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Abstract— Embracing the complexities of human emotions conveyed through speech, this study ventures into Speech Emotion 

Recognition (SER) within the human-computer interaction domain, leveraging cutting-edge artificial intelligence technologies. 

Focusing on the auditory attributes of speech, such as tone, pitch, and rhythm, the research introduces an innovative approach that 

amalgamates deep learning techniques with the A Learnable Frontend for Audio Classification (LEAF) algorithm and wav2vec 2.0 pre-

trained on a large corpus, specifically targeting Korean voice samples. This methodology underlines the capacity of these technologies 

to process and decipher complex vocal expressions, aiming to elevate emotion classification precision notably. The exploration extends 

the horizons of SER by accentuating auditory emotion cues and aspires to enrich machine interactions to be more intuitive and 

empathetic across various applications like healthcare and customer service. The outcomes underscore the efficacy of transformer-

based models, particularly wav2vec 2.0 and LEAF, in capturing the subtle emotional states expressed in speech, thereby affirming the 

importance of auditory cues over conventional visual and textual indicators. The study's implications for further research herald a 

promising trajectory for evolving AI systems adept at nuanced emotion detection, thereby forging pathways toward more natural and 

human-centric interactions between individuals and machines. This advancement is crucial for developing empathetic AI that can 

seamlessly integrate into our daily lives, understanding and reacting to human emotions in a way that mirrors human understanding 

and compassion. 
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I. INTRODUCTION

In human interaction, emotions serve as fundamental 

signals that shape our communication and understanding of 

one another. Among the various means through which 
emotions are expressed and perceived, speech is particularly 

potent, carrying the subtle nuances of emotional states 

through tonal variations, intensity, and rhythm. The field of 

human-computer interaction (HCI) has recognized the value 

of decoding these emotional signals from speech data, spurred 

by the rapid advancements in artificial intelligence (AI) 

technologies. As AI systems become increasingly integrated 

into daily life, accurately recognizing and responding to 

human emotions becomes essential for creating more intuitive 

and empathetic machine interactions. This has led to the 

emergence of speech emotion recognition (SER) technology 

as a critical area of research aimed at enhancing the quality of 

interactions between humans and machines by facilitating 

accurate emotion classification and enabling machines to 

interpret user intentions better. 

The importance of SER technology stretches across 

numerous applications, from healthcare, where it can aid in 

diagnosing and treating emotional disorders, to customer 

service robots that can adapt their responses based on the 

user's emotional state. The potential of SER to revolutionize 
these interactions has sparked a growing interest among 

researchers, leading to a surge in studies exploring deep 

learning techniques for emotion recognition. With its ability 

to process and learn from vast amounts of data, deep learning 

has already shown remarkable success in fields such as image 

and speech recognition. Its application to SER promises to 

unlock new levels of accuracy and efficiency in emotion 

detection, moving beyond the limitations of traditional 

analytical methods. 
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Jo et al. [1] present an emotion recognition model that 

combines bidirectional long-short-term memory (Bi-LSTM) 

and convolutional neural networks (CNNs) using a Korean 

speech emotion database to improve accuracy in human-

computer interaction. 

Wagner et al. [2] present an in-depth analysis of 

transformer-based models, specifically wav2vec 2.0 and 

HuBERT, for speech emotion recognition (SER). It focuses 

on the performance of these models across the dimensions of 

arousal, dominance, and valence, highlighting their 
robustness and fairness in gender representation. The study 

demonstrates that transformer architectures, even without 

explicit linguistic information, can significantly improve 

valence prediction, implicitly offering insights into the 

models' ability to learn linguistic cues from speech data. 

Hema et al. [3] introduce a Speech Emotion Recognition 

(SER) system that utilizes Convolutional Neural Networks 

(CNN) and Mel-frequency Cepstral Coefficients (MFCC) for 

feature extraction to identify underlying emotions in speech 

signals. This method outperforms existing systems by 

achieving higher accuracy and lower false favorable rates, 
emphasizing the effectiveness of spectral and prosodic feature 

utilization in emotion detection. 

