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Abstract— Plant diseases can significantly affect crop productivity if not effectively managed. Accurate disease identification is critical 

for disease control and yield enhancement. Addressing these concerns, the potential application of deep learning techniques for plant 

disease identification is promising in Indonesia. This research aims to formulate a deep-learning model to detect strawberry (Fragaria 

sp.) plant diseases. The study encompasses several key phases, including (1) collecting datasets, (2) preprocessing datasets, (3) annotating 

datasets, (4) configuring and training deep learning models, and (5) validating and evaluating the model. The developed model employs 

YOLOv7 and YOLOv7-X algorithms, utilizing a dataset of 7337 instances across three disease categories: tip burn, leaf scorch, and 

anthracnose. These datasets were obtained from publicly accessible repositories. The evaluation of the deep learning model’s 

performance in detecting plant diseases involved using 717 in-field plant images. The outcomes of the evaluation, employing YOLOv7 

and YOLOv7-X algorithms, demonstrated accuracy rates of 92.5% and 92.3%, precision levels of 94.5% and 95.1%, and recall values 

of 90.5% and 89.6%, respectively. These results emphasize the effectiveness of the deep learning model in accurately and precisely 

identifying diseases in strawberry plants, and it could lay the groundwork for further studies using deep learning to detect diseases in 

various crops.  
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I. INTRODUCTION

Strawberry is an important fruit crop, providing essential 

nutrients and antioxidants to consumers worldwide. In 

Indonesia, the development of strawberry farming started in 

the early 2000s, and since then, it has been expanding rapidly 

due to the high demand for fruit in the local market. 

Strawberry production and popularity have been growing 

steadily in recent years. The fruit has a relatively high selling 

price due to increasing demand, but production is still limited 

because this plant can only grow optimally in high-altitude 

areas with cooler temperatures.  

However, strawberry plants are susceptible to various 
diseases that can severely impact the yield and quality of the 

fruit. The warm and humid climatic conditions make this 

commodity susceptible to fungal, bacterial, and viral diseases. 

In their research, [1], [2] show a plant’s susceptibility to 

disease. Early detection and identification of these diseases 

are crucial to prevent their spread and minimize the damage 

they cause. Conventional disease detection methods in plants 

rely on visual assessment, which can be both sluggish and 

inefficient, incurs substantial costs, is prone to subjectivity, 

exhibits low accuracy, and lacks timeliness [3].  

One of the technologies that can be used to detect diseases 
in plants early is monitoring using a camera integrated with 

deep learning models. Deep learning (DL) is a subfield of 

machine learning model with a model complexity that makes 

it possible to represent data hierarchically through several 

levels of abstraction [4]. DL focuses on training artificial 

neural networks with multiple layers to learn hierarchical 

representations of data. It consists of various components that 

differ depending on the network architecture used such as 

Unsupervised Pre-trained Networks, Convolutional Neural 

Networks (CNN), etc. [5]. The highly hierarchical structure 

with the great learning capacity of the DL model allows for 

excellent classification and prediction, more flexibility, and 
adaptability for very complex problems in terms of data 

analysis such as audio, speech, and even advanced data such 

as weather and soil chemistry [6]. Recent advances in deep 

learning techniques, particularly convolutional neural 
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networks (CNNs), have shown great potential for disease 

identification in crops. Herein, leaves are important indicators 

of plant health, and several studies have explored the potential 

of leaf image analysis for disease identification in various 

crops [7], [8]. A number of deep learning models based on 

specific CNN architectures have been developed for 

classifying both crop species and identifying the presence of 

diseases on leaf images of healthy or diseased plants [9]–[12]. 

From those models, it has been discovered that deep learning 

models can analyze large datasets of images and learn to 
identify patterns and features indicative of particular diseases.  

In 2016, Redmon et al. [13] introduced YOLO (You Only 

Look Once), an object detection algorithm that relies on deep 

neural networks for its object detection capabilities. YOLO 

utilizes a deep CNN as its backbone to process the input image 

and predict bounding boxes and class probabilities. The 

network is typically pre-trained on a large dataset, such as 

ImageNet, to learn general features and then fine-tuned on 

object detection tasks using labeled data. Over the years, 

several variations and improvements have been introduced to 

YOLO, such as YOLOv2, YOLOv3, and up to YOLOv8, 
addressing some of its limitations and further enhancing its 

performance and accuracy.  

