
Vol.14 (2024) No. 2 

ISSN: 2088-5334 

Development of an Emulator for Radiation Physics Simulator 

Using the Stochastic Variational Gaussian Process Model 
Yonggwan Shin a, Yun Am Seo b,* 

a R&D Center, XRAI Inc., Gwangju, 61186, Republic of Korea 
b Department of Data Science, Jeju National University, Jeju-si, 63243, Republic of Korea 

Corresponding author: *seoya@jejunu.ac.kr 

Abstract—This paper describes an emulator that uses a Stochastic Variational Gaussian process (SVGP) regression model to 

parameterize radiation in a numerical weather prediction (NWP) model that meteorologically models the Earth's weather system. The 

computation of radiative processes is considerable, accounting for most of the total NWP model computation. Statistical emulators are 

surrogate models representing simulators and can overcome the computational limitations of complex simulators such as radiative 

processes. Recently, artificial neural network-based radiative transfer emulators have been developed, and in this study, a statistical 

model, GP, is used to create a radiative transfer emulator. The GP model has the advantage of calculating the uncertainty of the 

prediction along with the prediction, so the uncertainty of the prediction can be utilized appropriately. However, the computational 

complexity of the conventional GP model is very high, making it challenging to apply to extensive data. An approximate approach, the 

SVGP model, was utilized to solve this problem. To further reduce the dimensionality of the input variables, we used a combined neural 

network and SVGP model. As a result, the SVGP-based radiative physics emulator improved its accuracy by about 20% compared to 

the artificial neural network emulator. However, the computation speed was about 3 to 9 times slower than the neural network emulator 

but faster than the NWP model's computation speed. This suggests that statistical emulators can be used to replace NWP model 

simulators.  

Keywords—Surrogate model; emulator; gaussian process. 

Manuscript received 20 Oct. 2023; revised 19 Dec. 2023; accepted 22 Jan. 2024. Date of publication 30 Apr. 2024. 

IJASEIT licensed under a Creative Commons Attribution-Share Alike 4.0 International License.. 

I. INTRODUCTION

Nowadays, computational experiments utilizing computers 
are frequently executed across diverse domains. As computers 

have advanced significantly and sophisticated algorithms 

have been developed, numerous physical phenomena can now 

be elucidated and forecasted through computational 

experiments [1]-[4]. Recently, computational experiments 

aimed at predicting climate and weather have also gained 

substantial momentum [5], [6]. The integration of machine 

learning into weather prediction has been highlighted by a 

benchmark dataset aimed at evaluating AI-driven weather 

forecasting models to improve predictions and reduce 

computational costs [7]. A simulator constitutes a 
mathematical depiction of a physical system realized through 

computer implementation [8]-[10]. Simulators have been 

utilized in many scientific and technological fields to analyze 

actual systems. Generally, simulators produce consistent 

output when subjected to identical initial conditions and input 

values. It is common for simulators to demand significant 

computational time, mainly when dealing with complex 

physical systems. A potential solution to address this 

limitation is the use of statistical emulators. A statistical 

emulator serves as a statistical model that effectively captures 
the behavior of such simulators [11]-[15].  

Currin et al. [1] and Santner et al. [2] pioneered research on 

statistical emulators. Notably, O'Hagan [3] explored the 

development of Gaussian process (GP) models as emulators 

for unknown functions, effectively serving as meta-models 

for simulators. Implementing a well-mimicking emulator that 

closely replicates the simulator's behavior offers the 

possibility of alleviating the computational time challenges 

encountered during simulator execution. 

Emulators can also find applications in the calibration of 

simulators. Park [16] introduced an approximate nonlinear 

least squares approach for calibration, employing a Gaussian 
process regression model. Cox et al. [17] presented a similar 

approximate nonlinear least squares estimator for calibration, 

501



utilizing a GP model as a surrogate for intricate simulators. In 

a more recent development, Lee and Park [8] introduced 

generalized nonlinear least squares as a calibration technique 

for GP models, and Seo and Park [9] proposed a method 

employing the EM algorithm. 

