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Abstract—The ubiquitous adoption of network-based technologies has left organizations vulnerable to malicious attacks. It has become 

vital to have effective intrusion detection systems (IDS) that protect the network from attacks. In this paper, we study the intrusion 

detection problem through the lens of probability theory. We consider a situation where a network receives random malicious signals 

at discrete time instances, and an IDS attempts to capture these signals via a random check process. We aim to develop a probabilistic 

framework for intrusion detection under the given scenario. Concretely, we calculate the detection rate of a network attack by an IDS 

and determine the expected number of detections. We perform extensive theoretical and experimental analyses of the problem. The 

results presented in this paper would be helpful tools for designing and analyzing intrusion detection systems. We propose a 

probabilistic framework that could be useful for IDS experts; for a network-based IDS that monitors in real-time, analyzing the entire 

traffic flow can be computationally expensive. By probabilistically sampling only a fraction of the network traffic, the IDS can still 

perform its task effectively while reducing the computational cost. However, checking only a fraction of the traffic increases the 

possibility of missing an attack. This research can help IDS designers achieve appropriate detection rates while maintaining a low false 

alarm rate. The groundwork laid out in this paper could be used for future research on understanding the probabilities related to 

intrusion detection.  
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I. INTRODUCTION

The rapid progress in network-based technologies has 
increased the threat of spammers, attackers, and criminal 
enterprises. The economic loss from malicious network 
attacks is estimated to be hundreds of billions of dollars. 
Therefore, intrusion detection systems (IDS) have become as 
crucial as ever. In this paper, we analyze the probabilistic 
aspects of intrusion detection. Concretely, we consider a 
scenario where only a fraction of the network signals is 
checked by an IDS due to the associated costs. We analyze 
the likelihood of detecting a malicious network signal by an 
IDS performing uniformly random checks. The theoretical 
framework presented in this paper will help design and 
analyze intrusion detection systems. Comprehending the 
probabilities of intrusion detection based on the number of 
attacks and security checks would allow us to calibrate IDS to 
achieve a high detection rate while maintaining a low false 
alarm rate. 

Scanning the network for potential malware requires 
considerable time and computational resources. The time 
needed to process a signal by the IDS slows the network 

traffic. High-volume traffic also requires extensive 
computational capabilities. Given the above considerations, 
many IT departments choose to forego a full scan of the 
network. As a result, a malicious signal can go undetected. 
There is a relationship between the amount of scanned traffic 
and the probability of intrusion detection. As the amount of 
scanned traffic signals increases, so does the likelihood of 
detecting a malicious signal. Understanding the exact nature 
of this relationship requires a probabilistic point of view. 

Our goal in this paper is to analyze the probabilities related 
to intrusion detection. We calculate the probability of an IDS 
detecting a malicious signal under the assumption of a 
uniform distribution of attacks and security checks. We also 
calculate the expected number of detected malicious signals. 
Numerical experiments support our theoretical findings.  

Technological advances such as cloud services and IoT 
have dramatically increased the demand for secured network 
connections. Cyberattacks pose a significant risk, threatening 
all connected activities, such as governmental, educational, 
business, and healthcare systems [1]. The abundant 
knowledge and resources today have reduced barriers to entry 
for hackers. Attackers continuously exploit network 
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vulnerabilities to steal critical information or deny the 
provided services. For example, a tiny IoT device can be 
compromised to run an attack and disrupt the operations of 
large cloud networks, manufacturing facilities, power plants, 
and others [2], [3]. The learning curve to develop a 
sophisticated attack has been shortened due to the 
considerable knowledge base available on the internet. The 
negative consequences of network attacks have risen 
dramatically. The financial loss due to global cybercrime is 
estimated to be as high as 6 trillion dollars by 2021 [4].   

Concerns over protecting vital computer networks have 
accelerated network and online security research. 
Cybersecurity has become a significant research area. Its 
primary aim is to develop techniques that protect computer 
networks and overcome cybercrimes. While conventional 
security techniques such as firewalls, encryption, user 
authentication, and access control lists play an essential role 
in protecting data on the network, they are not enough to 
provide complete protection against cyber threats [5]. The 
increased complexity of attacks requires constant real-time 
monitoring and detection of new security breaches. 

