
Vol.14 (2024) No. 4

ISSN: 2088-5334

Automated SPARQL Template for Flexible Question Answering

Dewi Wardani a,*, Andreas Wijaya b,, Ardhi Wijayanto b , Maria Ulfah Siregar c, Yessi Yunitasari d
a Department of Data Science, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia

b Department of Informatics, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
c Department of Informatics, UIN Sunan Kalijaga, Yogyakarta, Indonesia

d Department of Information Technology, Universitas PGRI Madiun, East Java, Indonesia
*Corresponding author: dww_ok@uns.ac.id

Abstract—The knowledge bases required the query language SPARQL, which consists of subject, property, and object. SPARQL is a

structured query language and is difficult to understand. That issue becomes a problem in natural language processing queries. One

situation in question answering is how to translate natural language into a structural SPARQL. This work aims to develop an automated

SPARQL template algorithm regardless of the pattern structure of the query triples. It provides a more varied SPARQL query for data

retrieval named Flexible SPARQL. This approach initially lies in combining elements of RDF with basic techniques of natural language

processing to generate a template of SPARQL. In this work, the approach to making automatic templates is proposed without regard

to the pattern of the triple structure or the location of the subject and object. Template-based research that exists today still uses rules

to determine the position of subjects, objects, and properties in the SPARQL structure. Therefore, this work used the QALD 7 question

set and DBpedia dataset. The previous systems utilized the same questions and data sets. Despite the simple proposed approaches that

do not use complex, sophisticated techniques, they have shown promising results compared to the previous systems. The accuracy result

from 215 questions is 73% and micro-Recall 0.701, micro-Precision 0.664, micro-F-Measure 0.682, macro-Recall 0.711, macro-Precision

0.592, macro-F-Measure 0.646. Overall, the Flexible SPARQL system has higher results on several measurements that define a

promising approach. However, it's important to note that Flexible SPARQL generally tends to fail at generating complex SPARQL,

which is a limitation of the system.

Keywords— Flexible query; template SPARQL; question answering; knowledge base

Manuscript received 15 Oct. 2020; revised 29 Jan. 2021; accepted 2 Feb. 2021. Date of publication 31 Aug. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Question Answering (QA). QA has been studied since the

60s. In recent work, the question-and-answer system aims to
find information from a dataset knowledge base (KB) using

language that is easy to understand for non-professionals [1]

[2] [3]. In question answering, translating the natural language

queries into a structural SPARQL is one problem that is much

in demand. One approach to overcome this issue is to utilize

a template to translate question sentences into a SPARQL [4]

[5]. A template has a role in determining the answer to a

question. Previous work has overcome this problem, but the

template was created manually [6], [7]. Different approaches

were introduced to some of the QA systems, such as Aqualog,

Power-Aqua, NLP-Reduce, and FREyA or the other recent
QA systems [8], [9], [10], [11].

Existing templates are still defined directly for the location

of subjects, properties, and objects. A simple pattern in a

query consisting of subjects, properties, and objects in

SPARQL is called a single triple pattern [12]. The question’s

positioning structure must match the knowledge base pattern

to retrieve information. Sometimes, the query structure needs

to satisfy the knowledge base structure. Hence, the query

cannot obtain the required information. SPIN can used to help

SPARQL formulate complex query [13], [14].
The typical tasks in the Semantic Web area use default

SPARQL [15] for querying. Some work related to SPARQL

templates has been done before. The QA system using an

ontology can give meaning to the question [16]. Users prefer

using regular question sentences instead of keywords for

information retrieval [17]. In works by [18], and [19], the

system could translate question sentences in multiple

languages into query form. Then, it is used to retrieve

information on knowledge. The work focuses on translating

simple questions while more complex one’s progress. The

query structure for retrieving answers must have a pattern
against the knowledge bases. The flexible queries can retrieve

1185

information on datasets without knowing the structure used

on knowledge bases [20].