Min et al. [4] propose an innovative Hate Speech Detection 

(HSD) method named EHSor, which integrates emotion 

detection to improve HSD performance. The study employs 

Multi-Label Learning (MLL) and Multi-Task Learning (MTL) 

frameworks to enhance the detection process by exploring the 

correlation between hate speech and negative emotional states. 

The method leverages a shared BERT encoder and employs 

pseudo-multi-label data to train the system, effectively 

capturing the complex relationship between hate speech and 
emotional states and providing a novel approach to addressing 

HSD challenges. 

Singh et al. [5] introduce a novel gender-dependent training 

approach for improving the accuracy of Speech Emotion 

Recognition (SER) systems. It focuses on leveraging Mel-

frequency Cepstral Coefficients (MFCC) and their variants, 

utilizing a Convolutional Neural Network (CNN) architecture 

specifically tailored to recognize emotions in speech based on 

the speaker's gender. This method aims to enhance human-

machine interaction by providing a more nuanced 

understanding of emotional expressions in speech. 

Kumar et al. [6] present a speech-emotion recognition 
system using a multilayer neural network for smart assistance. 

This system can detect a range of human emotions from voice 

messages, including worry, surprise, sadness, happiness, hate, 

and love. It utilizes voice processing techniques to trigger 

actions like alerts through buzzers and LEDs based on the 

identified emotion, aiming to enhance human-machine 

interaction and support in various environments such as 

households and hospitals. 

Jain et al. [7] detail the use of a Support Vector Machine 

(SVM) for Speech Emotion Recognition (SER), aiming to 

classify speech into four emotions: sadness, anger, fear, and 
happiness. It highlights the importance of feature extraction, 

utilizing Mel-frequency Cepstral Coefficients (MFCC) and 

Linear Predictive Coding Coefficients (LPCC) alongside 

pitch, energy, and speech rate analysis. The research 

compares two classification strategies: One against All (OAA) 

and Gender-Dependent Classification, emphasizing the role 

of SVM in improving emotion recognition accuracy through 

sophisticated feature analysis and classification techniques. 

Kadiri et al. [8] introduce an automatic emotion detection 

system from speech, emphasizing the significant role of 

excitation features extracted around glottal closure instants 

(GCIs). It proposes using the Kullback-Leibler distance to 

measure deviations between emotional and neutral speech, 

demonstrating the importance of excitation features in 

distinguishing between these speech types. This approach is 

novel in its minimal reliance on training data and language-
independent applicability, offering a new direction for 

emotion detection research. 

Aouani et al. [9] introduce a novel gender-dependent 

training approach for improving the accuracy of Speech 

Emotion Recognition (SER) systems. It focuses on leveraging 

Mel-frequency Cepstral Coefficients (MFCC) and their 

variants, utilizing a Convolutional Neural Network (CNN) 

architecture specifically tailored to recognize emotions in 

speech based on the speaker's gender. This method aims to 

enhance human-machine interaction by providing a more 

nuanced understanding of emotional expressions in speech. 
Issa et al. [10] introduce a novel gender-dependent training 

approach for improving the accuracy of Speech Emotion 

Recognition (SER) systems. It focuses on leveraging Mel-

frequency Cepstral Coefficients (MFCC) and their variants, 

utilizing a Convolutional Neural Network (CNN) architecture 

specifically tailored to recognize emotions in speech based on 

the speaker's gender. This method aims to enhance human-

machine interaction by providing a more nuanced 

understanding of emotional expressions in speech. 

Akçay et al. [11] overview the methodologies, 

technologies, and challenges in Speech Emotion Recognition 
(SER). It discusses various aspects of SER, including 

emotional models, databases, features, preprocessing 

methods, supporting modalities, and classifiers. The survey 

highlights the evolution of SER over two decades, 

emphasizing recent advancements and the integration of deep 

learning techniques. It provides a detailed examination of 

current literature, identifying gaps and suggesting future 

research directions. 

