx_mul_2 for ���
	 and �
���
	 + ����.

In the Kalman gain calculation process, two dividers are

added. In one step, ���
	 , �
���
	 + �) and the

determinants are calculated. Subsequently, division and

matrix multiplication are performed in two separate steps.

Therefore, a total of three steps are needed. Like in the
prediction process, in the estimation process, there is no

dependency between state and error covariance, both can be

executed in parallel. To estimate covariance, matrix

multiplication of the 4×2 matrix Kalman gain and 2×4 matrix

H is required. This is accomplished using the matrix_mul_2.

Simultaneously, for state update, matrix multiplication of the

4×2 matrix Kalman gain and 2×1 matrix z is calculated using

the matrix_mul_1. The reason why
���� is not calculated first

is that it cannot be calculated with the matrix_mul_1. Unless

a matrix multiplier is newly added, the covariance and state

cannot be calculated simultaneously. In the second step of the

covariance estimation, ��
��� is calculated using the

matrix_mul_2, followed by subtraction from P using the

matrix add_1.

To estimate the state, ��
 calculated in the previous step

is multiplied by ����using the matrix_mul_1, followed by two

additional 4 × 1 matrix addition. In the final step of the

estimation process, three 4×1 matrix adder with four elements

is needed. As shown in Fig. 2, the proposed Kalman filter

needs two matrix multipliers, three matrix adders, and two

divisors and requires a total of seven steps.

A. Hardware Structure

The proposed Kalman filter hardware for 2D object
tracking consists of two matrix multipliers, three matrix

adders, two dividers, some combinational logic and controller

shown in Fig. 2. There are measurements z as inputs to the

system. The input measurements are converted into an IEEE

754 single precision format, and each operation is processed

in a pipeline structure.

1) [4×4] × [4×4] Matrix Multiplier: To multiply a 4×4

matrix A and a 4×4 matrix B, each element in one row of A

must be multiplied with each element in one column of B, and

the resulting four values must be added to calculate one

element of the resulting matrix C. Since C is a 4×4 matrix,
this process must be repeated 16 times. In other words, a

matrix multiplication of a 4×4 matrix and a 4×4 matrix

requires 64 multiplication operations.

The matrix multiplier in the proposed hardware design

consists of four multipliers. As shown in Fig. 3, matrix A and

matrix B elements are fed into the multiplier, and the resulting
element is computed as the sum of the products of

corresponding elements of matrix A and matrix B. An element

C [0][0] of a resulting matrix C is (A [0][0] ×B [0][0]) +

(A[0][1] × B [1] [0]) + (A[0][2] × B[2][0]) +

(A[0][3]×B[3][0]). Generally, C[i][j] is (A[i][0] ×B [0] [j]) +

(A[i][1] ×B [1] [j]) + (A[i][2] ×B[2][j]) + (A[i][3] ×B[3][j]).

Thus, four elements of one row of matrix A are arranged as

the same number input port of the four multiplexers,

respectively. When sel_mode_A = i, A[i][0], A[i][1], A[i][2],
and A[i][3] are selected and used as multiplier inputs,

respectively. On the other hand, the four elements of one

column of matrix B are arranged as the same number input

port of the four multiplexers, respectively. When sel_mode_B

= j, B[0][j], B[1][j], B[2][j], and B[3][j] are selected and used

as multiplier inputs, respectively. Therefore, eight elements

required for C[i][j] are selected by the signals, sel_mode_A

and sel_mode_B. In this case, the sel_mode_B changes its

value every clock cycle, iterating through 0→1→2→3 four

times, to select elements from different columns of B. The

sel_mode_A changes its value every four clock cycles,
iterating through 0→1→2→3 once, to select elements from

different rows of B. This process computes C [0][0], C [0][1],

C [0][2], … , C[3][2], C[3][3] in order. A total of 16 clock

cycles are required.

This matrix multiplier, initially designed for 4×4 matrix

multiplication by 4×4 matrix, is also used 4×2 matrix

multiplication by 2×2 matrix. In this configuration, a total of

8 elements needs to be calculated for the resulting 4×2 matrix.

So, the inputs of the multiplexer and the signals, sel_mode_A

and sel_mode_B, must be changed. In Fig. 3, the inputs of the

top two multipliers remain unchanged, while the inputs of the
bottom two multipliers are modified.