There are two components in the work [21]. They are the

analysis of questions and answer retrieval. Analysis of

questions is according to grammar. Answer retrieval

interprets questions against the datasets. Nguyen et al. [22]

analyzed several words, such as “In Berlin were born which

actors?” and taking the word “Berlin, actors, born in” as a

keyword can provide information on the interpretation of

questions with possible queries. The work’s results [1]
managed to create a system with a template that follows the

structure of questions. Unfortunately, it cannot return the

information for questions that lead to a knowledge base such

as DBpedia. The research concerning converting natural

language to SPARQL or vice versa is still attractive [23].

Recent work introducing SPARQL Template proposed a

complex approach [16] [24]. Mainly, one works on geospatial

data [25].

This work's idea is to create a template that takes freedom

in preparing its structure. If the query generally has pattern S-

P-O, it also can be arranged in pattern O-P-S. Therefore, the
template will be more varied and can be used to retrieve

information on knowledge bases without knowing the

structure of the knowledge base. This work aims to compile

an automated SPARQL template algorithm to create flexible

queries. Instead of using a complex approach, this work will

utilize a more straightforward method. This work uses the

Automatic SPARQL Template to create flexible queries

based on the role of each element in triple. The aim is to

contribute to this work. This idea was also influenced by the

idea that the triple’s predicate is the RDF triple’s pivot

[26]Therefore, the work will focus on the subject or object.
The template obtained retrieves information from the

knowledge base based on the question.

II. MATERIALS AND METHOD

A. Preprocessing

Preprocessing is a stage in which data is prepared in text

and question sentences are used or processed. In

preprocessing, there are two stages:

1) POS Tagger: It is the stage where data in the form of

sentences are identified and labeled on each word or phrase
by type according to the hyphenation or token granting that

has been done before [27]. The tagging process aims to break

down the labels on each word in the text. The obtained tags

can then be used as a term to search for words on DBpedia.

Below are examples of tagging results.

How_WRB high_JJ is_VBZ the_DT lighthouse_NNP in_IN
Colombo_NNP ?_.

List_NN all_PDT the_DT musicals_NNS with_IN music_NN

by_IN Elton_NNP John_NNP ._.

How_WRB many_JJ seats_NNS does_VBZ the_DT home_NN

stadium_NN of_IN FC_NNP Porto_NNP have_VB ?_.

Who_WP was_VBD married_VBN to_TO president_NN

Chirac_NNP ?_.

2) Filtering: It is a stage for retrieving some words that

have already earned label tags. The taken word is a word that

has a NN tag. This process is required because the retrieved

word will be the term to be used in the SPARQL query. The

filtering process aims to retrieve the word that will be the term

of a query. NN tags are the key to finding words in DBpedia

knowledge bases. Algorithm 1 shows the pseudo-code in

obtaining terms within the Filtering process.

Algorithm 1. The obtaining term
Input: Tag (Array)
Output: Term (Array)
Step:
begin
 for(tag < size(tags))
 if(jumlah NNP == 0 && term != ‘’)
 check term the on DBpedia

 if(hasil != null)
 save term
 elseif(jumlah NNP <= 1)
 if(tag == NN || IN || FW || CC)
 term += tagval
 elseif(tag == NNP)
 term += tagval
 check term the on DBpedia

 if(hasil != null)
 save term
end

B. Classifying Questions

The classifying stage of a question is where the type of
question categorizes the data. This stage is necessary because

to run a query from the knowledge base must be known the

kind of information retrieved on each query that is run must

also provide accurate information on this system. Classifying

questions aims to get the kind of question. The question type

specifies the syntax to be used in a query. Here is an example

of classifying a question.

Query: Is James Bond married?

SPARQL: ASK WHERE {res:James_Bond ont:spouse ?x .}

In the above example, the question points to a boolean type.
So, the syntax used is ASK. The formed query will have a

count syntax if the question leads to numbers. Here is an

example of the query.

Query: How many languages are spoken in Turkmenistan?

SPARQL: SELECT (COUNT(DISTINCT ?x) as ?c) WHERE

{ res:Turkmenistan ont:language ?x .}

C. Generating SPARQL Template.

The SPARQL template creation process is a stage for

managing the results of filtering and the results of classifying
questions into a SPARQL template. The creation of SPARQL

needs to pay attention to the existing structure so that each

term used can occupy the position of the subject, property, or

object. Queries are formed by performing simple

permutations for simple queries in the form of query triples.