Emotion recognition research has historically concentrated 

on visual and textual cues, such as facial expressions and 

linguistic patterns [12]–[21]. However, the auditory 

dimension of speech offers a rich vein of emotional 
information that remains relatively untapped. Vocal attributes 

like tone, pitch, and speaking rate can convey a broad 

spectrum of emotions, from joy and surprise to anger and 

sadness, often with greater subtlety and complexity than 

visual cues alone. Recognizing the potential of these vocal 

characteristics, our research seeks to advance the field of SER 

by focusing on the auditory aspects of emotion recognition. 

Our study introduces an innovative approach that combines 

the latest advancements in deep learning with the unique 

capabilities of the LEAF algorithm [22]. This learnable audio 

frontend combines Gabor filters, learnable pooling, sPCEN 
for audio signal processing, and wav2vec [23]. Pretraining on 

large datasets has recently brought significant success to deep 

learning approaches [24]–[31]. Wav2vec 2.0 is a self-

supervised learning framework for speech recognition. It 

pretrains on unlabeled audio data to learn speech 

representations without manual transcription. By explicitly 
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targeting Korean voice samples, we explore new 

methodologies for classifying emotions through speech, 

leveraging the strengths of these algorithms to process and 

analyze the intricate patterns of vocal expressions. This 

approach broadens the scope of SER and offers a more 

nuanced understanding of how emotions are communicated 

and perceived through speech. Our research contributes to the 

ongoing development of SER technologies, aiming to bridge 

the gap between human emotions and machine interpretation. 

By enhancing the ability of AI systems to recognize and 
respond to emotional cues in speech, we move closer to 

creating more natural, intuitive, and human-centric 

interactions between people and machines. 

II. MATERIALS AND METHOD 

A. Preliminaries 

(LEAF) LEAF (Learnable Frontend for Audio 

Classification) is an entirely learnable architecture designed 

to replace mel-filterbanks in audio classification tasks. By 
training on diverse audio signals, including speech, music, 

and environmental sounds, the authors demonstrate that 

LEAF outperforms traditional mel-filterbanks and previous 

learnable alternatives across a wide range of audio 

classification tasks. The key innovation is the end-to-end 

learnability of all operations in audio feature extraction, 

including filtering, pooling, compression, and normalization, 

which enables superior performance with significantly fewer 

parameters compared to the state-of-the-art. This paper 

employs the LEAF model to extract voice signal features, 

including pitch, tone, and volume. 

 
Fig. 1  Architecture of Wav2Vec 2.0 

 

Wav2Vec 2.0 is a framework for self-supervised learning 

of speech representations that significantly advances the field 

of automatic speech recognition (ASR). It introduces a novel 

approach that masks latent representations of raw waveform 

and solves a contrastive task over quantized speech 
representations, demonstrating substantial improvements in 

word error rates (WER) on the Librispeech dataset, especially 

in low-resource scenarios. The framework outperforms the 

best semi-supervised methods and previous state-of-the-art 

results by leveraging large amounts of unlabeled data for pre-

training, followed by fine-tuning a small amount of labeled 

data. This method shows promise for developing ASR 

systems with minimal labeled data, potentially expanding the 

accessibility of speech recognition technology across various 

languages and dialects. Fig 1 shows the architecture of 

Wav2Vec 2.0. The bottom of the diagram shows the input raw 

audio waveform. The next layer up, labeled 'CNN', represents 

a series of 1-dimensional convolutional neural networks that 

process the raw audio signal to extract features over time. 

These features are then passed up to the 'Transformer', the 

core of the wav2vec 2.0 model. The Transformer is a type of 

neural network that processes sequential data and is known 

for its effectiveness in natural language processing tasks. At 

the top, 'Context Representations' are the output from the 

Transformer. These representations are contextually rich, 

considering the immediate acoustic features and the broader 

context within the audio sequence. These context 
representations can then be used for various downstream tasks, 

such as speech recognition, by adding an appropriate head to 

the pre-trained model. Yi [32] explores the application of 

wav2vec 2.0, pre-trained on English speech, to low-resource 

Automatic Speech Recognition (ASR) tasks across six 

languages. It significantly improves over previous models, 

highlighting its adaptability to linguistic contexts and its 

efficiency with coarse-grained modeling units. The study 

underscores wav2vec 2.0's potential in handling real-world, 

low-resource speech recognition challenges, showing over 20% 

relative improvements in six languages and particularly 
notable gains in English. In this paper, we utilize wav2vec to 