543

Fig. 3 Block diagram of a 4×4 matrix multiplier by a 4×4 matrix

The inputs of multiplexers that select the elements of

matrix A are changed to A[2][0], A[3][0], A[2][1], and

A[3][1] instead of A[0][2], A[1][2], A[0][3], and A[1][3],

respectively. The multiplexers that select the elements of the

matrix B are not used. Instead, the elements of B selected in

the upper multiplexers are utilized as multiplier inputs. The

sel_mode_B repeats sequentially from 0 to 1 twice every

clock cycle, while the sel_mode_A changes from 0 to 1 once

every two clock cycles. Therefore, the operation requires a

total of 4 clock cycles to compute the resulting 4×2 matrix.

2) [4×4] ×[4×1] Matrix Multiplier: Fig. 4 shows a 4×4

matrix multiplier by a 4×1 matrix. In contrast to the 4×4

matrix multiplier by 4×4 matrix, this design does not require

a multiplexer for matrix B. That is, only sel_mode_A changes

sequentially from 0 to 3 every clock cycle, indicating the row

selection from a matrix A. The calculation is completed in a

total of 4 clocks. The calculation is completed in a total of 4

clock cycles, as each clock cycle processes one row of the

matrix A. The matrix multiplier, originally designed for 4×4

matrix multiplication by 4×1 matrix, is repurposed for 4×2

matrix multiplication by 2×1 matrix. In Fig. 4, the inputs of
the top two multipliers remain unchanged. On the other hand,

the inputs of the bottom two multipliers are changed. The

inputs of multiplexers that select the elements of matrix A are

changed to A20, A30, A21 and A31 instead of A02, A12, A03, and

A13, respectively. The multiplexers that select the elements of

the matrix B are not used. Instead, the elements of B selected

in the upper multiplexers are utilized as the multiplier inputs.

The sel_mode_A changes from 0 to 1 once every clock.

Therefore, a total of 2 clocks are required to complete the

operation.

Fig. 4 Block diagram of a 4×4 matrix multiplier by a 4×1 matrix

3) Matrix adders: A matrix adder consists of adders

between elements in each matrix position. Since the largest

matrix of this Kalman filter is 4x4 matrix, at least 16 adders

are required to perform matrix addition within one clock

cycle. Three matrix additions are calculated in step 7 of the

Kalman filter operation. In detail, two 4x1 matrix adders and

544

one 4x4 matrix adder are required, resulting in 24 adders. In

2 and 3 steps, the 4x4 matrix adder is utilized among them.

Furthermore, matrix adders are also utilized as submodules of

the matrix multipliers. A 4x4 matrix multiplier by 4×4 matrix

and a 4×4 matrix multiplier by 4×1 matrix contains three 4×4

matrix adders and three 4×1 matrix adders, respectively.

4) Floating point multiplier: The matrix multipliers

consist of floating-point multipliers. The floating-point

multiplier operates by separately calculating the

multiplication of mantissas and the addition of exponents.
And then, normalization is done to meet single precision

standards.

5) Floating point divider: Floating point dividers are

needed to calculate the inverse of a matrix. Similar to the

floating-point multiplier, the floating-point divider operates

by separately handling the division of mantissas and the

addition of exponents. And then, normalization is done to

meet single precision standards.

6) Floating point adder: Unlike the floating-point

multiplier and divider, the mantissas are shifted according to

the difference in exponents, added together, and then

normalized.

III. RESULTS AND DISCUSSION

The proposed Kalman filter hardware is designed using

Verilog HDL and functionally verified using Synopsys'

VCS/Verdi. Its simulation results are compared with the

software Kalman filter designed in Mathwork’s MATLAB.

As test data comprise the human face coordinates extracted

from the video using OpenCV and are utilized as

measurements to both Kalman filters. As simulation results,

the estimated human face coordinates from the designed

hardware Kalman filter differ from those of the software
Kalman filter in the first decimal place. This difference can be

attributed to various factors. While the software Kalman filter

uses 64-bit double precision, the hardware Kalman filter uses

32-bit single precision. In addition, the designed hardware

uses the clipping method among several rounding techniques.

Despite these differences, considering that the object's

coordinates are expressed in integer units, the error in the first

decimal place is deemed sufficiently small. Table 1 compares

the software and hardware results for the first cycle.

