
Vol.13 (2023) No. 3 

ISSN: 2088-5334 

Design an Intelligent Balanced Control of Quadruped Legs Based on 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Sigit Wasista a,b, Handayani Tjandrasa a,*, Supeno Djanali a 
a Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 

b Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya, Indonesia 

Corresponding author: *handatj@its.ac.id 

Abstract— This study discusses the 12 DoF stability control algorithm for Quadruped robot legs to adjust the balance on irregular 

terrain. The source of the instability is the irregularity of the ground surface and external forces. Therefore, dynamic stability criteria 

are needed to plan the robot's movement and restore balance for the movement of a four-legged robot with a dynamic gait over an 

irregular terrain. The novelty of this study is the use of 12 ANFIS at once to manage the 12 DoF of each leg, which are grouped into 

four sections, and each section consists of 3 ANFIS. The ANFIS method is used as an algorithm to move the 12-DoF robot legs by 

training some robot leg movement data based on the slope angle of the surface. The results of training with the ANFIS method can be 

optimal if the number of rules is close to the given training data. From 29 body tilt angle position data and 12-DOF robot legs, good 

results will be obtained if the 5x5 number membership function is used for each input which will produce 25 ANFIS rules and combined 

using the Gaussian type so that it can produce RMSE = 0.068233. The next research is to develop reliable methods such as Zero Moment 

Point (ZMP) combined with the BPNN or ANFIS methods so that it is expected to get a reliable robot body balance. 
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I. INTRODUCTION

Several medium-sized quadruped robots have been 

developed to investigate the swing of the robot's legs for effect 
on balancing its gait. For example, some mid-sized quadruped 

robots, such as Kim et al. [1] developed an open-source 

dynamic quadruped robot, PADWQ.  

When considering the dynamic motion of a legged robot, 

one must pay attention to its stability. The robot needs to 

complete the given task while maintaining balance and 

moving smoothly. Shi et al. [2] studied the walking gait of a 

four-legged animal with a bionic structure capable of 

performing smooth movement in all directions, inverse 

kinematic solution using the Denavit-Hartenberg (D-H) 

method was explored moving the legs of a quadruped robot. 

Sun et al. [3] studied a learning-based control architecture for 
quadrupedal self-balancing by adapting to some unexpected 

scenes from continuous external interference. Şen et al. [4] 

simulated a 3-DoF linear leg model with the PIλDµ position 

control system, a control designed by selecting various 

fraction order parameters as a comparison with the classic 

PID control. Wasista et al. [5] studied models of robotic leg 

swing trajectories as a periodic balanced motion test on the 

new design of a Quadruped Robot called "Kancil-V2". Lee et 

al. [6] developed robust AiDIN-VI control based on precise 

torque measurement. Researchers have proposed various 

static and dynamic stability analysis methods to evaluate the 

stability of legged robots. Jia et al. [7] presented a new 
stability criterion for the motion of quadruped robots with 

dynamic gaits running over irregular terrain. Neuro-fuzzy is a 

combination of two systems: fuzzy logic systems and artificial 

neural networks. System neuro-fuzzy based on the fuzzy 

inference system trained using a learning algorithm derived 

from the artificial neural network system. With this, the 

neuro-fuzzy system has all the advantages possessed by fuzzy 

inference systems and artificial neural network systems[8]. 

Qin et al. [9] Examining Stable balance adjustment structure 

on quadrupedal robotic legs based on the bionic lateral swing 

posture designed, and the leg kinematics model. Cui et al. [10] 
discuss the virtual suspension model control to solve the robot 

problem with a line or fulcrum to maintain a standing balance. 

Bakırcıoğlu et al. [11] used Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to obtain position control data (trajectory) 
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on one leg of a four-legged robot, which was previously 

controlled by the PID method so that position control can be 

replaced with ANFIS. Zhu et al. [12] studied the walking 

stability of quadrupedal robots with a stabilization reactive 

control strategy against lateral disturbances based on the 

theory of catch point stability.  Sun et al. [13] have researched 

adaptive robotic quadruped motor control for fast postural 

adaptation in various fields through new distributed feedback-

based reflexes with online learning. Gonzalez-Luchena et al. 