In the field of weather and climate, there is a lot of research 

on developing emulators to replace existing numerical 

models. Recently, there has been an increasing number of 

studies on developing emulators to replace existing numerical 

models using modern machine learning methods such as 
artificial neural networks. Research on model improvement 

based on theory is rapidly changing to research on 

improvement based on data and machine learning techniques 

[10]. Roh and Song [10] devised an artificial neural network-

based simulator tailored to the radiative transfer process 

within the Korea Meteorological Administration (KMA) 

Rapid Radiative Transfer Model for General Circulation 

Models-Korea (RRTMG-K). Radiative transfer processes 

contribute over 80% of the computational load in numerical 

weather prediction (NWP) models. Findings from the study 

demonstrated that a factor of at least twenty could improve 
computational efficiency. Nonetheless, during extended 

emulator operation, the cumulative errors in both the 

simulator and emulator may lead to deviations, particularly 

towards the end of the forecast period. Such deviations can 

compromise the accuracy of specific predictors within the 

NWP model and even induce model termination. Thus, 

ensuring the numerical stability of the emulator becomes 

pivotal for sustaining the reliable functioning of the NWP 

model reliant on emulator-driven operations. 

This study aims to formulate a statistical emulator based on 

the GP to advance prediction accuracy and incorporate 
uncertainty considerations [18], [19]. Traditional GP models 

often demand a substantial temporal investment for training 

or may be challenged by extensive datasets [20], [21]. In 

response, researchers have introduced alternative models, 

such as the Local Approximate Gaussian Process (LAGP) and 

the SVGP, engineered to curtail training and inference 

durations, even when confronted with voluminous datasets 

[22]. The emulator advocated in this paper adopts a neural 

network architecture proficient in reducing the dimensionality 

of input variables and subsequently making forecasts using 

SVGP as input. This approach mitigates computational 

expenditures and facilitates the quantification of output value 
uncertainty. This reduces the computational cost and allows 

the uncertainty of the output to be expressed quantitatively so 

that the numerical model can be operated reliably even if an 

emulator replaces the simulator. 

II. MATERIALS AND METHOD

A. Data

We utilized 196 input variables and eighty-six output

variables to develop the radiative physics emulator, detailed 
in Table 1. The variables include pressure, air temperature, 

water vapor, and ozone across thirty-nine vertical layers, 

alongside single-level variables such as surface temperature, 

solar constant, and the solar zenith angle cosine. The vertical 

distribution of cloud cover is crucial in our study as an input 

variable. For modeling shortwave radiation, both the solar 

constant and the cosine solar zenith angle are vital, dictating 

the solar radiation received by Earth [10]. Our dataset 

comprises approximately 270,000 instances for training and 

130,000 for accuracy evaluation, consistent with the dataset 

used by Roh and Song [10] to develop their emulator. 

TABLE I 

INPUT/OUTPUT VARIABLES  FOR LEARNING RADIATIVE PHYSICS EMULATORS 

Input Variables 

Vertical Pressure #1-39 

Vertical Temperature #40-78 
Vertical Water Vapor Mixing Ratio #79-117 
Vertical Ozone Mixing Ratio #118-156 
Vertical Cloud Fraction #157-192 
Forecast Time #193 
Surface Temperature #194 
Solar Constant #195 
Cosine Solar Zenith Angle #196 

Output Variables 

Vertical Total Sky Longwave Radiative  
Heating Rate 

#1-39 

Vertical Total Shortwave Radiative Heating Rate #40-78 
Total Sky Longwave Upward Flux at Top #79 
Clear Sky Longwave Upward Flux at Top #80 
Total Sky Longwave Upward Flux at Bottom #81 