The YOLO algorithm has been widely applied in 

agriculture, such as research conducted by Liau and Wang [3] 

utilizing the modified YOLOv3 algorithm for detecting 

diseases and pests in tomato plants with an accuracy rate of 

up to 92.4%. YOLOv4 has been modified by Li et al. [14] to 

detect grapes under complex background conditions with an 

excellent accuracy of 95.2%, which meets the requirements of 

grape-picking robots for real-time detection of multiple 

varieties of table grapes in complex situations, and then Zhang  
and Li [15] used the YOLOv5s algorithm to detect the 

survival rate of seeds in plant factories with an accuracy of up 

to 94.5%. YOLOv5 was also used for detecting the bacterial 

spot disease in bell pepper plants from the symptoms seen on 

the leaves and was able to detect even a small spot of disease 

with considerable speed and accuracy [16]. Recently, 

YOLOv7 was used in the model to detect and identify 

different types of tea leaf disease in tea gardens. The model 

automatically detected five distinct types of tea leaf diseases 

and differentiated between healthy and diseased leaves with 

an overall classification accuracy is 97.30%, while recall and 

precision are 96.4% and 96.7%, respectively [17]. 
Considering these developments, deep learning methods, 

especially those with the YOLO algorithm, can potentially be 

developed to detect pests and plant diseases in Indonesia. 

This study aims to develop a deep learning model tailored 

for the detection of strawberry (Fragaria sp.) plant diseases 

through leaf image analysis. In this study, YOLOv7 and 

YOLOv7-X are applied to extract and analyze the features of 

leaf images. The results of this study are expected to have 

significant benefits for strawberry cultivation in Indonesia, as 

they provide a fast and accurate method for detecting diseases 

that attack strawberry plants. The timely identification of the 
diseases will enable farmers to take appropriate action to 

prevent their spread and minimize the damage they cause. 

Furthermore, this study has the potential to establish a basis 

for subsequent studies on using deep learning techniques for 

disease identification in other crops, which can greatly benefit 

the agricultural sector. 

II. MATERIALS AND METHODS 

The study was carried out by following the procedure 

depicted in Fig. 1. 

 

 
Fig. 1  Flowchart of the study 

A. Dataset Acquisition 

The datasets used were the images of diseased strawberry 

leaves and fruit with different angles and backgrounds 

downloaded from the Kaggle open repository 

(https://www.kaggle.com/) and images taken directly from 

strawberry fields in the Lembang and Ciwidey area, West 
Java. The datasets include tip burn [18], leaf scorch [19], and 

anthracnose [20]. Those three diseases are known as the 

common diseases of strawberries in the field or after 

postharvest. Tip burn is a major problem for most vegetable 

cultivation under a controlled environment [21]. It is a 

physiological disorder that results from environmentally 

induced localized calcium deficiency [22]. The most 

noticeable symptom of tip burn is the browning or yellowing 

of the tips or edges of the plant’s leaves. Leaf scorch, also 

known as leaf burn or sunscald, is another common plant 

disorder characterized by the browning and drying leaf edges 

or entire leaves. Like tip burn, leaf scorch is a physiological 
condition rather than a result of a pathogenic infection. 

Anthracnose disease caused by Colletotrichum sp. affects 

many plants, including trees, shrubs, fruits, and vegetables. It 

is one of the major pathogens of strawberries [23], [24]. Dark, 

sunken lesions on leaves characterize anthracnose, stems, 

fruits, and other plant parts. Fig. 2 shows examples of the 

collected images. 

The data collected was divided into data for training, 

validation, and testing, where training and validation use 

images originating from open repositories that have been 

processed, while testing uses a combination of open 
repository data and images taken directly from the field. 

B. Data Preprocessing and Augmentation  

The dataset collected was then preprocessed to get a more 

varied and larger number of images with objects of interest so 

that the resulting model performance would be even better. 

Processing was undertaken manually using Photoshop and 

automatically using the Roboflow platform 

(https://roboflow.com/). Some of the images were images of 

a single object (leaf, fruit), so modifications need to be made 
to resemble the original conditions of the plants in the field. 

Images with a single object were processed into synthetic data 
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to improve model performance and reduce training time 

compared to training on all single data without preprocessing. 

Making synthetic data requires images of healthy strawberry 

leaves taken from a strawberry field. It was processed 

manually using Photoshop (Fig. 3). Augmentation was carried 

out on the data that will be used for training so that the images 

used are more varied in terms of rotation (0°, 90°, 180°, 360°), 

horizontal flip, brightness (+/- 20%), exposure (+/- 20%), and 

background conditions which aim to adjust to original 

conditions on different land and to increase system 
generalization capabilities. From data preprocessing and 

augmentation, 492 image datasets have been obtained. 