[14] present a new controller for a quadrupedal robot to walk 
using asymmetrical gait patterns in various scenarios, with 

simple and fast operation. Biswal et al. [15] surveyed various 

design and development approaches to quadrupedal robots, 

and environmental perception techniques. Tripathy et al. [16] 

build fast browsing Random Tree-based move organizer that 

completes jumps in reproduction with Little Dog Robot over 

a very ominous landscape. Gonzalez et al. [17] studied 

running quadruped robots on narrow paths or walking in an 

area of almost zero support. Hwangbo et al. [18] have 

researched a new method for training neural network weights 

in simulations and used it in a quadruped robotic leg control 
system. Sun et al. [19] have presented a dynamic balance 

control method to increase quadrupedal robot's stability by 

adjusting its legs' position. Of all the references mentioned 

above, no one has used balance control using the 12-ANFIS 

method to adjust the balance of the robot's body so it does not 

fall at any time on an inclined surface. 

In this study, we fabricated an open-source dynamic 

quadruped robot that can be assembled from components 

available in the domestic market. The robot body consists of 

standard 3D-printed plastic so that assembling the robot can 

be easily fabricated, duplicated, and shared without using a 
CNC machine. Based on this, the robot can be produced with 

low-cost plastic 3D printing, with strength according to the 

material used, namely ABS, or more substantial than that. 

While the drive motor (actuator) uses a servo with a lifting 

force of +/-30-35 Kg/cm, which is controlled by an onboard 

computer, and the power supply/adapter is ready-to-use. It can 

be purchased from the domestic market. It tested the 

movement of the robot's legs using a simple Arduino-based 

drive controller to move the servo degrees for the balance 

controller according to the IMU sensor.  

II. MATERIALS AND METHOD 

The robot consists of one body and four limbs. Each 

consists of three parts: hips, thighs, and calves, so there are 

three Degrees of Freedom (DOF) in each limb. A DC motor 

actuator drives DOF. The main section dimensions of a 

Quadruped model are shown in Fig. 1. The proposed 

Quadruped robot has 12 (4x3) DOF and consists of 4 

combinations of shoulders and legs with 3-DOF as shown in 

Fig. 2. The Main section sizes of a Quadruped Robot models 
are shown in Table 1. The kinematic design details of the leg 

are shown in Fig. 3, and D-H parameters are shown in Table 

2. 

 

 
Fig. 1  The Main Body of Quadruped Robot 

 

 
Fig. 2  The 3-DOF Hip, Thigh, and Calf 

 

 
Fig. 3  The Kinematic Design and D-H Parameter 

 

TABLE I 

MAIN SECTION SIZE OF THE ROBOT 

Part  Length(mm) 

Body length  295 
Body width  240 

Thigh  105 
Calf  117  

 

  

295m
m 
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TABLE II 

D-H PARAMETERS OF QUADRUPED ROBOT 
 

Link ai di αi θi 

0-1 L1 0 0 θ1 
1-2 L2 0 0 θ2 
2-3 L3 0 0 θ3 

 

Table 2 summarizes the explanation of the Denavit-

Hartenberg Modeling Parameters for the Quadruped robot. 

This D-H parameter model, the Homogeneous 

Transformation Matrix [20], [21], formulates forward and 

inverse kinematics calculations [4], [22], [23]. Based on the 

D-H Parameter modeling value [5], [12], [24], a 

transformation matrix can be filled for each entry as follows: 

 T01= �cos(θ1) -sin(θ1) 0 -L1cos(θ1)sin(θ1) cos(θ1) 0 -L1sin(θ1)1 0 0 00 0 0 1 � (1) 

 ��� = ����(��) − ���(��) 0 �� ���(��)���(��) ���(��) 0 �� ���(��)0 0 1 00 0 0 1 � (2) 

 ��� = ����(��) −���(��) 0 �����(��)���(��) ���(��) 0 �����(��)0 0 1 00 0 0 1 � (3) 

The joint angle position equations (θ1 , θ2 and θ3 ) have 

been obtained as in the following equation. 

 θ1= − � ��2(−"�, $�) − � ��2 %&$'� − "'� − ��� , −��( (4) 

 θ2=atan2 %+', &$'� + "'� − ���( − � ��2(�� sin(��) , �� + ��cos (��))(5) 

θ3=� ��2-−√1 − /�, /0     for leg 1 and 3 (6) 

θ3=� ��2-√1 − /�, /0     for leg 2 and 4 (7) 

III. RESULTS AND DISCUSSION 

The control of a quadruped robot consists of balance 

control with Back Propagation Neural Network (BPNN), and 

ANFIS alternately controlling the robot's leg movements. The 
proposed model for the experiment is shown in Fig. 4. 