Clear Sky Longwave Upward Flux at Bottom #82 
Total Sky Longwave Downward Flux at Top #83 
Clear Sky Longwave Downward Flux at Bottom #84 
Total Sky Shortwave Upward Flux at Top #85 
Total Sky Shortwave Upward Flux at Bottom #86 

B. Approximate Gaussian Process

The GP is a robust probabilistic method for modeling

nonlinear relationships. Represented as an infinite-

dimensional normal distribution, a GP offers a distribution 

over function spaces, incorporating correlations among data 
points to predict outcomes for new instances. Nonetheless, 

traditional GPs involve all training data in predictions, leading 

to a computational complexity of � ���� , which hampers

their application to a large dataset [19], [23]. 

The approximate Gaussian process enables efficient 

inference on large datasets. Quinonero-Candela and 

Rasmussen [19] proposed a method to significantly reduce the 

computational complexity of GP by using inducing points 

instead of the entire dataset. 

The idea behind the approximate Gaussian process model 

is to compute the covariance matrix using derived points 

instead of the entire dataset. The inducing points are a small 

subset representative of the entire dataset and are used to 

summarize the characteristics of the whole dataset effectively. 
This approach is computationally efficient and makes GP 

models practical for large datasets. An approximate Gaussian 

process of using induction points is defined as follows. 

� | �	   ~ ���	� �		
� �	   , � − �	� �		

� �	�
� � (1)

where, �		, and �	�
�  are the covariance matrices between the

induction points and the training data, between the inducing 

points, and between the inducing points and the training data, 
respectively. To compute the covariance matrix K, various 

functions can be used. 

This study used the Matérn kernel function, which is 

defined as follows: 

��� = �����́����, ��� =  � !"

#�$� %√�$'(()'
* +

$
�$ %√�$'(()'

* +(2)

502



The inducing point ,	  is a set of data points used to

summarize the characteristics of the entire dataset ,. These

points play an important role in effectively capturing the 

covariance structure of the entire dataset and reducing the 

computational complexity of GP. 

,	  =  -,	�, ,	�, … , ,	�/ (3) 

where M is the number of inducing points and �	� denotes the

inducing point. The induction points ,	  and other

hyperparameters are optimized to maximize the performance 

of the GP model. This optimization is typically done by 

maximizing the log-likelihood or variational lower bound. 

By using inducing points, the computational complexity is 

reduced from � ����to � �0���This approach significantly

reduces computational complexity while maintaining GP's 

flexibility, and it plays an important role in finding a balance 

between prediction accuracy and computational efficiency on 

large datasets. 

C. Variational ELBO

The variational evidence lower bound (ELBO) is a method

for fitting GP models more efficiently when dealing with 

complex datasets. This method is beneficial when the data 

does not follow a normal distribution [6]. Recent studies have 

shown that the ELBO can be expressed as a sum of three 

entropies at convergence, highlighting its efficiency and 

theoretical underpinnings in variational inference [24]. The 

variational ELBO is used to approximate the posterior 

distribution of the model and is defined as follows. 

1 = ∑ 34��5�6
�7� 89:; <� =� ∣∣ �� �? − �18@���||<���? (4)

where 1 represents the variational lower bound and @��� is

the variational approximation to the posterior distribution of 

the GP. The first term represents the expected value of the 

likelihood on the data, and the second term represents the 

Kullback-Leibler divergence between @���  and the prior

distribution <���.

D. Stochastic Variational Gaussian Process with Neural

Network Feature Extractor

The Stochastic Variational Gaussian Process (SVGP) is a

model designed to overcome computational limitations on 

large datasets by combining the approximate Gaussian 

process in Section II-B and the variational ELBO method in 

Section II-C [25]-[29]. SVGP uses inducing points to 

approximate the posterior distribution of a Gaussian process. 

To do this, the variance distribution @���  is optimized as
follows. 