The result of classifying a question is used to give a syntax

to a query such as ASK or COUNT. In this process, one query

can generate many varied queries. Many queries depend on

how many terms are used. Each term taken is only sometimes

used because only the terms listed on DBpedia are used. The

process of creating SPARQL templates, in general, consists
of DBpedia search and form classification. The SPARQL

template process aims to manage the results of filtering and

the results of classifying questions into a SPARQL template.

1186

This process consists of two stages, DBpedia search and

classification of forms.

1) DBpedia Search: DBpedia search aims to find

relations from filtered words. The DBpedia search section

searches for properties on DBpedia by term. The property is

used for query formation because queries cannot be formed

only with terms. Algorithm 2 shows the pseudo-code in

obtaining property. The following are examples of properties

that were successfully obtained:

Query: How high is the lighthouse in Colombo?

Tag: How_WRB high_JJ is_VBZ the_DT lighthouse_NNP

in_IN Colombo_NNP ?

Term: lighthouse in Colombo

Term DBpedia:

http:dbpedia.org/resource/Colombo_Lighthouse
Property: http:dbpedia.org/ontology/height;

http:dbpedia.org/ontology/weight

SPARQL:

SELECT DISTINCT ?x WHERE { res:Colombo_Lighthouse

ont:height ?x .}. Result: 15.0

SELECT DISTINCT ?x WHERE { ?x ont:height

res:Colombo_Lighthouse .}. Result: --

SELECT DISTINCT ?x WHERE { res:Colombo_Lighthouse

ont:weight ?x .}. Result: --

SELECT DISTINCT ?x WHERE { ?x ont:weight

res:Colombo_Lighthouse .}. Result: --

Therefore, for the resource Colombo_lighthouse, two
properties are obtained, so the needed information is obtained.

The height of Colombo_Lighthouse is 15.0. However, terms

are only sometimes found in DBpedia knowledge and

retrieval of incorrect terms can result in incorrect queries. In

Figure 1 and Figure 2, both terms Lighthouse and Colombo

are found in DBpedia, but the formed query does not return

answers. This is because the term taken does not match the

question, so it does not get correct results from the obtained

SPARQL.

Algorithm 2. The obtaining property/predicate
Input: Tag (Array) , Term (Array)
Output: Property (Array)
Step :
begin
for(tag < size(tags))
 if(tag == NN || JJ && not in terms)

 for (term < size terms)
 Property = get property DBpedia (term)

 if(tagval == property)
 save property
end

2) Classification of Query's Form: The classification

aims to determine the triple shape that corresponds to the

question. Although the obtained query has a free or flexible

structure, the obtained triple shape must still be adjusted. The

incorrect triple shape will not return the information or did not
get different information—classification of forms obtained

based on the number of terms and properties obtained.

Algorithm 3 shows the pseudo-code in obtaining the query. In

the example, the second question results in a longer query than

the first. The query on the second question has two triple

levels. An example of classification's shape is as below:

Query 1: When was the Battle of Gettysburg?

Term: http://dbpedia.org/resource/Battle_of_Gettysburg

Predicate: http://dbpedia.org/property/date

SPARQL:

SELECT DISTINCT ?x WHERE { res:Battle_of_Gettysburg
pro:date ?x .}
SELECT DISTINCT ?x WHERE { ?x pro:date

res:Battle_of_Gettysburg .}

Query 2: How many seats does the home stadium of FC Porto

have?

Term: http://dbpedia.org/resource/FC_Porto

Predicate: http://dbpedia.org/ontology/seatingCapacity;

http//dbpedia.org/ontology/ground;

http://dbpedia.org/property/owner;

http://dbpedia.org/ontology/Stadium

SPARQL:

SELECT DISTINCT ?x WHERE { res:FC_Porto
ont:ground ?y . ?y ont:seatingCapacity ?x . }
SELECT (COUNT(DISTINCT ?x) as ?c) WHERE

{ res:FC_Porto ont:seatingCapacity ?y . ?y

ont:seatingCapacity ?x . }
SELECT (COUNT(DISTINCT ?x) as ?c) WHERE

{ res:FC_Porto ont:seatingCapacity ?y . ?y

ont:ground ?x . }
SELECT DISTINCT ?x WHERE { res:FC_Porto

ont:Stadium ?y . ?y ont:seatingCapacity ?x .}

Fig. 1 The example DBpedia's resource explains the Lighthouse.