An intrusion detection system (IDS) is often employed to 
address this issue. An IDS is designed to monitor and analyze 
the inbound connections and activities of the computer 
network and to look for any unauthorized connections or 
illegal activities that violate the standard security practice or 
network security policies [6]. IDS gathers, logs, detects, and 
prevents any security breaches. High detection rates and low 
negative alarms are essential factors for IDS systems.  IDS 
could be implemented as hardware or software to automatize 
the detection of intruders, monitor traffic for illegal activities, 
and send alarms to network administrators. An intrusion 
prevention system (IPS) is another popular network 
protection tool. It is hardware or software that prevents illegal 
access to network resources. Today, security devices combine 
both intrusion detection and prevention functionalities. 
Intrusion detection and prevention systems (IDPS) detect, 
record, and prevent attack incidents and send alarms to 
network administrators [6].  

Many network-based IDS function actively, processing 
incoming traffic in real-time. Given a high volume of network 
traffic, an IDS might struggle to handle all the incoming 
packets. To address this issue, only a fraction of the packets 
may be chosen for processing. However, checking only a 
fraction of the traffic introduces a probability of missing an 
attack. 

Our paper attempts to calculate the probability of catching 
an attack given the number of malicious signals sent by an 
attacker and the number of checks performed by the IDS. We 
believe that understanding the relationship between the 
probability of catching an attack, the number of attacks, and 
the number of checks by the IDS will help design/fine-tune 
the IDS to achieve desired outcomes. Despite simplified 
assumptions on the attack behavior and IDS checking 
procedure, we believe the analysis presented in the paper 
helps advance our understanding of the problem. 

Our paper is organized as follows: In Section 2, we review 
the existing literature on intrusion detection and related 
probabilistic models. In addition to Section 2, we state and 
prove our main results. In Section 3, we present the results of 

experiments that were carried out to validate our theoretical 
predictions. Section 4 concludes the paper. 

II. MATERIAL AND METHOD

A. Literature Review

This section discusses the existing literature on intrusion
detection and the related probability models. Intrusion 
detection systems can detect network intrusions. They 
generate an alarm or log the results.  IDS can be classified into 
three categories based on the detection method used in the 
system: signature-based, anomaly-based, and hybrid 
detection [7]. Signature-based, also known as misuse, 
detection uses the knowledge from previous attacks to create 
a unique signature for each attack and store it in a database. 
Knowledge-based techniques can achieve high levels of 
accuracy by leveraging the knowledge accumulated from past 
attacks. Since the intrusion alarm is generated only if the 
attack signature matches the one stored in the database, the 
chance of having a false positive is meager. However, if the 
attack signature is not found in the signature database, the 
method will fail to detect the possible intrusion. Such a 
scenario is known as a zero-day attack [8].  

The second approach is the anomaly detection method. In 
this technique, normal network activities are modeled and 
considered as an operation baseline. Any deviation from this 
baseline is regarded as an attack. In other words, abnormal 
behavior could be identified by comparing incoming traffic 
during the monitoring time to a predefined traffic profile. 
Consequently, the chance of detecting zero-day attacks is very 
high using anomaly-detection IDS. The baseline model is 
constructed using the previously collected data from network 
hosts, users, and connections during regular operation [9]. 
The baseline model can be updated offline or online. The 
model remains static and unchanged for the offline update 
until the IDS generates a new request to create an updated 
profile. On the other hand, online update techniques include 
the statistical analysis of dynamic thresholding for some 
network attributes [10].  

The growth in computing power has made machine 
learning and data mining techniques top-rated detection tools. 
Machine learning techniques used in intrusion detection 
include deep learning [11], genetic algorithms [12], and 
neural networks [13]. Data mining techniques include feature 
selection [14,15,16] and outlier detection [17]. Since there are 
many situations where the network deviates from regular 
operation, such as faulty devices or protocols, anomaly-based 
IDS might consider activities related to those situations as an 
attack. As a result, the system may suffer from a high false 
positive rate. Additionally, creating a profile for regular traffic 
requires a large amount of time and data resources to train the 
anomaly-based IDS. 

The third approach is the hybrid detection method, which 
is a combination of the above two methods used to alleviate 
the weaknesses of the signature-based and anomaly 
techniques. To reduce zero-day attacks and big false positive 
problems, multiple algorithms must be processed 
concurrently to decide the anomaly of an event. At the same 
time, the algorithm must match the event signature to the 
previously recorded attack [18]. Depending on its location 
within the network, an IDS can be classified as a host- or 
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network-based system. A host-based IDS is configured to 
monitor single-host activities to identify malicious attacks 
that network-based systems cannot detect. It uses a database 
of historical behavior to detect malicious activities. Host-
based IDS are designed to discover attacks generated within 
the network but suffer from slow response to real-time attacks 
[19]. 