 
Fig. 2  Sample images of strawberry leaves: (a) healthy leaf; (b) tip burn; (c) 

leaf scorch; (d) anthracnose 

 
Fig. 3  Synthetic data creation process 

C. Data Annotation 

Data annotation is crucial in developing and training deep 

learning models, particularly for tasks like object detection 

using deep learning algorithms. The dataset annotation 

process was carried out by labeling the objects with bounding 

boxes and assigning appropriate class labels using Roboflow 

software. Roboflow can identify several kinds of deep 
learning algorithms as annotation files to be processed. In 

processing this dataset, the YOLO algorithm was selected so 

that the processed annotation files can be compatible with the 

YOLO deep learning algorithm. The Roboflow software 

labeling procedure is simply undertaken by pulling the 

bounding boxes to cover the objects that need to be detected. 

In this case, each leaf or fruit that is identified as diseased will 

be given bounding boxes. From this process, using 492 image 

data sets, a total of 7337 objects have been labeled or 

annotated. The output of this object labeling process is in the 

form of *.txt and *.xml files, which will be used in the training 

data process. Table 1 shows the results of data preprocessing, 

augmentation, and annotation. 

TABLE I 

DATASETS OBTAINED FROM DATA PREPROCESSING, AUGMENTATION,  

AND ANNOTATION 

No Label Number of Objects 

1 Leaf scorch 2400 
2 Tip Burn 2485 
3 Anthracnose 2452 
 Total 7337 

D. Deep Learning Model Configuration 

Model configuration was undertaken by using YOLOv7. 

By considering the number of parameters, the amount of 

computation, and the computational density, the architecture 
of YOLOv7 was configured, as shown in Fig. 4. 

 
Fig. 4  Architecture of YOLOv7 

 

The image detection process with YOLO has three steps: 

changing the size of the input image, running a single 

convolutional network on the input image, and applying a 

threshold based on the confidence value. According to wang 

et al. [25], using the same dataset and computational 

capabilities, YOLOv7 performs better than previous YOLO 

versions and other object detection algorithms, namely MS 
COCO and GPU V100. It was reported that YOLOv7 has a 

better AP (Average precision) value than other algorithms, 

with the highest score of 56.8% for the YOLOv7-E6E model. 

YOLOv7 also has better accuracy and detection time than 

YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, and other 

object detection algorithms.  

Based on the architecture shown in Fig. 4, YOLOv7 
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consists of three parts: the input, backbone network, and head 

for detection. YOLOv7 changes the input size to 640×640×3 

pixels, which will then be forwarded to the backbone network. 

The backbone network is a trained network consisting of a 

CBS composite module for convolution, batch normalization, 

and activation function. Then the Extended Efficient Layer 

Aggregation Networks (E-ELAN) module and MP module, 

composed of MaxPool and CBS module, are used to extract 

important features from an image, help reduce the spatial 

resolution of an image, and increase its feature resolution 
alternately. To continuously increase the learning rate without 

destroying the original gradient path, the ELAN module 

expands, shuffles, and combines each set to improve network 

accuracy. In this network, the convolution process is carried 

out to produce a feature map. 

Furthermore, the feature map resulting from multiplication 

matrix convolution with filters of different sizes will be 

forwarded to the head network. The input from the backbone 

network spreads out to multiply the feature map and merge 

the learned information, improving target detection 

performance and the model’s ability to recognize important 
features. The SPPCSPC module is used to increase the 

network reception field by obtaining multi-scale object 

information without changing the feature map size. After the 

input image has been through feature extraction, this 

algorithm will divide the image into s x s sized grids, which 

then in each grid will predict the bounding box and the class 

map of each grid. Each bounding box has parameters: x, y, w, 

h, and confidence. Parameters x and y are the coordinates of 

the bounding box. Parameters w and h are the height and 

width of the bounding box. Confidence is the value of the 

intersection over union from calculating the predicted box and 
ground-truth box on the grid which will predict the class 

probability. The confidence value will predict the confidence 

level in detecting an object [13].  

E. Training 

Training, also known as the learning phase, involves 

instructing an algorithmic model to analyze the gathered data. 