A. Modeling based on Neural Network 

The neural network architecture used here is a  BPNN, 

which consists of three layers: the input layer, the hidden 

layer, and the output layer [25], [26]. Those three layers are 

input 12, hidden layer 324�, and the output layer 324�. The input 

layer and hidden layer are connected by weight  54�64�2,7 and 

the hidden layer and output layer are connected by weight 54�64�2,7. Learning in artificial neural networks involves data 

pairs, inputs, and outputs. From the multiplication process 

between the input data and the weighting, temporary output 

data with errors will be generated, which are then forwarded 

to the output layer. The output layer will respond called a 
temporary output. If the output of the output has not reached 

the desired limit or the mean error square, it will be 

recalculated to replace the weights in the hidden layer and 

weights back to the input layer. The following mathematical 

formula is the basis of the above algorithm: 

1) The Forward Propagation formula:  

Layer One:  324� = 12 (8) 

Layer Two:  �7 = ∑ 324�54�64�2,792:�  (9) 

And 324� = ��;<=>?(@ABCD@EA) (10) 

Layer Tree: FG = ∑ 374�54�64�2,797:�  (11) 

and           3G4� = ��;<=>?(CHBCD@EH) (12) 

2) The Backward Propagation formula: 

Layer Three, The Error Output formula: 
 

 IJJ(KLI) = �� (34� − 3MN)� (13) 

 FG = O� = PQRRHPSH = 3MN − 3M4� (14) 

 �7 = O� = PQRRHPTA  = 
PQRRHPSH  . 

PSHPUAVW . PUAVW
PTA  (15) 

 IJJ7 = PQRRHPSH . PSHPUAVW = ∑ O� . 52,74�64�4G:�  (16) 

 �2 = O� = IJJ7 . 374�. (1 − 374�) (17) 

Layer Two, The Error Output formula: 

3) The Bias formula:  

L2-L3 Weight Updates: 

 ∆Z7,G4�64� = [ PQRRHP\A,HVW?V] = [ PQRRHPSH . PSHP\A,HVW?V] = [O�374� (18) 

 Z4�64� = 54�64� + ∆Z7,G4�64� (19) 

L1-L2 Weight Updates: 

 ∆Z2,74�64� = [ PQRRHP\D,AV^?VW = [ PQRRAPTA . PTAP\D,AV^?VW = [O�324�
 (20) 

 Z4�64� = Z4�64� + ∆Z2,74�64� (21) 

L2-L3 Bias Updates: ∆F���G4�64� = [ PQRRHPS2T_HVW?V] = [ PQRRHPSH . PSHPS2T_HVW?V] = [O�. 1 

  (22) F���4�64� = F���4�64� + ∆F���G4�64� (23) 

L1-L2 Bias Updates: ∆F���74�64� = [ PQRRAPS2T_AV^?VW = [ PQRRHPTA . PTAPS2T_HV^?VW = [O�. 1 (24) 

 F���4�64� = F���4�64� + ∆F���74�64� (25) 

4) Learning Rate Updates: �` = a(b) = cd�; HHd (26) 
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(a) Pitch = 0, Roll = 20 

 

(a) Pitch = 15, Roll = 0 

Fig. 4  Quadruped Robot model. 

TABLE III 

THE TILT ANGLE POSITION DATA OF THE ROBOT BODY DURING TESTING 

 

 

Fig. 5 shows the BPNN architecture [27], [28] where the 

input layer is designed with three n: the gyro sensor is x, and 

y. Then the hidden layer uses 20 nodes, while the Output layer 

uses 12. Table 3 shows the input data from measuring the 

angle of the quadruped robot's legs when standing on a flat 

plane and an inclined plane with a predetermined tilt angle. 

The unique data is the angle between the legs of the robot as 

much as the tilt test of the robot body both in pitch and roll, 

as shown in Fig.  6. 

B. Modeling based on ANFIS 

ANFIS consists of many nodes and specific functions. The 

value of nodes and functions can be changed to approximate 

the learning value. After studying the sample many times, the 

node and function will get the best value.  

 

After learning, the difference between the sample and 

output values is an objective function optimized using the 

Gradient Descent Method. The Chain Rule is the basis for 

adjustment, which aims to subtract the mean squared error of 

the objective function. 

From the perspective of inverse kinematics, solving for 

angle θ1 Eq. (4) only needs to use the x and y. Therefore, only 

two inputs from ANFIS1 (x, y) exist. Whereas angle θ2 Eq. 

(5) and angle θ3 Eq. (6) and Eq. (7) depend on x and y, so 

ANFIS2 and ANFIS3 using two inputs (x, y) in Fig. 7. 