On the other hand, a network-based IDS uses multiple 
sensors to monitor activities related to the entire network. It 
can identify attacks affecting multiple hosts [20]. Unlike the 
host-based IDS, the network-based IDS are considered active 
systems due to their real-time examination of all packets in 
the incoming traffic flow. Hence, the packet processing rate 
is a significant challenge for network-based IDS. The 
detection system must process data as fast as the incoming 
packet rate. 

Achieving an adequate performance speed might be very 
difficult for an extensive network. One approach to address 
this issue is considering a scenario where an IDS checks only 
a fraction of the traffic flow. In other words, the system will 
monitor only a probabilistically sampled fraction of the total 
flow [21]. A comprehensive literature exists on sampling 
methods applied to traffic classification [22]. A thorough 
comparison is reported by [23]. As noted in [24], sampling 
techniques can be classified into four categories: packet, flow, 
smart, and selective sampling. It is known that while packet 
sampling outperforms flow sampling, smart and selective 
techniques perform better than two. In [25], the authors 
propose an adaptive, feature-aware statistical sampling 
technique and compare it formally and empirically with other 
known sampling techniques - random flow and selective 
sampling. In [26], the authors show that intelligent flow 
sampling can improve anomaly detection performance. Their 
entropy-based method combines opportunistic and 
preferential data sampling to magnify anomalies in the 
sampled data, improving their detection. In this paper, we 
focus on packet sampling. 

The authors in [27] analyzed the effect of random packet 
sampling on anomaly detection. They introduced anomaly 
detection metrics and applied their methodology to blaster 
worm data. They proved that sampling does not affect the 
anomaly size measured in several bytes or packets. Here, we 
look at the same problem from a mathematical perspective. 
We propose a mathematically rigorous approach to address 
the issue of intrusion detection. We prove that a simple 
random sampling mechanism can guarantee a robust detection 
rate. Our paper provides the mathematical framework and 
expressions for anomaly detection probability. Due to the 
limited computational resources, the statistical model can help 
IDS designers establish trade-offs between checking all 
packet flow and a subset of the flow. Molding the detection 
sampling will enable network administrators to make 
informative decisions considering the trade-offs between 
resource limitations and IDS accuracy. 

B. Intrusion Detection Rate

In this section, we supply our main results and the
corresponding proofs. We will calculate the theoretical 
probability of detecting a malicious signal by an IDS that 
checks the incoming signal at random points in time. We 
make certain simplifications to network attack and detection 

scenarios to allow for mathematical investigation. Consider a 
setting where a system receives malicious signals over a fixed 
interval. Suppose an IDS is designed to check periodically 
whether an incoming signal is malicious. Our goal is to 
compute the probability of detecting an incoming malicious 
signal. To formalize the problem, we make the following 
assumptions, 

 Let I denote a fixed time interval. Interval I is divided
into n discrete instances at which signals can be sent.
We denote the time instances by �������� . The signals

and checks can occur at any of these instances. For
example, if the time interval I has length is 1 minute and
n = 60, then the instances will be one second apart.

 Let k be the number of malicious signals that are sent
during the time interval I. We assume that the malicious
signals are sent randomly and independently.

 Let m be the number of times the IDS performs its
checks. We assume that IDS checks occur randomly
and independently.

We can model the above situation as an experiment based 
on random selection of a sequence of numbered balls as 
shown in Fig. 1. Suppose we have a set of balls numbered 1 
through n. The balls represent the instances in the time 
interval I. Suppose that k of the n balls is also marked. The 
marked balls represent the time instances at which malicious 
attacks occur. We then randomly choose m balls without 
replacement from the collection of n balls.  The selected balls 
represent the instances at which the IDS performs a check. 
Since the selections correspond to the checks performed by 
the IDS, they must be done in an ordered fashion. For 
example, having a choice (3, 5, 7) would be possible, but not 
(7, 3, 5). The second sequence would mean that the first check 
was done at instance number 7, and the second check was 
done at instance number 3, which is physically not possible. 
In other words, each selected combination of balls must be 
numbered in increasing order. The temporal considerations 
introduce another dimension to the problem. We must take 
great care in our analysis to satisfy the temporal order of the 
choices. 