@��� = A @��|B� @�B� CB (5) 

where @�B�  is the variance distribution over the inducing

points and @��|B�  is the conditional distribution over the

given inducing points. The prediction for the new data point 

x_* is computed as follows: 

@��∗� = A <��∗| B�@�B�  CB (6) 

The conditional distribution <��∗| B� of the inferred point

B over the new data points �∗  can be used to compute the

predicted mean and variance. 

F∗ = 38�∗? = �∗	�		
1F	 (7) 

G∗ = HIJ8�∗? = �∗∗ − �∗	�		
1��		 − G	��		

1�	∗ (8)

In equations (7), (8), �∗	 is the covariance between the new

data point and the inferred point, �		  is the covariance

between the inferred points, and F	 and Σ	 are the mean and

covariance of @�B�, respectively.

If we directly apply the training data described in Section 

II-A to the SVGP model, we may encounter convergence

problems because the input dimensionality is huge at 196. To

mitigate this dimensionality curse, the number of inducing

points, M, should be set large enough, but this increases the

computational complexity of the SVGP model to ��0���.

However, as the number of inducing points increases, the size 

of the covariance matrix increases and the computational cost 
increases exponentially.  

Fig. 1 shows the overall architecture of NN-SVGP, which 

combines neural networks and SVGP models. In the figure, 

LM  represents the output values from each independent SVGP

model, and C is the number of output variables in the data.

The feature extractor exists as a single neural network, and 

there are C SVGP models. The feature extractor and SVGP

models are not trained separately but are combined in an end-

to-end learning method using gradient descent. 

Fig. 1  Neural Network with Stochastic Variational Gaussian Process (NN-

SVGP) Model Architecture 

Moving beyond traditional computational methods, the 

field has seen notable enhancements in scientific computing 

capabilities through intelligent algorithms. Neural network 

models, with their ability to learn and adapt, have 

demonstrated significant potential across various scientific 

domains. These models, characterized by their fault tolerance, 

robustness, and ability to perform parallel computations, have 

become invaluable tools for tackling complex problems in 
scientific computing. Additionally, integrating machine 

learning with applied mathematics has led to significant 

innovations. For instance, the concept of 'graph coarsening' 

draws parallels between mesh simplification techniques in 

scientific computing and data reduction strategies in machine 

learning, underscoring the versatile applications of these 

methods in both fields. Such techniques, including the use of 

generative models and the application of machine learning to 

solve differential equations, are now prominent in 

computational science, providing fresh solutions to long-

standing issues. The merging of machine learning with 

scientific computing is gradually enhancing the 

503



methodologies employed in computational experiments, 

notably in climate and weather prediction [30], [31]. 

III. RESULTS AND DISCUSSION 

A. Selection of hyperparameters 

The optimization of the NN-SVGP-based radiative physics 

emulator required meticulous analysis of error outcomes 

across various hyperparameter settings, a critical process for 
enhancing prediction accuracy while maintaining 

computational efficiency. The primary hyperparameters 

under scrutiny were the size of the induction points (Ips), the 

number of neurons in the hidden layer (Hidn), and the number 

of neurons in the output layer (Fout) of the neural network. 

We computed the Root Mean Squared Error (RMSE) for 

an array of hyperparameter configurations to assess the 

model's performance. RMSE, the square root of the average 

squared differences between predicted and actual values, is a 

widely recognized measure for evaluating predictive 

accuracy. Beyond assessing the overall RMSE, this study 
delved into the errors associated with Long Wave (LW) 

Heating Rate, Short Wave (SW) Heating Rate, LW Flux, and 

SW Flux. 