1187

Fig. 2 The example of DBpedia's resource explains Colombo.

Fig. 3 The interface of Template SPARQL's result

When retrieving answers over knowledge bases, the query

structure should be the same as the structure in the knowledge

bases. However, the same answer can be obtained with
different query structures. Some answers can be generated

from two different queries. Here is an example:

Query: Who was the wife of U.S. president Lincoln?

SPARQL:

SELECT DISTINCT ?x WHERE { res:Abraham_Lincoln

ont:spouse ?x .}. Result: Mary_Todd_Lincoln.
SELECT DISTINCT ?x WHERE { ?x ont:spouse

res:Abraham_Lincoln .}. Result: Mary_Todd_Lincoln.
Both above queries return the same answer.

Algorithm 3. The obtaining query
Input: Item (Term, Property)
Output: Query
Step:
begin
run triple(item, triple())
 if(empty item)

 save(triple)
 else
 for(item >=0)
 newitem = item
 newtriple = triple
 list(foo) = arrayshift(newitem,i)
 arrayunshift(newtriple,foo)
 triple(Newitem, Newtriple)

 for (size triple as one)
 query = pertanyaan + one
 run query
 for (size triple as two)
 query += two
 run query
 if(term >=2 && property >= 3)
 for (size triple as three)

 query += two
 run query
end

III. RESULT AND DISCUSSION

A. The Dataset

The data collected consists of text tagger data in English.

The word set data is in English data to be created SPARQL

query and data in DBpedia knowledge base. The data text

tagger used is a language model with an English tagger

compressed with a file size of 15,437 KB. The word set data

consists of 550.00 words that will be used to retrieve words

with the same meaning as different writings. Data were taken

from DBpedia. It is a knowledge base describing a word,

property as a verb and ontology defined in DBpedia mapping.

DBpedia has 5.500.000 data consisting of 1.500.000 people
data, 840.000 place data, 496.000 artworks, 286.000

organizational data, 306.000 species, 58.000 plants, and 6.000

diseases. The data will be composed into SPARQL. The data

can have a structured pattern (subjects, predicates, objects) or

unstructured data. The data consist of 215 questions with a file

size of 486 KB in JSON format from the QALD 7 dataset. The

example of QALD-7's dataset (in JSON) is a snippet below:

"questions": [{

"id": "0",

"answertype": "date",

"aggregation": false,
"onlydbo": true,

"hybrid": false,

"question": [{

"language": "en", "string": "When was the Battle of

Gettysburg?",

"keywords": "Battle of Gettysburg"

},{

"language": "pt_BR",

"string": "Quando foi a batalha de Gettysburg?",

"keywords": "batalha de Gettysburg"

},{

1188

"language": "de",

"string": "Wann fand die Schlacht von Gettysburg statt?",

"keywords": "Schlacht von Gettysburg"

},{

"language": "es",

"string": "¿Cuándo tuvo lugar la batalla de Gettysburg?",

"keywords": "batalla de Gettysburg"

},{

"language": "it",

"string": "Quando ha avuto luogo la battaglia di
Gettysburg?",

"keywords": "battaglia di Gettysburg"

},{

"language": "fr",

"string": "Quand se déroula la bataille de Gettysburg?",

"keywords": "bataille de Gettysburg, quand"

},{

"language": "nl",

"string": "Wanneer was de Slag bij Gettysburg?",

"keywords": "Slag bij Gettysburg"

},{
"language": "hi_IN",

"string": "गेिटसबग� का यु� कब
आ था?",

"keywords": "गेिटसबग� का यु�"

}],

"query": {

"sparql": "PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX res: <http://dbpedia.org/resource/> SELECT

DISTINCT ?date WHERE { res:Battle_of_Gettysburg

dbo:date ?date .}"

},

"answers": [{

"head": {
"vars": [

"date"

]

},

"results": {

"bindings": [{

"date": {

 "type": "literal",

 "value": "07--01"

}}]}}]},

B. The Result

In this work, the text data of questions in English was

structured or unstructured. Question data was obtained from

QALD 7, as explained in the previous part. Evaluation is based

on Precision, Recall, and F-Measure. The Template SPARQL,

explained in the last part, has been implemented and

developed. Figure 3 shows a part of the interface of the

system. The example result of the generated query can be seen

in Figure 3. It is seen that two queries get information from

the question:

Query: Who is the host of the BBC Wildlife Specials?