extract feature vectors from Korean voices for classifying 

emotions based on voice. Recently, various works have 

attempted to employ wav2vec to extract features for emotion 

recognition tasks. Mohamed et al. [33] introduce an advanced 

deep learning model to identify emotions in Arabic speech, 

utilizing state-of-the-art audio representation technologies, 

wav2vec2.0 and HuBERT, on the Arabic BAVED audio 

dataset. The study showcases wav2vec2.0's ability to achieve 

an impressive accuracy of 89% through various experiments. 

The research highlights the effectiveness of these models in 
recognizing emotional states from speech, demonstrating 

significant advancements in Arabic speech emotion 

recognition. This work sets a new benchmark and opens 

pathways for future research to enhance feature sets and 

expand dataset size for broader recognition tasks. Sharma et 

al. [34] present a Multi-Lingual (MLi) and Multi-Task 

Learning (MTL) system for Speech Emotion Recognition 

(SER), leveraging the pre-trained wav2vec 2.0 model. It fine-

tunes this model on twenty-five open-source datasets across 

13 languages and 7 emotion categories. Key findings include 

the model's superior performance over Pre-trained Audio 

Neural Network (PANN) models, achieving up to 8.6% 
improvement in specific tasks. The MTL approach notably 

enhances the system's accuracy across different languages, 

showcasing the model's robustness and adaptability in multi-

lingual emotion recognition tasks. In this paper, we employ 

Wav2Vec as a language-related feature extractor. Using a pre-

trained feature extractor, textual and voice information can be 

encoded. 

B. Text and Sound-Based Feature Extraction and Emotion 

Classification 

Fig 2 illustrates the architecture proposed for the 

classification of emotions using vocal inputs. Initially, the 

system processes the raw audio signal, transforming it into 

features using a pre-trained Wav2Vec model. Then, after this 

initial transformation, the features are sent to the LEAF 

(Learnable Audio Frontend) model to be transformed into a 

short-term power spectrum representation. This step is crucial 
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as it captures the temporal dynamics and frequency 

components essential for interpreting human emotions from 

speech. The synergy between the learnable frontend and the 

Wav2Vec model forms the cornerstone of our methodology, 

allowing for the integration of signal characteristics with 

linguistic features. By doing so, the system gains the capacity 

to discern emotional subtleties in the human voice, which 

could be significantly influenced by language and culture. 

 

 
Fig. 2  Architecture of the Proposed System 

C. Multi-task Learning for Audio Classification. 

Multi-task learning has made significant strides in 

enhancing the robustness of predictive models [35]. By 

training a model on multiple tasks simultaneously, the shared 

representations can lead to more generalized features and 

prevent overfitting on a single task. Our approach leverages 

this paradigm by implementing a multi-task classification 
framework that incorporates various attributes of the audio 

signal. The dataset used for training encapsulates several 

variables, including but not limited to gender identification, 

emotion intensity, and the emotional state itself. This dataset 

enables the model to perform a comprehensive multi-class 

classification, which is beneficial in distinguishing subtle 

differences between emotional states. The uppermost three 

layers in Fig 2 represent the linear layers designated for multi-

task learning. Each layer is responsible for a different 

classification task – gender, emotion, and emotion intensity. 

The interaction among these tasks is designed to reinforce the 

model's discriminative power. The gender classification layer 
focuses on identifying the speaker's gender, which can 

influence emotion perception in speech. The emotion 

classification layer categorizes the speaker's emotional state, 

which is the system’s primary focus. Finally, the emotion 

strength classification layer gauges the intensity of the 

expressed emotion, which can vary from subtle to intense. 

The multi-task learning framework allows the shared 

representation to be fine-tuned by the gradients derived from 

each task, ensuring that the layers capture universally 

applicable features across all tasks. Moreover, this framework 

benefits from the interrelatedness of the functions. For 
example, recognizing gender may provide helpful context for 

interpreting emotion, as cultural norms can lead to different 

emotional expressions among genders. To train this model, 

we employ a joint loss function that combines the losses from 

each task, allowing us to optimize the network cohesively. 