Fig. 1 Two malicious and eight standard signals over a 10-second time 
interval.

Let us consider a few exceptional cases to better understand 
the problem at hand. Suppose that m = n, i.e., the IDS checks 
the signal at every possible time step. Then, the probability of 
catching the malicious signal is 1. If m = 0, i.e., the IDS makes 
no checks, then the probability of detection is 0. In general, it 
stands to reason that as m increases, the probability of 
detection also increases. Similarly, as k increases, the 
probability of detection also increases. On the other hand, as 
n increases, the probability of detection decreases.  

Since we assume that the signals are random and 
independent, the probability of detecting a malicious signal 
does not depend on whether the signals are sent at regular 
intervals or within a short time of each other. For example, 
suppose there are 20 equally spaced instances of a time 
interval at which signals can be sent. Suppose that an attacker 

395



sends three malicious signals. Then, the probability of 
detecting signals sent at t = 5, t = 10, and t = 15 would be the 
same as the probability of detecting signals sent at t = 1, t = 2, 
and t = 6. Thus, the probability of detecting a malicious signal 
does not depend on the pattern of the time instances at which 
the attacks take place. We now state our main result for 
calculating the detection rate by an IDS given a fixed number 
of attacks and checks. 

Theorem 1. Let I be a time interval that is divided into n 
discrete time instances ��������  at which a malicious signal can

occur. Let k be the number of malicious signals. Let m be the 
number of checks performed by IDS to detect a malicious 
attack. Then the probability of detecting x malicious signals 
is given by: 

�(
) = ��� �������
� �

�� (1) 

Proof. We begin by counting the number of possible 
combinations of time instances for IDS checks. Note that due 
to the temporal nature of the instances, the IDS checks must 
occur in sequential, increasing order. Thus, every selection of 
$m$ instances will correspond uniquely to a sequence of IDS 
checks. Since there are a total of n instances of which m are 
selected by IDS, the total number of combinations is given by 

� �
��. Note that since the IDS checks are performed at random

and independently, each combination of time instances is 
equally likely to occur. 

Next, we count the combinations of instances at which the 
IDS catches x malicious attacks. Assume without loss of 
generality that a sequence of k attacks is fixed.  Note that the 
sequence of time instances corresponding to a fixed pattern of 
an attack must be in increasing order. Thus, each combination 
of k malicious and n – k regular signals correspond uniquely 

to an attack pattern. It follows that there are ��
�� different ways

the IDS can detect x attacks among a total of k. For each 

combination of x detected attacks there are � ���
����

combinations of regular signals tested by the IDS. We obtain 
that the total number of combinations of x malicious and m-x 

regular signals that can be tested by IDS is ��
������

����. Note

that since the malicious signals are random and independent, 
each combination of time instances is equally likely to occur. 
It follows that the probability of detecting x malicious signals 

by the IDS is given by 
��� �������

� �
�� . We can use Theorem 1 to 

calculate the overall probability of IDS detecting a malicious 
signal. The next corollary provides the result. 

Corollary 2. In the same situation as in Theorem 1, the 
probability of IDS detecting at least one malicious signal is 
given by equation (2). 

1 − �(0) = 1 − ��� �������
� �

�� (2) 

Proof. The result follows directly from Theorem 1. 
To illustrate the utility of Corollary 2, consider the 

following example. Suppose that over the next one minute a 
hacker sends k = 10 malicious signals to a network. Assume 
that the signals can only be sent at 1-second intervals, i.e., n = 
60. Suppose that an IDS will check for malicious signals at m
randomly chosen instances. The graph in Fig. 2 shows the

probability that the IDS will detect at least one malicious 
signal. The intrusion detection rate reaches nearly 100% once 
the number of checks exceeds 20. The simulation presented in 
Fig. 2 illustrates the benefits of the proposed probability 
framework.  It shows that it is not necessary to check all n = 
60 instances to catch an attack. An IDS can be designed to 
analyze only a fraction of the total network flow while 
achieving high detection rates. Thus, we obtain a faster and 
more efficient IDS. 

Fig. 2  The probability of detecting at least one malicious signal with m 
checks over n=60-time instances. The intrusion detection rate quickly rises to 
100%. 