Table 2 presents the RMSE values across various 

hyperparameter settings, facilitating an in-depth comparison 

of their effects on model accuracy. Notably, the configuration 

with Ips=128, Hidn=256, and Fout=128 emerged as the most 

effective, demonstrating the lowest overall error. Such 

insights were instrumental in refining our emulator's design, 

guiding us toward configurations that promise precision and 

efficiency. This table enumerates the RMSE across various 

configurations, highlighting the nuanced impact of each 
hyperparameter on model accuracy. Notably, the 

configuration with Ips=128, Hidn=256, and Fout=128 

emerged as the most effective, demonstrating the lowest 

overall error. Such insights were instrumental in refining our 

emulator's design, guiding us toward configurations that 

promise precision and efficiency. 

TABLE II 

DIFFERENT RMSE VALUES FOR HYPER-PARAMETER SETTINGS 

Hyper-

Parameters 
Root Mean Squared Error 

Ips-Hidn-

Fout 
Total 

LW 

Heating 

Rate 

SW 

Heating 

Rate 

LW 

Flux 

SW 

Flux 

64-64-32 2.839 1.399 0.958 1.687 16.795 

64-64-64 2.851 1.374 0.972 1.709 16.898 

64-64-128 2.551 1.287 0.894 1.455 15.020 

64-64-256 2.696 1.315 0.907 1.557 15.983 

64-128-32 2.412 1.291 0.872 1.466 14.017 

64-128-64 2.709 1.305 0.901 1.565 16.100 

64-128-128 2.576 1.245 0.893 1.441 15.278 

64-128-256 2.400 1.225 0.844 1.465 14.072 

64-256-32 2.498 1.226 0.873 1.457 14.760 

64-256-64 2.359 1.174 0.824 1.477 13.882 

64-256-128 2.530 1.252 0.894 1.475 14.922 

64-256-256 2.347 1.229 0.882 1.438 13.636 

128-64-32 2.460 1.259 0.877 1.438 14.430 

128-64-64 2.420 1.213 0.835 1.395 14.275 

128-64-128 2.383 1.232 0.849 1.436 13.941 

128-64-256 2.429 1.217 0.872 1.443 14.271 

128-128-32 2.364 1.200 0.832 1.381 13.890 

128-128-64 2.246 1.179 0.821 1.356 13.083 

128-128-128 2.768 1.322 0.958 1.614 16.417 

128-128-256 2.456 1.211 0.878 1.485 14.464 

128-256-32 2.374 1.258 0.838 1.437 13.841 

Hyper-

Parameters 
Root Mean Squared Error 

Ips-Hidn-

Fout 
Total 

LW 

Heating 

Rate 

SW 

Heating 

Rate 

LW 

Flux 

SW 

Flux 

128-256-64 3.720 1.692 1.198 3.273 21.891 

128-256-128 2.162 1.141 0.792 1.354 12.567 

128-256-256 2.318 1.166 0.837 1.449 13.588 

256-64-32 2.346 1.215 0.840 1.376 13.725 

256-64-64 2.206 1.174 0.821 1.337 12.799 

256-64-128 2.499 1.196 0.863 1.425 14.835 

256-64-256 2.560 1.203 0.856 1.436 15.267 

256-128-32 2.351 1.184 0.814 1.422 13.830 

256-128-64 2.169 1.149 0.801 1.344 12.593 

256-128-128 2.956 1.343 0.992 1.805 17.649 

256-128-256 2.185 1.132 0.784 1.341 12.766 

256-256-32 2.518 1.257 0.853 1.526 14.855 

256-256-64 2.259 1.171 0.799 1.388 13.211 

256-256-128 2.283 1.133 0.807 1.358 13.449 

256-256-256 2.253 1.135 0.820 1.397 13.196 

B. Evaluation of NN-SVGP Emulator Performance 

The emulator was trained using the Gpytorch Framework 

within Python, utilizing the Adam optimization algorithm 

with an initial learning rate of 0.01. We designated 10% of 

our roughly 270,000 training samples for validation, reducing 
the learning rate by half whenever the validation data's MSE 

did not improve over five epochs. Training occurred on an 

NVIDIA A100-PCI-40GB system with 256 CPUs and 1TB of 

memory. 