ANFIS, Adaptive Neuro-Fuzzy Inference System, is a kind 

of artificial neural network based on the Fuzzy Inference 

System from Takagi-Sugeno [29] [30]. 

 

 

Num Pitch Roll θLF1 θLF2 θLF3 θLR1 θLR2 θLR3 θRF1 θRF2 θRF3 θRR1 θRR2 θRR3 

1 0 20 -10.5 -24 20.1 10.5 -11.9 -14.7 -3.5 -26.4 -16.9 3.2 -31.3 -14 

2 0 15 -7 -18.1 16.7 7 -8.9 -11.7 -3.2 -20.7 -10.8 2.9 -24.6 -7.4 

3 0 10 -4.1 -11.7 13 4.1 -5.6 -8.4 -2.5 -15.9 -5.6 2.3 -19.1 -2 

4 0 5 1.8 -4.6 9.1 1.8 -1.9 -4.9 -1.5 -11.7 -0.9 1.3 -14.3 2.7 

5 0 0 0 3 5 0 2 -1 0 -8 3.5 0 -10 7 

6 0 -5 1.3 11.3 0.6 -1.3 6.3 3.2 1.9 -4.6 7.6 -1.8 -6.1 10.9 

7 0 -10 2.3 20.6 -4.3 -2.3 11.1 7.9 4.4 -1.6 11.5 -4.1 -2.4 14.5 

8 0 -15 2.9 31 -9.7 -2.9 16.6 13.3 7.5 1 15.1 -7 0.9 17.7 

9 0 -20 3.2 43.6 -16.1 -3.2 23.2 19.9 11.2 3.4 18.5 -10.5 3.9 20.7 

10 20 0 0 48.1 -15.6 0 0.6 -23.9 0 -32.2 -16.5 0 -8.6 30 

11 15 0 0 33.4 -8.2 0 -0.7 -18 0 -25 -9.4 0 -7.3 24 

12 10 0 0 21.7 -2.7 0 -0.9 -12.2 0 -19 -4 0 -7.1 18.2 

13 5 0 0 11.8 1.6 0 0 -6.5 0 -13.4 0.2 0 -8 12.6 

14 -5 0 0 -4.8 7.4 0 5 4.6 0 -2.6 5.9 0 -13 1.4 

15 -10 0 0 -11.8 8.9 0 9.1 10.3 0 2.9 7.2 0 -17.1 -4.4 

16 -15 0 0 -18 9.3 0 14.5 16.6 0 8.7 7.6 0 -22.5 -10.7 

17 -20 0 0 -23.4 8.7 0 21.9 24.3 0 14.8 6.9 0 -30 -18.4 

18 15 15 -3.1 5.5 6.8 6.1 -6.7 -21.8 -1.6 -30.6 -17.5 3.3 -14.4 9.2 

19 10 10 -2.2 4.2 6.5 3.3 -5 -14.6 -1.4 -21.8 -8.7 2.2 -12.7 8.7 

20 5 5 -1.1 3.4 5.9 1.4 -2.1 -7.7 -0.9 -14.6 -2 1.1 -11.3 7.9 

21 -5 -5 -1.1 3 3.9 -0.9 7.3 5.9 1.4 -1.7 8 -1.1 -9 5.9 

22 -10 -10 2.2 3.4 2.6 -1.4 14 13.5 3.3 4.8 11.5 -2.1 -8.2 4.5 

23 -15 -15 3.3 4.2 1.1 -1.6 23.3 23 6.1 11.5 14 -3.1 -7.7 3.1 

24 15 -15 1.5 47.5 -16.6 -3.3 6.4 -3.2 3.1 -12.3 5.3 -6.1 -1.3 27.9 

25 10 -10 1.4 29.3 -7.5 -2.2 4.7 -2.7 2.1 -10.7 5 -3.3 -3 20.6 

26 5 -5 0.9 15.2 -0.6 -1.1 3.3 -2 1.1 -9.3 4.4 -1.4 -5.9 13.8 

27 -5 5 -1.4 -7.9 9.6 1.1 1 0.1 -1.1 -6.9 2.4 0.9 -15.3 0 

28 -10 10 -3.4 -18 13.2 2.1 0.2 1.5 -2.2 -6 1.1 1.4 -22 -7.6 

29 -15 15 -6.1 -27.3 15.8 3.1 -0.3 2.9 -3.3 -5.2 -0.4 1.5 -31.4 -17.2 

904



 
e
1

 

 

  

 

 

 

 

 

  

 
 

 

  

  

 
 

 