SPARQL:

SELECT DISTINCT ?x WHERE {res:BBC_Wildlife_Specials

ont:numberOfEpisodes ?x.}
Result 1: 29

SELECT DISTINCT ?x WHERE {res:BBC_Wildlife_Specials

ont:presenter ?x.}
Result 2: http://dbpedia.org/resource/David_Attenborough
Gold answer:

http://dbpedia.org/resource/David_Attenborough

Therefore, result 1 is wrong, and result 2 is correct. Hence,

the Precision is 0.5, and the Recall is 1.

The initial evaluation stage is carried out by comparing the

answers with the results from QALD 7. This is done to
determine the correct answer generated from the SPARQL

template because QALD 7 already has the gold answer. In

some questions, the gold answers are obtained from DBpedia

2020. The evaluation is carried out by calculating Precision,

Recall and F-Measure. The results of generating SPARQL

queries and calculating accuracy, Recall and Precision for

each question are in the appendix. The other example is as

below:

Query: When was the Battle of Gettysburg?

SPARQL:

SELECT DISTINCT ?x WHERE {res:Battle_of_Gettysburg
pro:date ?x.}. Result 1: --07-01
SELECT DISTINCT ?x WHERE {?x pro:date

res:Battle_of_Gettysburg.}. Result 2: --
Gold answer: 1863-07-03

Gold answer from DBpedia 2020: --07-01

The above query is an example to explain this situation for

a few questions. The following is an example of DBpedia

2020 data. In DBpedia 2020, the date property on the Battle of

Gettysburg resource has the information --07-01. In addition

to testing using questions from QALD 7, in the evaluation,

there are also several questions outside of QALD 7. Here are
examples of questions outside of QALD 7. Comparison of the

SPARQL template system with other systems WDAqua [28]

and ganswer2 [29], shown in Table 1. These two systems used

the same question dataset.

TABLE I

THE COMPARING RESULT OF EACH SYSTEM WITH TEMPLATE SPARQL

The

Measurement

WDAqua ganswer2 Flexible

SPARQL

Micro-P - 0.113 0.501
Micro-R - 0.561 0.682
Micro-FM - 0.189 0.577
Macro-P 0.490 0.557 0.404
Macro-R 0.540 0.592 0.703
Macro-FM 0.510 0.556 0.513

Table 2 shows the example of the detailed result of Flexible

SPARQL.

TABLE II

THE EXAMPLE OF OBTAINED SCORE OF FLEXIBLE SPARQL

No Question P R F

1 When was the Battle of Gettysburg? 1 1 1
2 How high is the lighthouse in

Colombo?
1 1 1

3 Who was the wife of U.S. president
Lincoln?

0.25 1 0.4

4 Who is the host of the BBC Wildlife

Specials? 0.285 1 0.44

5 How much did Pulp Fiction cost? 0.5 1 0.667
6 Who developed Slack? 0 0 0

1189

No Question P R F

7 When did Operation Overlord
commence? 0.5 1 0.667

8 Who painted The Storm on the Sea
of Galilee? 0 0 0

9 Which museum exhibits The Scream
by Munch? 1 1 1

10 Is James Bond married? 0.818 1 0.9
11 Who is the mayor of Paris? 0.667 1 0.8
12 Which awards did Douglas

Hofstadter win? 0.5 1 0.667

13 How much did the Lego Movie cost? 0.33 1 0.5
14 How many languages are spoken in

Turkmenistan? 1 1 1

15 Is Christian Bale starring in Batman
Begins? 0.833 1 0.909

Overall, the Flexible SPARQL has higher results than the

WDAqua system and on the ganswer2 micro value. Macro-

Recall gets a higher value, although macro precision is still

under other systems. In general, the results obtained are

influenced by several factors: Tagging process on questions,

keyword retrieval for questions, determination of question

types, and the form of queries to be created.