This training procedure utilizes annotation files derived from 

the labeling results of the dataset. The training process aims 

to train the model by processing images that have been 
annotated or labeled so that patterns or characteristics of each 

class are formed, which will be taken into consideration by 

the computer in reaching a decision or prediction. In this 

study, the training process was carried out using Google 

Collaboratory with an Epoch value of 200, batch size 8, input 

640×640. The pre-trained models to be used are YOLOv7 and 

YOLOv7-X. YOLOv7-X is the variant of YOLOv7 that 

differs from YOLOv7 in terms of layer count, with YOLOv7-

X having 467 layers while YOLOv7 has 415 layers.  

F. Model Testing and Evaluation 

The validity test process is carried out to check the 

accuracy and precision of the model that the learning process 

has carried out. The validity test is carried out using the 

weight value obtained from the learning process. The input 

data used is in the form of images of healthy and diseased 

plants, then the output generated in this process is in the form 

of boxes that limit the plants and have been identified 

according to their conditions. Data is separated into positive 

(object) and negative (non-object) in binary classification. 

The validation test results must measure the model’s accuracy 

in detecting objects. This process is carried out by manually 

calculating the correct identification results from the results 

of identifying plant conditions. 

In this study, the confusion matrix is used to calculate 

precision, recall, mAP, and F1 scores to evaluate model 

performance. The confusion matrix shown in Fig. 5 is used to 

generate actual classification results and predicted results by 

a classification system. The results of the classification are 
evaluated using a data matrix. The model evaluation formula 

can be seen in the equations below. 

 
Fig. 5  Confusion Matrix 

 

��������� 
  
��

�� � �
 (1)  

������ 
  
��

�� � �
 (2)  

1 � ������ 
  
2 x Precision x Recall

�� � Precision � Recall�
 (3)  

mAP =  
"

#
∑ %�&

&'#
&'"  (4)  

%�& 
 %(���)� ��������� �* +���� , (5)  

In which, 

True Positive (TP): The predicted value is positive and 

actually it is positive. 

False Positive (FP): The predicted value is positive when 

actually belongs to the negative. 

False Negative (FN): The predicted value is negative when 

actually belongs to the positive. 

True Negative (TN): The predicted value is negative and 

actually it is negative. 

III. RESULTS AND DISCUSSION 

A. Model Development 

The training process aims to produce models or programs 

that have been trained using datasets to recognize patterns or 

characteristics in new data to make decisions or predictions. 

The resulting model is a weight file (.pt) containing 

mathematical calculations to estimate output based on input 

and training. The datasets employed during the training 

procedure are categorized into three segments: datasets 
allocated for training, validation, and testing, adhering to a 

distribution ratio of 70% for training, 20% for validation, and 

10% for testing. In general, there are no specific provisions 

for the data used, but it is recommended that the datasets for 
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training are larger than the data for validation and testing of 

the total dataset so that learning outcomes are maximized. In 

this study, the algorithms used are YOLOv7 and YOLOv7-X. 

Each training process uses an epoch value of 200, a batch size 

of 8, and an input of 640 × 640. A comparison of the training 

performance of each YOLOv7 model is described in Table 2. 

TABLE II 

COMPARISON OF TRAINING PERFORMANCE DATASET FOR EACH YOLOV7 

MODEL 

Model Epochs 
Runtime 

(hour) 

P 

(%) 

R 

(%) 

F1-

Score 

(%) 

mAP 

@5 

(%) 

YOLOv7 200 1.360 94,00 89,40 91,60 91,70 

YOLOv7-

X 200 1.815 93,00 88,90 90,90 90,20 

 
The training results show that the highest precision (P), 

recall (R), mean average precision (mAP @ 0.5), and fastest 

training time are owned by the YOLOv7 model, with the 

largest difference found in the mAP value of 1.5% with 

YOLOv7-X. In addition to performance results in the form of 

P, R, F1-Score, and mAP values, training performance results 

can also be seen from the graph of the model development 

results. Each parameter on the graph describes the 

performance of each passed epoch, starting from graph 

precision, recall, mAP, and loss in objects and classes. The 

graphical results of each model's performance represented by 
the loss graph can be seen in Fig. 6.  