Fig. 5  Multilayer BPNN 

 
(a) Pitch=0, Roll= 20 

 

 
(b) Pitch=15, Roll= 0 

Fig. 6  Tilt and Roll of the robot body  

The following is a first-order Takagi-Sugeno fuzzy model, 

namely the set with two fuzzy IF-THEN rules [31] as follows: 

                                    Defuzzyfications  
         Fuzzifications  Product    Normalizations             Output Total 

 x  y 

 fg             hg         hiiig 

x      N fj 
    

                  kg           

y     N  kj             hj        hiiij  
 x  y 

             Layer 1       Layer 2        Layer3   Layer4     Layer5 

Fig. 7 ANFIS 

Rule 1: 

lm $ �� n� ��o " �� p�  �qIr e� = s�$ + t�" + J�  (27) 

Rule 2: lm $ �� n� ��o " �� p� �qIr e� = s�$ + t�" + J�  (28) 

All nodes in layer one are adaptive nodes described with 

the box field [30], while the output of layer one is a fuzzy 

membership class, given by Eq. (29) and Eq. (30) the 

following: 

 3�,2 = an2($), � = 1,2, (29) 

or 

 3�,2 = ap26�("), � = 3,4 (30) 

The membership class of the fuzzy set is n�, n�, p�  and p� 

is 3�,2. Whereas n� and p26�are label languages such as 

"high" or "low" associated with this node, with input variables 

x and y for node i. So an�($) and ap26�(") can take a fuzzy 

membership function. So if the membership function uses a 

bell shape, then an2($) will be as in Eq. (31) and Eq. (32). 

 an2($) = �
�;vwx?yD@D zW{SD , � − 1,2, (31) 

Or uses Gausian such as: 

 an2($) = |$s }− %=6~DTD (�� (32) 

The set of premise parameters consisting of �2, F2,  and �2, 
has a value that varies, causing variations in the shape of the 

Bell and Gaussian functions, and affecting fuzzy sets with 

various forms of membership functions. Second layer 

involves a multiplication operator, which multiplies between 

inputs to produce an output product in the form of nodes 
representing the firing strength rules. For more details in Eq. 

(33) below. The node's shape is denoted by a circle labeled Π, 

which means the product of the incoming signal that produces 

the product output. 

 3�,2 = �2 = an2($) ∗ ap2("), � = 1,2. (33) 

The third layer is also called the alpha-predicate (total 

number of firepower), which is represented by a circle labeled 

N [30], shows that this node normalizes on the alpha predicate 

of the previous layer, as represented by Eq. (34): 
 

 ��2 = �D�^;�W , � = 1,2. (34) 

In the fourth layer there are parameter sets, namely s2, t2, 
and J2, which are referenced as consequent parameters, as in 

Eq. (35). 3',2 = ��2e2 = ��2(s2$ + t2" + J2), � = 1,2. (35) 

The fifth layer is a node that performs a total calculation of 

all inputs from the previous layer, symbolized by Σ which 

means the total number, can be written Eq. (36) as follows: 

 3�� = �� s� = ∑ ��2e2 = ∑ �D�DD∑ �DD2  (36) 

The proposed integrated ANFIS controller structure 

consists of 3 sub-ANFIS, which is used to determine the 

motion of each joint angle, which is done alternately for the 

arms, namely front right (FR), front left (FL), rear right (RR), 

and rear left (RL) as shown in Fig 8. Each block identified as 

ACi represents the i-th subANFIS whose structure is as shown 
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in Fig 9. The whole series of ANFIS sub-ANFIS represents a 

two / three output neuro-fuzzy network. 

Each sub-ANFIS generates a control angle for each 

connection based on the input it consists of x, and y which is 

part of the input of the inverse kinematic function parameter. 

Before fully implemented, controllers need to be trained to 

achieve better system performance. During training, the error 

signal in the output can be redistributed and used to adjust the 

parameters controller. 

IV. RESULT AND DISCUSSION 

This research contributes to present experiments that show 

the effectiveness of the controller in simulation and 

experiments on real robots.  