The Flexible SPARQL does not cover complex queries. For

example, "Give me all professional skateboarders from

Sweden." This is because the determination of complex or

straightforward queries has yet to be carried out. If complex
queries are added without any such determination, the query

variations will be many, and the results obtained will also be

further from the actual results.

There are two steps in ganswer2: an online step and an

offline phase. Using a graph mining method, the offline step

creates data based on the relationship between the steps and

the existing predicates. The online stage is used to understand

and evaluate queries depending on the data collected. To

express the question's meaning as explained in [30], ganswer2

builds a query graph. To create SPARQL, WDAqua presented

a rule-based combinatorial. They translate natural language

into SPARQL using the used knowledge base rather than
machine learning algorithms. Because of the limitations of the

given criteria, the number of SPARQL queries that can be

generated is limited. The acquired SPARQL is said to include

no more than two triple patterns. The resulting query is

restricted to the COUNT operator. In WDAqua, adding new

operators to the resulting query will necessitate much effort in

design and transformation rules as narrated in [31]. The query

must still be retrievable using the SPARQL template for more

complex searches. A problematic question like the one below

is an example:

Query: Give me all professional skateboarders from Sweden.
SPARQL:

SELECT DISTINCT ?uri WHERE {

?uri dbo:occupation res:Skateboarding .

{ ?uri dbo:birthPlace res:Sweden .}

UNION

{ ?uri dbo:birthPlace ?place .

 ?place dbo:country res:Sweden .}

}}

Result:

http://DBpedia.org/resource/Ali_Boulala,\\http://DBpedia.or

g/resource/Tony_Magnusson

The Flexible SPARQL does not cover complex queries

because complex or straightforward queries have not yet been

determined. If complex queries are added without any such

determination, there will be many query variations, and the

results obtained will also be further from the actual results. In

general, the results obtained are influenced by several factors,

including the process of tagging the question, taking terms for
the question, determining the type of question, and

determining the form of the query to be made.

There are several notes in the preparation of the automatic

SPARQL template algorithm, as below:

 The process of determining words, especially in

retrieving resources in DBpedia, because there are

words that are different from the results of taking terms.

Some words are not found in the property. Determining

this term is the most influencing obstacle because it

affects the form of the query and the combination of

triple queries.
 Classification of question types is still not accurate

 Triple-form classification still cannot be used to form

more complex queries.

 The query made does not have a filter, even though it

has a result. The result does not follow the existing

question, which causes the Precision value to be below.

IV. CONCLUSIONS

For building Flexible SPARQL, this work presented an
automated SPARQL template algorithm. The work's final

product is a SPARQL query that can be used to get data from

the DBpedia knowledge base. The accuracy percentage result

obtained in this work was 73%. The results for Precision and

Recall are Micro-Precision 0.501, Micro-Recall 0.682,

Macro-Precision 0.404, and Macro-Recall 0.703. The

Precision is lower than the Recall result because the number

of answers exceeds the actual answer. The number of answers

is generated because the queries created are also more diverse.

The first future work is to investigate other methods in

determining keywords. The following work is to investigate
the approach to classing questions. Therefore, each question

can be well-identified. The other important work to be done

soon is improving the POS Tagging performance for better

results. The other urgent future work is how this Template

SPARQL solves complex queries, such as using UNION.

Another future work is how to implement the template for a

new model, APRDF [32].

ACKNOWLEDGMENT

The authors thank the funding of this research from

Universitas Sebelas Maret.

REFERENCES

[1] D. Diefenbach, A. Both, K. Singh, and P. Maret, “Towards a question

answering system over the Semantic Web,” Semantic Web, vol. 11, no.

3, pp. 421–439, Apr. 2020, doi: 10.3233/sw-190343.

[2] N. D. To and M. Reformat, “Question-Answering System with

Linguistic Terms over RDF Knowledge Graphs,” 2020 IEEE

International Conference on Systems, Man, and Cybernetics (SMC),

Oct. 2020, doi: 10.1109/smc42975.2020.9282949.