TABLE I

SIMULATION RESULTS COMPARISON

 SW Kalman filter HW Kalman filter �� �0.80080.3984 0000 0.80080.3984 �0.79790.3968 0000 0.79790.3968

��� �497.29247.45217.01107.96 �495.35246.44216.16107.54

�� �40 1919 61 0 00 00 00 0 40 1919 61 �42 2121 58 0 00 00 00 0 42 2121 58

Fig. 5 shows the prediction and estimation value for the

coordinates of the human face in the video. It is confirmed

that the proposed hardware Kalman filter estimates well the

object’s location according to its movement in continuous

motion.

Fig. 5 Kalman filter results: prediction box(blue) and estimation box(red)

Fig. 6 shows the schematic of the top module confirmed by

Verdi. After completing functional verification, Xilinx

Vivado is used for FPGA implementation using Xilinx
ZYNQ-7 ZC702 Evaluation board. Table 2 provides a

summary of the number of components, such as slice LUTs

table and slice registers, utilized by the design.

Fig. 6 Schematic of the designed Kalman filter

TABLE Ⅱ

IMPLEMENTATION RESULTS

Components Number

Slice LUTs (53200) table 47042

DSPs (220) 64
BUFGCTRL (32) 12
Slice Registers (106400) 12251

TABLE Ⅲ

DESIGN TIMING SUMMARY

Timing Requirements Time

Setup Worst Negative Slack 0.230 ns

Worst Hold Slack 0.081 ns
Worst Pulse Width Slack 14.500 ns

The clock period is set to 30 ns. Table 3 shows the design

timing summary after the post-fit. These results demonstrate

that the designed Kalman filter hardware meets the timing

requirements, allowing it to operate at the desired clock

frequency of 33.3 MHz. Additionally, it is expected to operate
at a maximum clock frequency of 34.2 MHz.

The software Kalman filter operates on an i5-1135G7 CPU

running at 2.42 GHz with 16 GB of RAM. It takes

approximately 1.2ms to process one image data. In contrast,

the designed hardware Kalman filter requires 44 clock cycles

with a clock period of 30 ns (=33 MHz). This results in a total

545

processing time of 1.32 us. It was confirmed that the latency

of the proposed hardware Kalman filter is approximately

1/1000th of the latency of the software Kalman filter.

The execution time of the software Kalman filter includes

system overhead, which may not be directly comparable to

the latency of the hardware Kalman filter. Considering that

the input data for the hardware Kalman filter is stored in

memory, the overhead due to communication with software is

minimal. However, even if the CPU time is around 50% of the

total execution time for the software Kalman filter, the latency
of the software implementation is still approximately 600 us.

Consequently, the hardware Kalman filter demonstrates

significantly lower processing time than the software

implementation. The designed Kalman filter is implemented

using the programmable logic of ZYNQ-7 ZC702. If it is

implemented in SoC, including processing systems, it is

expected to enhance both efficiency and performance, making

the Kalman filter more suitable for real-time applications.

IV. CONCLUSION

In this paper, the pipelined Kalman filter for object tracking

in two dimensions is implemented in hardware. The hardware

implementation offers advantages such as parallel processing

and increased resource utilization through pipeline techniques

and time sharing. In particular, when the same operation is

performed using data of different sizes at different times, the

hardware is designed based on the largest data size and

selectively used to reduce the hardware area and increase

efficiency. It is designed with Verilog HDL and compiled

using Synopsys' VCS/Verdi. Its functionality is verified by
comparing its simulation results with the Kalman filter in

Mathwork’s MATLAB. It is implemented on an FPGA using

ZYNQ-7 ZC702. Approximately 47 k slice LUTs, 64 DSPs,

and 12 k slice registers are used. The clock speed is 33MHz,

and 44 clock cycles are required to process one data.

Therefore, the processing time is 1.32 us. It is confirmed that

the proposed hardware Kalman filter is more than 1000 times

faster than the software Kalman filter. In the future, we plan

to implement it in SoC to enhance its usability further.

REFERENCES

[1] Y. Fang, A. Panah, J. Masoudi, B. Barzegar and S. Fatehi, “Adaptive

Unscented Kalman Filter for Robot Navigation Problem (Adaptive

Unscented Kalman Filter Using Incorporating Intuitionistic Fuzzy

Logic for Concurrent Localization and Mapping),” IEEE Access, vol.

10, pp. 101869-101879, 2022, doi:10.1109/access.2022.3207925.