This streamlines the training process and aligns the model's 

objectives towards a common goal: to understand and classify 

the emotional content in speech accurately. The implications 

of such a system are far-reaching, especially for languages 

like Korean, where emotional expressions can be highly 

context-dependent and influenced by social hierarchies. By 
tailoring the model to recognize the nuances of Korean speech, 

we aim to achieve high accuracy in emotion recognition, 

which can be applied to various fields such as interactive 

voice response systems, mental health assessment, and 

human-computer interaction. In conclusion, our proposed 

system integrates the learnable LEAF frontend with a 

sophisticated wav2vec model, followed by a robust multi-task 

learning framework to classify gender, emotion, and emotion 

intensity from speech. This comprehensive approach 

enhances the model's generalizability across tasks and caters 

to the intricate variances found in Korean speech, making it a 
significant step forward in speech emotion classification. 

III. RESULTS AND DISCUSSION 

A. Dataset 

In this study, we developed a comprehensive Korean 

speech emotion dataset by engaging 120 voice actors with 

notable experience in various domains, including animations, 

dramas, and web-based audio content. These actors were 

assigned to vocalize texts, with each text's emotional tone 

aligning with the predefined categories of an emotion-labeled 
dataset. This dataset comprises sentences randomly sourced 

from the internet, categorized based on their emotional 

content. Through this methodology, each participating voice 

actor contributed to the dataset by recording 500 to 600 

sentences, culminating in a robust compilation of 68,000 data 

points. A distinctive feature of this dataset is the inclusion of 

onomatopoeia and exclamations, accounting for 5% of each 

actor's contributions, thereby enhancing the dataset's 

emotional diversity. Specific sounds such as laughter, crying, 

and shouting were incorporated into categories corresponding 

to happiness, sadness, and anger. The dataset is structured into 
four primary emotional classes—joy, sadness, neutral, and 

anger—each containing 17,000 utterances. For analytical and 

developmental purposes, these utterances were subdivided 

into training (13,000 utterances), validation (2,000 utterances), 

and testing (2,000 utterances) sets, facilitating a structured 

approach to model training and performance evaluation. 

Additionally, the dataset was meticulously curated to consider 

the gender and age distribution of the voice actors. The gender 

distribution was balanced at a 50% male to 50% female ratio, 

with the age distribution comprising 40% in their 20s, 40% in 

their 30s, and 20% aged 40 and above. Furthermore, each 
utterance was categorized into four intensity levels, providing 

a nuanced understanding of emotional expression. 

B. Experimental Result. 

We experimented to evaluate the proposed method. Four 

models were compared: 
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● Wav2Vec with Multitask Learning: This model was 

trained with the architecture proposed in Fig. 2. It 

includes Wav2Vec feature extraction and a LEAF 

frontend model to transform the input voice into 

features for a convolutional neural network (ConvNet). 

The model was trained with a multitask learning 

strategy. 

● Wav2Vec without Multitask Learning: To identify the 

effectiveness of the multitask learning strategy, a 

Wav2Vec model was trained without it. 
● LEAF only with Multitask Learning: To identify the 

effectiveness of the proposed model, which constructs 

a pipeline of pretrained Wav2Vec and a LEAF 

frontend, the proposed model was compared with a 

LEAF model trained with multitask learning. 

● LEAF only without Multitask Learning: A LEAF 

model was also trained without multitask learning. 

Fig 3 shows the loss curves of the baseline models and the 

proposed model. The proposed Wav2Vec with multitask 

learning shows the best loss curve. The proposed Wav2Vec 

and LEAF pipeline outperform the LEAF-only models. The 
multitask learning strategy shows better performance than 

single-task learning in both the Wav2Vec and LEAF pipeline 

and the LEAF-only model.  

 

 
Fig. 3  Loss changes between models. 

 

The performance of the models was evaluated using 

standard metrics for speech emotion classification tasks. Here, 

we present the results using accuracy as the primary metric. 

Accuracy represents the percentage of speech samples where 
the predicted emotion category matches the ground truth label. 