1190

[3] S. Wang, J. Jiao, and X. Zhang, “A Semantic Similarity-based

Subgraph Matching Method for Improving Question Answering over

RDF,” Companion Proceedings of the Web Conference 2020, Apr.

2020, doi: 10.1145/3366424.3382698.

[4] A. Saxena, A. Tripathi, and P. Talukdar, “Improving Multi-hop

Question Answering over Knowledge Graphs using Knowledge Base

Embeddings,” Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, 2020,

doi:10.18653/v1/2020.acl-main.412.

[5] Y. Qiu, Y. Wang, X. Jin, and K. Zhang, “Stepwise Reasoning for

Multi-Relation Question Answering over Knowledge Graph with

Weak Supervision,” Proceedings of the 13th International Conference

on Web Search and Data Mining, Jan. 2020,

doi:10.1145/3336191.3371812.

[6] R. G. Athreya, S. K. Bansal, A.-C. N. Ngomo, and R. Usbeck,

“Template-based Question Answering using Recursive Neural

Networks,” 2021 IEEE 15th International Conference on Semantic

Computing (ICSC), Jan. 2021, doi: 10.1109/icsc50631.2021.00041.

[7] A. K. Dileep, A. Mishra, R. Mehta, S. Uppal, J. Chakraborty, and S. K.

Bansal, “Template-based Question Answering analysis on the LC-

QuAD2.0 Dataset,” 2021 IEEE 15th International Conference on

Semantic Computing (ICSC), Jan. 2021,

doi:10.1109/icsc50631.2021.00079.

[8] X. Lin and Y. Zhang, “Knowledge Graph Post-Processing for QA

Systems,” 2021 7th International Conference on Computing and

Artificial Intelligence, Apr. 2021, doi: 10.1145/3467707.3467758.

[9] T. Souza Costa, S. Gottschalk, and E. Demidova, “Event-QA,”

Proceedings of the 29th ACM International Conference on Information

& Knowledge Management, Oct. 2020,

doi:10.1145/3340531.3412760.

[10] M. Del Tredici, G. Barlacchi, X. Shen, W. Cheng, and A. de Gispert,

“Question Rewriting for Open-Domain Conversational QA,”

Proceedings of the 30th ACM International Conference on Information

& Knowledge Management, Oct. 2021,

doi:10.1145/3459637.3482164.

[11] P. Qin et al., “Unified QA-aware Knowledge Graph Generation Based

on Multi-modal Modeling,” Proceedings of the 30th ACM

International Conference on Multimedia, Oct. 2022,

doi:10.1145/3503161.3551604.

[12] W. Ali, M. Saleem, B. Yao, A. Hogan, and A.-C. N. Ngomo, “A survey

of RDF stores & SPARQL engines for querying knowledge

graphs,” The VLDB Journal, vol. 31, no. 3, pp. 1–26, Nov. 2021,

doi:10.1007/s00778-021-00711-3.

[13] D. Wardani and M. Susmawati, “SESS: Utilization of SPIN for

Ethnomedicine Semantic Search,” Proceedings of the 2022

International Conference on Computer, Control, Informatics and Its

Applications, Nov. 2022, doi: 10.1145/3575882.3575912.

[14] K. S. Gan, P. Anthony, K. O. Chin, and A. R. Hamdan, “Enforcing

Social Semantic in FIPA-ACL Using SPIN,” Smart Innovation,

Systems and Technologies, pp. 3–13, Jun. 2019, doi: 10.1007/978-981-

13-8679-4_1.

[15] C. Wang and X. Zhang, “Q-BERT: A BERT-based Framework for

Computing SPARQL Similarity in Natural Language,” Companion

Proceedings of the Web Conference 2020, Apr. 2020,

doi:10.1145/3366424.3382699.

[16] P. Kaur, and P. Nand, "Towards Transparent Governance by Unifying

Open Data," IAENG International Journal of Computer Science, vol.

48, no.4, pp986-1004, 2021

[17] A. Ben Ayed, I. Biskri, and J.-G. Meunier, “An Enhanced Lucene

based System for Efficient Document/Information Retrieval,”

Computer Science & Information Technology, Jul. 2020,

doi:10.5121/csit.2020.100913.