Another important corollary of Theorem 1 is the expected 
number of detected malicious signals by an IDS. It helps our 
understanding of the average expected detection rate. 

Theorem 3. In the same situation as in Theorem 1, the 
expected number of detected malicious signals by an IDS is 
given by the equation, 

� = �
� . � (3) 

Proof. Let X be the number of attacks during the interval I. 
Then, by Theorem 1, the expected value of X is given by, 

 !"# = $ 
. �(
)
�

��%
 

= $ 
. ��
��� ���

����
� �

��
�

��%
= ∑ 
. �!

(���)!(���)! .  �������
� �

��
���%

(4) 

Next, we make substitutions y = x-1 and l = k-1. Then, 
Equation (4) can be rewritten and continued in the following 
manner, 

= $ () + 1)�!
+! () − +)! .  ��,��

��-���
� �

��
,

-�%

= ) + 1
(./0) $ )!

+! () − +)! .  ��,��
��-���

(. − 1)!
(0 − 1)! (. − 0)!

,

-�%

(5) 

We make another pair of substitutions s = n-1 and t = m-1. 
Then, Equation (5) can be rewritten and continued in the 
following manner: 
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= ) + 1
(./0) $ )!

+! () − +)! . 1�,
2�-�
3!

�! (3 − �)!

,

-�%

= �0
. $ 4)

+5 1�,
2�-�
3
�

,

-�%

= �0
.

(6) 

The last step follows from the equality ∑ 4)
+5 6�7

8�9�
1
2

,-�% = 1
which is the statement about the total probability of all possible 
outcomes of a random experiment given in Theorem 1. 

The result in Theorem 3 implies that the average expected 
number of intrusion detections is directly proportional to the 
number of checks and the number of attacks. As we increase 
the number of checks we expect to identify more attacks. 
Similarly, as the number of attacks increases the expected 
number of identified intrusions also increases. On the other 
hand, Theorem 3 implies that the average expected number of 
intrusion detections is inversely proportional to the total 
number of time instances at which a signal can be sent.  

The conditions for detecting a malicious signal by an IDS 
can be modelled via the Poisson process. The Poisson point 
process is a counting process that represents the total number 
of occurrences or events that happen over a fixed period. The 
Poisson process is characterized by the Poisson distribution: 

�(
) = :�;<�
�! , (7) 

where � is the average number of events during the fixed 
period and x is the number of events. In the context of IDS, 
the detected malicious signals over the fixed interval I 
represent the Poisson events. To apply the Poisson 
distribution, we need to determine the expected number of 
events which is given by Equation (3). Thus, the probability 
of detecting at least one malicious signal using the Poisson 
process is given by equation, 

1 − �(0) = 1 − =���
� (8) 

The relationship between the approaches in Equation (2) 
and Equation (8) is illustrated in Fig. 3. As shown in the 
figure, the probability of attack modelled under the uniform 
process is close to that of Poisson process. We conclude that 
the Poisson process can be used effectively to approximate the 
true probability of detection. 

Fig. 3  Comparing the probability of detecting at least one attack under 
uniform and Poisson distributions. 

III. RESULTS AND DISCUSSION

In this section, we carry out a series of numerical 
experiments to verify the theoretical results obtained in 
Section 3. In particular, the experiments are designed to 
analyze the probability distribution of intrusion detection and 
the expected number of detected attacks. We begin by 
considering a situation where an interval of 1 minute is 
divided into n = 60 instances (seconds). A malicious signal 
can be sent to the network at any instance. Suppose that an 
attacker sends k = 5 malicious signals at different time 
instances. Assume that an IDS randomly checks m=10 
instances to catch the attack. We simulate this scenario 1000 
times and calculate the fraction of cases where exactly 2 
malicious signals are detected by the IDS. We repeat the 
above experiment 10,000 times. The histogram of the 
resulting probabilities is presented in Fig. 4. For reference, we 
also calculate the theoretical probability p(2) using Equation 
1. As shown in Fig. 4, the simulated detection probabilities
are symmetrically distributed around the theoretical
probability. Thus, the experiment results support the
theoretical postulations developed in Equation 1.