A. Modeling based on Neural Network 

In the training of neurons in the hidden layer (layer 1), the 

differentiated tangent function of type S (tangsig) from BPNN 

is used based on the /� (DOF Angle) prediction model of the 

robot legs as represented by Eq (37), while in the training of 

neurons in the output layer (layer 2), the Purelin linear 

function is used. 

 e($) = ��;<?Wx − 1 (37) 

The error value of 3�  is |� is the difference between the 

actual target value of O(n) and the output value of the BPNN 

prediction under the same sample set, as shown in Eq. (38). |� =  /� − 3� (38) 

After doing some trial-and-error experiments with 

MATLAB to determine the number of hidden layers from 2 

to 20, as shown in Fig.10, it can be concluded that the best 

number of hidden layers is 10, with a total of 12 epochs and 

six validation checks. The result of output performance as 

shown in Fig. 11: Training: R=0.95957, Validation: 

R=0.99825, Test=0.99942, All: R=96679, which means the 

prediction results are very accurate. From the graphic image, 

namely Fig. 12 – Fig. 15, the predicted output from BPNN 

with a target from each leg is very precise, and the error can 

be said to be zero. 

 
Fig. 8  ANFIS Architecture as IK 

 

 

Fig. 9  Scheme of integrated ANFIS Controller (AC) 

 

 
Fig. 10  BPNN Output Base On LF-Leg DoF (Hip-Thigh-Calf) 

 

 
Fig. 11  BPNN Output Base On LR-Leg DoF (Hip-Thigh-Calf) 

 

 

Fig. 12  BPNN Output Base On RF-Leg DoF (Hip-Thigh-Calf) 

 

 

Fig. 13  BPNN Output Base On RR-Leg DoF (Hip-Thigh-Calf) 
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Fig. 14  Number of Hidden layer and Output Layer 

 

BPNN output very precisely and quickly reaches the target 

being trained, as shown in Fig.12 - Fig.15, thus supporting its 

use for adjusting the balance of the actual robot body, as 

shown in Fig. 22. To be able to take advantage of these results, 

the weight and bias values of the BPNN training are given as 

in Table 4. Testing the prediction of the movement of the 

robot's legs can be done using the forward propagation 

formula as in Eq.(8)–Eq. (12). 
 

TABLE IV 

WEIGHTS AND BIASES FROM BPNN TRAINING RESULTS OF RF-LEG 

 

Hidden IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10 
H1 -0.0007 0.0224 0.5546 -0.157 0.345 0.2454 -0.465 -0.07 0.4107 0.0779 
H2 -0.805 0.5923 0.5054 0.2154 0.1996 0.3024 -0.135 1.2711 -2.299 0.4426 
H3 -1.1304 0.6898 0.7393 0.2608 0.3287 0.3847 -0.188 0.0979 0.0184 -1.784 

Bias 1 -3.0688 1.1871 -2.591 -2.352 -0.293 0.0531 2.3672 3.3118 2.4178 6.6962 
  LW1 LW2 LW3               

Bias 2 -0.001 0.1588 1.3605               

 

TABLE V 

TRAINING, TARGET AND TESTING  DATA OF RF LEG 

Num 
Training Target Testing 

Pitch Roll RF1 RF2 RF3 Pitch Roll RF1 RF2 RF3 
1 0 20 -3.50 -26.40 -16.90 0 20 -3.50 -26.40 -16.90 
2 0 15 -3.20 -20.70 -10.80 0 15 -3.20 -20.70 -10.80 
3 0 10 -2.50 -15.90 -5.60 0 10 -2.50 -15.90 -5.60 
4 0 5 -1.50 -11.70 -0.90 0 5 -1.50 -11.70 -0.90 
5 0 0 0.00 -8.00 3.50 0 0 0.00 -8.00 3.50 
6 0 -5 1.90 -4.60 7.60 0 -5 1.90 -4.60 7.60 
7 0 -10 4.40 -1.60 11.50 0 -10 4.40 -1.60 11.50 
8 0 -15 7.50 1.00 15.10 0 -15 7.50 1.00 15.10 
9 0 -20 11.20 3.40 18.50 0 -20 11.20 3.40 18.50 
10 20 0 0.00 -32.20 -16.50 20 0 0.00 -32.20 -16.50 
11 15 0 0.00 -25.00 -9.40 15 0 0.00 -25.00 -9.40 
12 10 0 0.00 -19.00 -4.00 10 0 0.00 -19.00 -4.00 
13 5 0 0.00 -13.40 0.20 5 0 0.00 -13.40 0.20 
14 -5 0 0.00 -2.60 5.90 -5 0 0.00 -2.60 5.90 
15 -10 0 0.00 2.90 7.20 -10 0 0.00 2.90 7.20 
16 -15 0 0.00 8.70 7.60 -15 0 0.00 8.70 7.60 
17 -20 0 0.00 14.80 6.90 -20 0 0.00 14.80 6.90 
18 15 15 -1.60 -30.60 -17.50 15 15 -1.60 -30.60 -17.50 
19 10 10 -1.40 -21.80 -8.70 10 10 -1.40 -21.80 -8.70 
20 5 5 -0.90 -14.60 -2.00 5 5 -0.90 -14.60 -2.00 
21 -5 -5 1.40 -1.70 8.00 -5 -5 1.40 -1.70 8.00 
22 -10 -10 3.30 4.80 11.50 -10 -10 3.30 4.80 11.50 
23 -15 -15 6.10 11.50 14.00 -15 -15 6.10 11.50 14.00 
24 15 -15 3.10 -12.30 5.30 15 -15 3.10  5.30 
25 10 -10 2.10 -10.70 5.00 10 -10 2.10 -10.70 5.00 
26 5 -5 1.10 -9.30 4.40 5 -5 1.10 -9.30 4.40 
27 -5 5 -1.10 -6.90 2.40 -5 5 -1.10 -6.90 2.40 
28 -10 10 -2.20 -6.00 1.10 -10 10 -2.20 -6.00 1.10 
29 -15 15 -3.30 -5.20 -0.40 -15 15 -3.30 -5.20 -0.40 