[2] Y. Li, C. Bian and H. Chen, “Object Tracking in Satellite Videos:

Correlation Particle Filter Tracking Method with Motion Estimation

by Kalman Filter,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 60, pp. 1-12, Sept. 2022, Art no. 5630112,

doi:10.1109/TGRS.2022.3204105.

[3] Q. Yu, B. Wang and Y. Su, “Object Detection-Tracking Algorithm for

Unmanned Surface Vehicles Based on a Radar-Photoelectric System,”

IEEE Access, vol. 9, pp. 57529-57541, 2021,

doi:10.1109/access.2021.3072897.

[4] A. -S. T. Hussain, M. Fadhil, T. A. Taha, O. K. Ahmed, S. A. Ahmed

and H. Desa, “GPS and GSM Based Vehicle Tracking System,” in

2023 7th International Symposium on Innovative Approaches in Smart

Technologies (ISAS), Istanbul, Turkiye, 2023, pp. 1-5,

doi:10.1109/ISAS60782.2023.10391720.

[5] K. Feng, J. Li, D. Zhang, X. Wei and J. Yin, "Robust Cubature Kalman

Filter for SINS/GPS Integrated Navigation Systems With Unknown

Noise Statistics," IEEE Access, vol. 9, pp. 9101-9116, 2021,

doi:10.1109/access.2020.3036423.

[6] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and

F. Herrera, “Deep learning in video multi-object tracking: A survey,”

Neurocomputing, vol. 381, 2020, pp. 61-88,

doi:10.1016/j.neucom.2019.11.023.

[7] Y. Nie, C. Bian, and L. Li, "Object Tracking in Satellite Videos Based

on Siamese Network with Multidimensional Information-Aware and

Temporal Motion Compensation," IEEE Geoscience and Remote

Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6517005,

doi:10.1109/LGRS.2022.3211695.

[8] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman Filter and Its Application,” in

2015 8th International Conference on Intelligent Networks and

Intelligent Systems (ICINIS), Tianjin, China, 2015, pp. 74-77,

doi:10.1109/ICINIS.2015.35.

[9] M. S. Grewal, and A. P. Andrews, “Linear Optimal Filters and

Predictors” in Kalman Filtering: Theory and Practice with MATLAB,

4th ed., New Jersey, USA: Wiley, 2015, pp. 169-238.

[10] P. Kim, “Kalman Filter,” in Essential Kalman filter, Korea: A-Jin,

2011.

[11] J. Mochnac, S. Marchevsky and P. Kocan, “Bayesian filtering

techniques: Kalman and extended Kalman filter basics,” in 2009 19th

International Conference Radioelektronika, Bratislava, Slovakia,

2009, pp. 119-122, doi:10.1109/radioelek.2009.5158765.

[12] Y. Fang, L. Yu, S. Fei, “An improved moving tracking algorithm with

multiple information fusion based on 3D sensors,” IEEE Access, vol.

8, pp. 142295–142302, 2020, doi:10.1109/access.2020.3008435.

[13] P. S. Madhukar, and L. B. Prasad, “State Estimation using Extended

Kalman Filter and Unscented Kalman Filter,” in 2020 International

Conference on Emerging Trends in Communication, Control and

Computing (ICONC3), Lakshmangarh, India, 2020, pp. 1-4,

doi:10.1109/iconc345789.2020.9117536.

[14] S. Yang, and M. Baum, “Extended Kalman filter for extended object

tracking,” in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), New Orleans, LA, USA,

2017, pp. 4386-4390, doi:10.1109/icassp.2017.7952985.

[15] J. Khodaparast, “A Review of Dynamic Phasor Estimation by Non-

Linear Kalman Filters,” IEEE Access, vol. 10, pp. 11090-11109, 2022,

doi:10.1109/access.2022.3146732.

[16] S. Feng, X. Li, S. Zhang, Z. Jian, H. Duan, and Z. Wang, “A review:

state estimation based on hybrid models of Kalman filter and neural

network,” Systems Science & Control Engineering, vol. 11, no.

1, 2173682, 2023, doi:10.1080/21642583.2023.2173682.

[17] Y. Wang and X. Mu, “Dynamic Siamese Network With Adaptive

Kalman Filter for Object Tracking in Complex Scenes,” IEEE Access,

vol. 8, pp. 222918-222930, 2020, doi:10.1109/access.2020.3043878.