Fig. 4  A numerical simulation with a total of 107 runs. The simulation 

parameters are n=60, m=10, k=5, and x=2. The value �=0.1615 is the 
theoretical probability obtained from Equation 1 

Another aspect of IDS is the expected number of detected 
attacks. Assume the same scenario as above with n=60, m=10, 
and k = 5. Two ways to calculate the expected number of 
attacks exist: the direct approach and Equation 1. The direct 
calculation is done using the standard definition of the 
expected value: 

 !"# = $ 
. ��
��� ���

����
� �

��
�

��%

= $ 
. �>
��� ??

�%���
�@%

�%�
?

�
= 5

6

(9) 

A more efficient approach to calculate the expected number 
of attacks is given by us in Equation 1: 

 !"# = � .�
� = ? .�%

@% = ?
@ (10) 

It follows from the above comparisons that the direct 
approach and the one provided by us in Equation 1 yield the 
same results.  

To further test our theoretical results, we consider a 
scenario where a time interval is divided into n=100 instances. 
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An attacker can send a malicious signal at any instance. 
Suppose that the attacker decides to send k=20 malicious 
signals at different instances. Assume that the IDS is set to 
perform m=15 checks during the interval. Our goal is to 
calculate the probability that IDS detects x=4 malicious 
signals. We perform 10,000 experiments where each 
experiment consists of 1000 simulated runs. 

The histogram of the resulting probabilities is presented in 
Fig. 5. For the reference, we calculate the theoretical 
probability p(4) using Equation 1. As shown in Fig. 5, the 
histogram is centered symmetrically around the theoretical 
probability.  

 

 
Fig. 5  A numerical simulation with a total of 107 runs. The parameters of the 

simulation are n=100, m=15, k=20, and x=4. The value � = 0.2 is the 
theoretical probability obtained from Equation 1 

 
In addition, we calculated the expected number of detected 

attacks in the same scenario as above using the direct 
approach and Equation 3. Using the direct approach, we 
obtain: 

 !"# = $ 
. ��
��� ���

����
� �

��
�

��%
 

= $ 
. �C%
� �� D%

�?��� 
��%%

�? �
C%

�
 

= 3 

(11) 

A more efficient approach to calculate the expected number 
of attacks is given by us in Equation 1: 

  !"# = � .�
� = C% .�?

�%% = 3 (12) 

It follows from the above comparisons that the direct 
approach and the one provided by us yield the same results. 
We observe that the experimental results support the 
theoretical findings from the previous section. 

IV. CONCLUSION 

The widespread adoption of network-based technologies 
has increased the potential for damage caused by a malicious 
attack on a network. Both the frequency and the severity of 
network attacks have risen over the past decade. As a result, 
it has become essential to develop effective intrusion 
detection systems.  In this paper, we provide a probabilistic 
framework to analyze the detection rate of malicious attacks. 
We carried out careful theoretical and experimental analyses 
of the research problem. We developed the formula for 
calculating the intrusion detection rate for a fixed set of 

parameters. Given an interval of time that is divided into 
discrete instances at which the attacks can occur we can 
calculate the probability of IDS detecting x attacks via 
Equation 1. In addition, the expected number of detected 
attacks is also calculated via Equation 3. The theoretical 
results were tested and validated through numerical 
experiments. The outcome of the experiments confirmed the 
original theoretical results. We note that even with a simple 
strategy such as uniform sampling the probability of detecting 
at least one malicious attack is high given a small number of 
checks: the intrusion detection rate is nearly 0.9 when 
checking only 15% of time instances. The detection rate 
reaches 1 when checking 30% of time instances. 

We believe that the probabilistic framework developed in 
this paper would be of use to IDS experts. For a network-
based IDS that is checking the incoming packets in real time 
the computational cost of analyzing the entire traffic flow can 
be prohibitively expensive. So, checking only a 
probabilistically sampled fraction of the network traffic 
would allow the IDS to handle its task. However, checking 
only a fraction of the traffic introduces a probability of 
missing an attack. We hope to provide a better understanding 
of the likelihood of detecting an attack by an IDS and improve 
the design of the system. In practical terms, the results of this 
paper help IDS designers achieve appropriate detection rates 
while maintaining a low false alarm rate. 

The groundwork that has been laid out in this paper can be 
used for future research into understanding of the probabilities 
related to intrusion detection. We believe that there are 
multiple avenues for future research that stem from the 
present work. The key assumption of our study is the uniform 
distribution of attacks and checks. However, it does not cover 
all the intrusion scenarios. It would be necessary to address 
other attack and detection patterns in future research.  
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