 

After ANFIS generates a model, then the model must be 

tested for validation to the desired model criteria. The purpose 

of this process is to see how far did ANFIS succeed in doing 

system modeling. ANFIS validates this model by comparing 

the output of the data that has been processed learning with 

other data sets that there is no learning process, other than that 

the three data sets are independent of each other, so the 

comparison earlier will result in an "error" that can be used as 
a measure of the success rate of this model.  

The following is a snippet of data for the Right Front (RF) 

with training, testing, and target data for ANFIS training. In 

contrast, for the testing data, part of the training data is taken 

by eliminating the column containing zero angle, as shown in 

Table 5. 

After doing several experiments on the number of MF 

(Membership Function) it was found that at least 5 MF is 

needed for each input, so the predictions produced are very 

close to the target and even the same, with training results 

RMSE = 0.068233, carried out with only two epochs. Then 

give the names of the rules, as shown in Fig. 16, which 
consists of MF 5 for Pitch and MF 5 for Roll, as in Fig 17. 

The training results in the prediction of the value of the 

servo angular movement control according to the input from 

the IMU sensor. The prediction results are shown in Fig. 18 - 

Fig.21. 
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Fig. 15  Output performance from BPNN training 

 

 

Fig. 16  Membership Function plot for input variable Picth. 

 

 

Fig. 17  Membership Function plot for input variable Roll. 

 

After getting the optimal weight, they were then followed 
by mapping. This process is done in the microcontroller on 

the quadruped robot. In this stage, the value of the optimal 

weights is again used as input in the backpropagation learning 

process. It is just that this learning process does not repeatedly 

accomplish this because the weight of the weight used is the 

most optimal, so in a single forward propagation process, the 

value of the resulting output is close to the target value. 
 

B. Modeling based on ANFIS 

In this research, the ANFIS architecture is used, which is 

designed for particular purposes so that it can produce three 

outputs from the five inputs given from the angle data from 

the measurement results of the robot's balance movement after 

being given the slope of the footing surface. ANFIS then 

trains the data to produce the produces the appropriate output 

based on the input given, which is in the form of input data, 
as shown in Table 3. above. 

According to the input data, there are two pitch and roll 

angles, the slope of the robot's body, and the twelve angles of 

the four legs (hip, thigh and calf), so the input and output 

nodes used are two and twelve as shown in Fig. 9. 

ANFIS output is exact and quickly reaches the target being 

trained, as shown in Fig. 18 - Fig.21. This is because ANFIS 

uses 25 rules, as shown in Table 6, obtained from the results 

of the MF 5x5 setting. So that with these 25 rules can be 

applied to low-level programming (machine language) to 

predict the movement of the robot's legs based on the targets 
from the IMU input, namely pitch and roll, thus supporting its 

use to adjust the actual balance of the robot's body as shown 

in Fig. 22. The following is an overview of the overall output 

of ANFIS when measuring the balance of the robot body 

based on input from the IMU sensor, namely pitch and roll as 

shown in Fig. 23. 