To compare the performance of our NN-SVGP emulator 

with that of Roh and Song's NN emulator [9], we examined 

the accuracy and the computational efficiency. Figure 2 

shows our NN-SVGP emulator demonstrates an RMSE of 

2.162, approximately 28% better than the NN emulator's 

RMSE of 3.003. This improvement in accuracy is quantified 

by the Brier Skill Score (BSS).  

 NOO = %1 − 66QRSTUVWX
66UVWX

+ Y 100 % (9) 

 
Fig. 2  Comparison of RMSE between NN emulator and NN-SVGP emulator 

 

Additionally, to assess the computational demand of each 

emulator, we measured the average calculation speed, 

leveraging a GPU for enhanced performance analysis. As 

depicted in Figure 3, we found the average computation speed 

for the NN to be 0.7 ms, while the NN-SVGP averaged 3.2 
ms. This increase in computation time for the NN-SVGP 

emulator is attributed to its greater computational complexity. 

However, considering the higher accuracy and the ability of 

the NN-SVGP to quantify uncertainty, the trade-off for 

increased computation time is justified in applications where 

predictive precision is crucial. 
 

504



 
Fig. 3  Comparative Boxplot of Computation Speeds for Neural Network 

(NN) and Neural Network with Stochastic Variational Gaussian Process 

(NN-SVGP) Emulators 

IV. CONCLUSION 

This study developed an NN-SVGP emulator based on the 

Gaussian Process Regression (GPR) model using simulation 

data of radiative physics processes in a numerical forecast 

model. The model significantly improves prediction accuracy 
and uncertainty estimation compared to conventional NN 

emulators. In particular, NN-SVGP can provide confidence 

intervals for prediction results, an important tool for 

managing and understanding uncertainty in complex physical 

processes. 

However, regarding computational speed, NN-SVGP is 

much slower than the NN model. This means that NN-SVGP 

may be limited in environments requiring high-speed 

computations. Nevertheless, it is noteworthy that applying the 

Gaussian process regression model and its potential use in 

limited environments confirms the possibility of developing 

an emulator capable of fast computation. These results 
suggest that NN-SVGP emulators have the potential to 

contribute to improving the performance of numerical 

forecasting models. In addition, the ability to estimate 

uncertainty opens the possibility of application in various 

fields, such as climate change research and disaster prediction 

systems. 

In assessing the computational efficiency of our models, 

we noted a significant difference in calculation speeds 

between NN and NN-SVGP, with NN-SVGP averaging 

slower computation times. Despite this, the precision, 

robustness, and ability of NN-SVGP to provide valuable 
uncertainty estimates far outweigh its computational 

demands. The enhanced predictive performance and 

confidence supplied by NN-SVGP affirm its utility, especially 

in applications where accuracy is critical. Therefore, while the 

NN model's faster computation may be advantageous in time-

sensitive scenarios, the accuracy and reliability benefits of 

NN-SVGP support its use even with its slower computational 

speed. 

In future research, we will explore ways to improve the 

NN-SVGP emulator's computational efficiency and increase 

the uncertainty estimation accuracy. We aim to develop an 
emulator that can deliver faster and more accurate predictions, 

thereby contributing to the advancement of numerical 

forecasting models and their applications in diverse fields. 

This suggests that integrating sophisticated modeling 

techniques, such as those employed in NN-SVGP, can lead to 

more stable and reliable forecasting tools, notwithstanding the 

comparative slowdown in computation times. 

Computationally, it took about three times longer than the 

NN-SVGP emulator but produced results faster than the 

radiative physics simulator (RRTMG-K). Despite losing 

computational time compared to the NN emulator, the NN-

SVGP emulator proposed in this study delivered more 

accurate results. This underlines the potential benefits of 

adopting advanced emulators over traditional simulators, 
ensuring more stable operations even with increased 

computational loads. 