[18] T. Kim, and T. H. Park, “Extended Kalman Filter (EKF) Design for

Vehicle Position Tracking Using Reliability Function of Radar and

Lidar,” Sensors, vol. 20, no. 15, 2020, doi:10.3390/s20154126.

[19] Y. Liu, L. Zhang, Z. Chen, Y. Yan and H. Wang, “Multi-Stream

Siamese and Faster Region-Based Neural Network for Real-Time

Object Tracking,” IEEE Transactions on Intelligent Transportation

Systems, vol. 22, no. 11, pp. 7279-7292, Nov. 2021,

doi:10.1109/TITS.2020.3006927.

[20] H. Wang, W. Ma, S. Zhang, and W. Hao, "Hierarchical Feature

Pooling Transformer for Efficient UAV Object Tracking," IEEE

Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no.

6010405, doi:10.1109/LGRS.2023.3314435.

[21] S. Kim, I. Petrunin and H. -S. Shin, “A Review of Kalman Filter with

Artificial Intelligence Techniques,” in 2022 Integrated

Communication, Navigation and Surveillance Conference (ICNS),

Dulles, VA, USA, 2022, pp. 1-12,

doi:10.1109/ICNS54818.2022.9771520.

[22] Y. -S. Zhang, T. -H. Chen, Y. -S. Chiou, S. -L. Chen, W. -T. Chen, Y.

-K. Lin, F. -J. Wen, and T. -L. Lin, “Design and Implementation of

Real-Time Localization Algorithms Based on FPGA for Positioning

and Tracking,” in 2019 IEEE Eurasia Conference on IOT,

Communication and Engineering (ECICE), Yunlin, Taiwan, 2019, pp.

446-448

[23] A. K. Madsen, M. S. Trimboli and D. G. Perera, “An Optimized

FPGA-Based Hardware Accelerator for Physics-Based EKF for

Battery Cell Management,” in 2020 IEEE International Symposium on

Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5,

doi:10.1109/ISCAS45731.2020.9181073.

[24] W. -T. Chen, S. -L. Chen, Y. -S. Chiou, T. -L. Lin, F. -J. Wen and Y.

-K. Lin, “FPGA-Based Implementation of Reduced-Complexity

Filtering Algorithm for Real-Time Location Tracking,” in 2019 IEEE

Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf

on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big

546

Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/ CBDCom/CyberSciTech), Fukuoka, Japan,

2019, pp. 721-726,

doi:10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00136.

[25] J. Soh and X. Wu, “An FPGA-Based Unscented Kalman Filter for

System-On-Chip Applications,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 64, no. 4, pp. 447-451, April 2017,

doi:10.1109/TCSII.2016.2565730.

[26] F. Tian, X. Guo, and W. Fu, “Target Tracking Algorithm Based on

Adaptive Strong Tracking Extended Kalman Filter,” Electronics, vol.

13, no. 3:652, 2024, doi:10.3390/electronics13030652.

[27] B. Praveenkumar, and P. Eswaran, “FPGA implementation of multi-

dimensional Kalman filter for object tracking and motion detection,”

Engineering Science and Technology, an International Journal, vol.

33, 2022, doi:10.1016/j.jestch.2021.101084.

[28] A. Mills, P.H. Jones, and J. Zambreno, “Parameterizable FPGA-based

Kalman Filter Coprocessor using Piecewise Affine Modeling,” in

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), Chicago, IL, USA, 2016, pp. 139–147,

doi:10.1109/IPDPSW.2016.101.

[29] P. Zhang, W. Li, and X. Yang, “Efficient Implementation of Recursive

Multi-Frame Track-Before-Detect Algorithm Based on FPGA,” in:

Proc. 2019 International Conference on Control, Automation and

Information Sciences (ICCAIS), Chengdu, China, 2019, pp. 1–6

[30] M. Pavlović, Z. Banjac and B. Kovačević, “Object Tracking in SWIR

Imaging Based on Both Correlation and Robust Kalman Filters,” IEEE

Access, vol. 11, pp. 63834-63851, 2023,

doi:10.1109/access.2023.3288694.

[31] C. T. Ginalih, A. S. Jatmiko, and R. Darmakusuma, “Simple

Application of Kalman Filter On a Moving Object in Unity3D,” in

2020 6th International Conference on Interactive Digital Media

(ICIDM), Bandung, Indonesia, 2020, pp. 1-3,

doi:10.1109/ICIDM51048.2020.9339662.

547