[18] Y. Tan, Y. Chen, G. Qi, W. Li, and M. Wang, “MLPQ: A Dataset for

Path Question Answering over Multilingual Knowledge Graphs,” Big

Data Research, vol. 32, p. 100381, May 2023,

doi:10.1016/j.bdr.2023.100381.

[19] A. Perevalov, D. Diefenbach, R. Usbeck, and A. Both, “QALD-9-plus:

A Multilingual Dataset for Question Answering over DBpedia and

Wikidata Translated by Native Speakers,” 2022 IEEE 16th

International Conference on Semantic Computing (ICSC), Jan. 2022,

doi: 10.1109/icsc52841.2022.00045.

[20] R. Frosini, A. Poulovassilis, P. T. Wood, and A. Calí, “Optimisation

Techniques for Flexible SPARQL Queries,” ACM Transactions on the

Web, vol. 16, no. 4, pp. 1–44, Nov. 2022, doi: 10.1145/3532855.

[21] A. Calì, R. Frosini, A. Poulovassilis, and P. T. Wood, “Flexible

Querying for SPARQL,” On the Move to Meaningful Internet Systems:

OTM 2014 Conferences, pp. 473–490, 2014, doi: 10.1007/978-3-662-

45563-0_28.

[22] D. Q. Nguyen, D. Q. Nguyen, and S. B. Pham, “Ripple Down Rules

for question answering,” Semantic Web, vol. 8, no. 4, pp. 511–532, Jan.

2017, doi: 10.3233/sw-150204.

[23] E. Adhim and D. Wardani, “Improving the Result of Question

Answering System with Semantic Similarity Method Based on

Hierarchy in Ontology,” Proceedings of the 2021 International

Conference on Computer, Control, Informatics and Its Applications,

Oct. 2021, doi: 10.1145/3489088.3489095.

[24] X. Yin, D. Gromann, and S. Rudolph, “Neural machine translating

from natural language to SPARQL,” Future Generation Computer

Systems, vol. 117, pp. 510–519, Apr. 2021,

doi:10.1016/j.future.2020.12.013.

[25] D. Punjani and E. Tsalapati, “Question Answering Engines for

Geospatial Knowledge Graphs,” Geospatial Data Science, pp. 257–

282, Jun. 2023, doi: 10.1145/3581906.3581922.

[26] M. Bakhshi, M. Nematbakhsh, M. Mohsenzadeh, and A. M. Rahmani,

“Data-driven construction of SPARQL queries by approximate

question graph alignment in question answering over knowledge

graphs,” Expert Systems with Applications, vol. 146, p. 113205, May

2020, doi: 10.1016/j.eswa.2020.113205.

[27] N. Bölücü and B. Can, “A Cascaded Unsupervised Model for PoS

Tagging,” ACM Transactions on Asian and Low-Resource Language

Information Processing, vol. 20, no. 1, pp. 1–23, Jan. 2021,

doi:10.1145/3447759.

[28] D. Diefenbach, K. Singh, and P. Maret, “WDAqua-core1: A Question

Answering service for RDF Knowledge Bases,” Companion of the The

Web Conference 2018 on The Web Conference 2018 - WWW ’18, 2018,

doi: 10.1145/3184558.3191541.

[29] R. Huang and L. Zou, “Natural language question answering over RDF

data,” Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, Jun. 2013,

doi:10.1145/2463676.2463725.

[30] Y.H. Chen, E. J.-L. Lu, and T.-A. Ou, “Intelligent SPARQL Query

Generation for Natural Language Processing Systems,” IEEE Access,

vol. 9, pp. 158638–158650, 2021, doi: 10.1109/access.2021.3130667.

[31] S. Liang, K. Stockinger, T. M. de Farias, M. Anisimova, and M. Gil,

“Querying knowledge graphs in natural language,” Journal of Big

Data, vol. 8, no. 1, Jan. 2021, doi: 10.1186/s40537-020-00383-w.

[32] D. Wardani, “Complete W3C-Semantic’s Interpretations of AP-RDF,”

IAENG International Journal of Computer Science, vol. 49, no. 3,

2022.

1191