ACKNOWLEDGMENT 

This work was supported by a research grant from Jeju 

National University in 2022. 

REFERENCES 

[1]  C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. “A Bayesian 

approach to the design and analysis of computer experiments,” Oak 

Ridge National Lab., TN, USA, Tech. Rep. ORNL-6498, Sep. 1988.  

[2]  T. J. Santner, B. J. Williams, W. I. Notz, and B. J. Williams. “The 

design and analysis of computer experiments,” New York: Springer, 

2003.  

[3]  A. O'Hagan. “Curve fitting and optimal design for 

prediction,” Journal of the Royal Statistical Society: Series B 

(Methodological)., vol. 40, no. 1, pp. 1-24, 1978, 10.1111/j.2517-

6161.1978.tb01643.x. 

[4]  T. Beckers. “An introduction to Gaussian process models,” arXiv 

preprint, arXiv:2102.05497, 2021. 

[5]  J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian processes for big 

data,” arXiv preprint, arXiv:1309.6835, 2013. 

[6]  P. Ghasemi, M. Karbasi, A. Z. Nouri, M. S. Tabrizi, and H. M. 

Azamathulla. “Application of Gaussian process regression to forecast 

multi-step SPEI drought index,” Alexandria Engineering Journal., vol. 

60, no. 6, pp. 5375-5392, 2021.  

[7]  S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. 

Thuerey. “WeatherBench: a benchmark data set for data-driven 

weather forecasting,” Journal of Advances in Modeling Earth Systems, 

vol. 12, no. 11, 2020, doi: 10.1029/2020MS002203. 

[8]  Y. Lee and J. S. Park. “Generalized Nonlinear Least Squares Method 

for the Calibration of Complex Computer Code Using a Gaussian 

Process Surrogate,” Entropy., vol. 22, no. 9, pp. 985, 2020.  

[9]  Y. A. Seo and J. S. Park. “Expectation-Maximization Algorithm for 

the Calibration of Complex Simulator Using a Gaussian Process 

Emulator,” Entropy., vol. 23, no. 1, pp. 53, 2020. 

[10]  S. Roh and H. J. Song. “Evaluation of neural network emulations for 

radiation parameterization in cloud-resolving model,” Geophysical 

Research Letters., vol. 47, no. 21, 2020.  

[11]  J. Luo, X.  Ma, Y. Ji, X. Li, Z. Song, and W. Lu. “Review of machine 

learning-based surrogate models of groundwater contaminant 

modeling,” Environmental Research., vol. 238, part. 2, 2023, 

doi:10.1016/j.envres.2023.117268. 

[12]  M. S. Go, J. H. Lim, and S. Lee. “Physics-informed neural network-

based surrogate model for a virtual thermal sensor with real-time 

simulation,” International Journal of Heat and Mass Transfer., vol. 214, 

2023, doi: 10.1016/j.ijheatmasstransfer.2023.124392. 

[13]  R. M. Slot, J. D. Sørensen, B. Sudret, L. Svenningsen, and M. L. 

Thøgersen. “Surrogate model uncertainty in wind turbine reliability 

assessment,” Renewable Energy., vol. 151, pp. 1150-1162, 2020, 

doi:10.1016/j.renene.2019.11.101. 

[14]  M. Tang, Y. Liu, and L. J. Durlofsky. “A deep-learning based 

surrogate model for data assimilation in dynamic subsurface flow 

problems,” Journal of Computational Physics., vol. 413, 2020, 

doi:10.1016/j.jcp.2020.109456. 

[15]  P. Jiang, Q. Zhou, X. Shao, P. Jiang, Q. Zhou, and X. Shao. 

“Surrogate-model-based design and optimization,” Springer 

Singapore., pp. 135-236, 2020. 

[16]  J. S. Park. “Tuning complex computer codes to data and optimal 

designs,” University of Illinois at Urbana-Champaign, 1991. 