TABLE I 

MULTITASK CLASSIFICATION PERFORMANCE. 

Model Accuracy (%) 

LEAF only without Multitask Learning 80.76 
LEAF only with Multitask Learning 82.33 
Wav2Vec without Multitask Learning 83.72 
Wav2Vec with Multitask learning 86.40 

 

Table 1 presents the accuracy for each model on the test set. 

The proposed Wav2Vec with multitask learning achieves the 

highest accuracy, outperforming all baseline models. This 

confirms the effectiveness of the proposed method in Korean 

speech emotion classification. The Wav2Vec without 

Multitask Learning model performs less than the proposed 

model with multitask learning. This difference highlights the 

benefit of incorporating the multitask learning strategy, 

potentially improving the model's ability to learn 

generalizable features applicable to emotion classification. 

The LEAF-only models consistently show lower performance 

with and without multitask learning than the Wav2Vec-based 

models. This observation suggests that Wav2Vec features 

capture emotional cues crucial for accurate classification, and 

the LEAF architecture alone might not be sufficient for 

optimal performance on this specific task. The LEAF only 

with the Multitask Learning model performs slightly better 

than the LEAF only without the Multitask Learning model. 
While the improvement is modest, it indicates that 

multitasking learning can potentially benefit even models that 

do not leverage Wav2Vec features. 

 
Fig. 4  Emotion Classification Confusion Matrix of proposed model 

 

The confusion matrix, as illustrated in Fig 2, provides a 

visual representation of the performance of our speech 

emotion classification system for Korean language datasets. 

The matrix reveals that the 'Sad' emotion classification 

outperforms other emotional states, with a substantial true 

positive rate of 90%. This high accuracy can be attributed to 

distinct acoustic features effectively captured by the feature 

extraction in the case of 'Sad' vocal expressions. In contrast, 

the 'Happy' emotion is identified with the lowest accuracy. 

This is possibly due to the nuanced variations in the 'Happy' 

vocal expressions that may be similar to those found in 
'Angry' and 'Normal' states, leading to a more distributed 

pattern of misclassification among these categories. The 

system's tendency to confuse 'Happy' with 'Angry' and 

'Normal' suggests a significant overlap in the feature space for 

these emotions. The performance metrics for 'Angry' and 

'Normal' emotions are satisfactory, achieving a classification 

accuracy of 84% and 90%, respectively. Notably, 'Normal' 

emotion, which we may consider as a baseline or control, is 

classified with high precision, indicating the system's 

effectiveness in distinguishing neutral emotional states from 

more expressive ones. 
Future work will focus on improving the 'Happy' emotion 

classification by exploring additional feature extraction 

techniques and considering a more extensive and more varied 

dataset to train the model. The overarching goal is to enhance 

the emotional granularity of the classification system, 

ensuring that each emotional state is represented with high 

fidelity in the automated recognition process. Moreover, 
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integrating contextual information and linguistic cues into the 

feature extraction process may offer a pathway to improved 

classification accuracy across all emotions. 

C. Training Details 

For hyperparameter tuning, we employed a grid search 

approach to identify the optimal configuration for each model. 

We set the batch size to 128 and used a learning rate of 5e-3 
with 10 epochs. 

IV. CONCLUSION 

This research has demonstrated substantial improvement in 

the precision of emotion classification, particularly for the 

Korean language. The combination of text and sound-based 

feature extraction methodologies has proven effective in 

capturing the nuanced expressions of emotions in speech, 
which is crucial for enhancing human-computer interactions 

in various applications, including healthcare and customer 

service. The study's dataset, consisting of voice recordings 

from 120 actors and 68,000 data points, underscores the 

comprehensive approach to understanding emotional 

expressions in Korean speech. Experimental results 

showcasing the superiority of the wav2vec model with 

multitask learning in accuracy further validate the proposed 

method's effectiveness. Future work should focus on refining 

these models and exploring additional linguistic and cultural 

nuances to further extend SER's applicability and accuracy. 

This research contributes to the SER field and opens new 
pathways for creating more empathetic and intuitive AI 

systems capable of understanding and interacting with human 

emotions more naturally. 
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