 

 

Fig. 18  ANFIS Output Base On LF-Leg DoF (Hip-Thigh-Calf) 

 

 

Fig. 19  ANFIS Output Base On LR-Leg DoF (Hip-Thigh-Calf) 

 
Fig. 20  ANFIS Output Base On RF-Leg DoF (Hip-Thigh-Calf) 
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Fig. 21  ANFIS Output Base On RR-Leg DoF (Hip-Thigh-Calf) 

 

 
Fig. 22  Implementation of output from ANFIS 

 

 
Fig. 23  Self balancing measurement base on Pitch and Roll 

IV. CONCLUSION 

Both methods have been tested with the same input, with 

various choices of parameters that best suit the method used, 

so that it can produce the desired output with perfect results, 

namely with an error of 0. The backpropagation method 

(BPNN) can produce output per the number of 12 targets at 

once by giving a total weight of 120 to produce 12 targets with 

ten hidden layers, ten input biases, and one output bias. The 

ANFIS method only produces one output, so several ANFIS 

must be used to handle 12 targets, 3 ANFIS handles each leg, 
so there are a total of 12 ANFIS. BPNN relies on 

multiplication and addition arithmetic calculations so that 

during implementation, it is constrained by speed and 

accuracy in predicting targets based on input from IMU pitch 

and roll data. ANFIS relies on speed with the help of pre-

arranged rules so that speed and accuracy can be achieved 

properly. ANFIS with 5x5 MF on each input will produce 25 

rules, so the achievement of target prediction is easy to do 

when implemented on a quadruped robot machine. Future 

research is to develop a reliable method like Zero Moment 

Point (ZMP) [32] [33] [34] [35] that can control the 

movement of the robot's legs to be able to walk across 
irregular and sloping terrain combined with the BPNN or 

ANFIS method as a balanced guard for the robot's body so 

that it does not fall. 

TABLE VI 

ANFIS RULES FOR LOW-LEVEL PROGRAMMING 
 

Rule of MF5x5 from Pitch and Roll Base on RF-LEG 

1. if (Pitch is Bottom) and (Roll is Incline) then (output is out1mf1) (1) 
2. if (Pitch is Bottom) and (Roll is Left) then (output is out1mf2) (1) 
3. if (Pitch is Bottom) and (Roll is Flat) then (output is out1mf3) (1) 
4. if (Pitch is Bottom) and (Roll is Right) then (output is out1mf4) (1) 
5. if (Pitch is Bottom) and (Roll is Decline) then (output is out1mf5) (1) 

6. if (Pitch is Down) and (Roll is Incline) then (output is out1mf6) (1) 
7. if (Pitch is Down) and (Roll is Left) then (output is out1mf7) (1) 
8. if (Pitch is Down) and (Roll is Flat) then (output is out1mf8) (1) 
9. if (Pitch is Down) and (Roll is Right) then (output is out1mf9) (1) 
10. if (Pitch is Down) and (Roll is Decline) then (output is out1mf10) (1) 

11. if (Pitch is Normal) and (Roll is Incline) then (output is out1mf11) (1) 
12. if (Pitch is Normal) and (Roll is Left) then (output is out1mf12) (1) 
13. if (Pitch is Normal) and (Roll is Flat) then (output is out1mf13) (1) 
14. if (Pitch is Normal) and (Roll is Right) then (output is out1mf14) (1) 
15. if (Pitch is Normal) and (Roll is Decline) then (output is out1mf15) (1) 

16. if (Pitch is Top) and (Roll is Incline) then (output is out1mf16) (1) 
17. if (Pitch is Top) and (Roll is Left) then (output is out1mf17) (1) 
18. if (Pitch is Top) and (Roll is Flat) then (output is out1mf18) (1) 
19. if (Pitch is Top) and (Roll is Right) then (output is out1mf19) (1) 
20. if (Pitch is Top) and (Roll is Decline) then (output is out1mf20) (1) 

21. if (Pitch is Upper) and (Roll is Incline) then (output is out1mf21) (1) 

22. if (Pitch is Upper) and (Roll is Left) then (output is out1mf22) (1) 
23. if (Pitch is Upper) and (Roll is Flat) then (output is out1mf23) (1) 
24. if (Pitch is Upper) and (Roll is Right) then (output is out1mf24) (1) 
25. if (Pitch is Upper) and (Roll is Decline) then (output is out1mf25) (1) 

NOMENCLATURE 

T2
3, T1

2, T0
1 Transfer function. 12 input ��� 324� hidden layer input 324� hidden layer output 5 weight ∆Z delta weight ∆F��� delta bias 

x, y input vector.  3�,2 neuron in of layer n, associated to input i.  n2($), ap2(")  the membership function.  �2, F2,  and �2 premise parameters. 
 

Greek letters a membership function. Π the product of the incoming signal a. � the product output. 

� angles leg 

 

Subscripts 

i node. 
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