505



[17] D. D. Cox, J. S. Park, and C. E. Singer.  “A statistical method for

tuning a computer code to a database,” Computational statistics & data

analysis., vol. 37, no. 1, pp. 77-92, 2001, doi:10.1016/S0167-

9473(00)00057-8. 

[18] M. D. Hoffman, D. M. Blei, and J. Paisley. “Stochastic variational 

inference,” Journal of Machine Learning Research., 2013. 

[19] J. Quinonero-Candela and C. E. Rasmussen. “A unifying view of 

sparse approximate Gaussian process regression,” The Journal of 

Machine Learning Research., vol. 6, pp. 1939-1959, 2005. 

[20] C. Ding, H. Rappel, T. Dodwell. “Full-field order-reduced Gaussian 

Process emulators for nonlinear probabilistic mechanics,” Computer 

Methods in Applied Mechanics and Engineering., vol. 405, 2023, 

doi:10.1016/j.cma.2022.115855. 

[21] Y. A. Seo, Y. Lee, and J. S. Park. “Iterative method for tuning complex 

simulation code,” Communications in Statistics-Simulation and 

Computation., vol. 51, no. 7, pp. 3975-3992, 2022, 

doi:10.1080/03610918.2020.1728317. 

[22] H. Liu, Y. S. Ong, X. Shen, and J. Cai. “When Gaussian process meets 

big data: A review of scalable GPs,” IEEE transactions on neural 

networks and learning systems., vol. 30, no. 11, pp. 4405-4423, 2020, 

doi: 10.1109/TNNLS.2019.2957109. 

[23] M. M. Noack, H. Krishnan, M. D. Risser, and K. G. Reyes. “Exact

Gaussian processes for massive datasets via non-stationary sparsity-

discovering kernels," Scientific reports., vol. 13, no. 1, pp. 3155, 2023. 

[24] S. Damm, D. Forster, D. Velychko, Z. Dai, A. Fischer, and J. Lücke. 

“The ELBO of Variational Autoencoders converges to a Sum of Three 

Entropies,” arXiv preprint, arXiv:2010.14860, 2020. 

[25] I. Torroba, C. I. Sprague, and J. Folkesson. “Fully-probabilistic

Terrain Modelling with Stochastic Variational Gaussian Process

Maps,” arXiv preprint, arXiv:2203.10893, 2022. 

[26] M. Ketenci, A. Perotte, N. Elhadad, and I. Urteaga. “A Coreset-based, 

Tempered Variational Posterior for Accurate and Scalabel Stochastic

Gaussian Process Inference,” arXiv preprint, arXiv:2311.01409, 2023. 

[27] I. Torroba, M. Cella, A. Teran, N. Rolleberg, and J. Folkesson. “Online

stochastic variational gaussian process mapping for large-scale

bathymetric slam in real time,” IEEE Robotics and Automation 

Letters., vol. 8, no. 6, 2023, doi:10.1109/LRA.2023.3264750. 

[28] H. Yu and Y. Chen. “Stochastic Motion Planning as Gaussian 

Variational Inference: Theory and Algorithms,” arXiv preprint,

arXiv:2308.14985, 2023. 

[29] R. Meng, H. K. Lee, and K. Bouchard. “Stochastic Collapsed 

Variational Inference for Structured Gaussian Process Regression

Networks,” In Conference of the International Federation of

Classification Societies, Cham: Springer International Publishing, pp.

253-261, 2022. 

[30] C. Hua, X. Cao, B. Liao, and S. Li. “Advances on intelligent 

algorithms for scientific computing: an overview,” Frontiers in

Neurorobotics, vol. 17, 2023, doi:10.3389/fnbot.2023.1190977. 

[31] J. Chen, Y. Saad, and Z. Zhang. “Graph coarsening: from scientific

computing to machine learning,” SeMA Journal., vol. 79, pp. 187-223, 

2022, doi:10.1007/s40324-021-00282-x. 

506