 

 
Fig. 6  The graph of loss during training 

Based on the results of the YOLOv7 and YOLOv7-X 

training performance. It shows that the box loss curve for the 

train decreases in value from the first epoch to the 200th 

epoch; it shows a stable decline until the lowest value is less 

than 0.03. Loss values close to zero suggest that the model 

created can detect the targeted object. In the process of 

creating a dataset, bias in the data may not be avoidable. Even 

with a careful review of the algorithms and data sets, it may 
not be possible to delete all unwanted biases, particularly 

because the systems learn from historical data, which encodes 

historical biases [26]. Model and Shamir have 

comprehensively discussed the possible dataset bias factors 

and the necessary action to reduce dataset bias [27]. The bias 

in the data may be causing loss and affecting the ability to 

detect objects. Therefore, data quality has a considerable 

influence on object detection performance. The data shows 

that both models have a fairly low loss and are good to use. 

B. Detection Results 

The results of the weight or weight values obtained are re-

tested by direct testing on the land. This is because the model 

was created using plant data that is not from Indonesia, and 
the proportion of artificial data is higher than the original 

image on unprocessed land. The test aims to ensure that the 

model can be applied directly to land in Indonesia. Tests were 

again carried out on land in Lembang and Ciwidey, West Java. 

Weight testing on images is carried out using dataset testing 

to test detection performance and determine the value of 

precision, recall, F1-Score, mAP, and average IOU of the 

model that has been made so that it can be compared with the 

model’s computational output and can be evaluated later. An 

example of a detection result image can be seen in Fig. 7. 

 

Fig. 7  The results of disease detection in the image obtained from the field 

 

Fig. 7 shows the prediction results made by the model on 

the field and test data, where the model can predict the results 

very well with little error. As seen in the figure, the model can 
predict leaf scorch disease very well even though there are 

some leaves that are infected with the disease but not detected. 

This can be caused by several factors, including the 

confidence value that is below the threshold (0.4), the object 

being too small, the image being blurry, or there are objects 

attached to other objects that have been predicted by the 

bounding box so that the model considers the objects as the 

same leaf. The prediction results for the tip burn class also 

showed very good results where diseased leaves could be 

detected correctly, with the lowest confidence value of 69%. 

A comparison of the detection results for the anthracnose class 
in fruit shows that both models are very good at detecting it, 

but the YOLOv7-X model makes a slight error where healthy 

objects adjacent to diseased objects are detected as diseased 

objects. Direct testing on land shows that the model that has 

been developed not only has excellent performance in the 

training process but also has good performance when applied 

to land. This is evidenced by the detection results where the 

model that has been developed can distinguish objects in the 

form of healthy leaves from diseased leaves with little error. 

C. Evaluation 

The performance results are evaluated by calculating the 

value of precision, recall, F1-Score, mAP, and average IOU. 
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Performance evaluation is carried out using a confusion 

matrix table and formulas for precision, recall, F1-Score, 

mAP, and average IOU from the resulting values in the 

confusion matrix table. The data used for evaluation is data 

outside the training dataset, which consists of 717 detection 

objects. The results of calculating the evaluation matrix for each 

weight model algorithm can be seen in Table 3 and Table 4. 

TABLE III 

 EVALUATION RESULTS OF THE YOLOV7 MODEL USING TESTING DATA 

Class P R 
F1-

Score 
mAP 

@0.5 
IoU 

Anthracnose 91,7% 91,7% 91,7% 90,0% 75,6% 
Leaf Scorch 96,4% 95,3% 95,8% 96,0% 72,6% 
Tip burn 95,4% 84,5% 89,6% 89,8% 71,9% 
Total 94,5% 90,5% 92,5% 91,9% 73,4% 

TABLE IV 

 EVALUATION RESULTS OF THE YOLOV7-X MODEL USING TESTING DATA 

Class P R 
F1-

Score 
mAP 

@0.5 
IoU 

Anthracnose 93,0% 92,1% 92,5% 91,9% 72,5% 
Leaf Scorch 96,5% 94,9% 95,7% 95,1% 72,2% 
Tip burn 95,7% 81,9% 88,3% 89,7% 68,6% 
Total 95,1% 89,6% 92,3% 90,9% 71,1% 

 

Based on these results, precision, recall, F1-Score, mAP, 
and average IOU values were obtained. The YOLOv7-X 

model has the highest precision value at 95.1% (Table 4). For 

tip burn, the results are better than the CNN model developed 

with YOLO5 for detecting the tip-burn stress on lettuce grown 

in an indoor environment, achieving the best accuracy with 

84.1% mAP [28]. For leaf scorch, the results are comparably 

as higher than the field experiment results of the 4 CNN 

models, SqueezeNet, EfficientNet-B3, VGG-16, and AlexNet 

developed by Abbas et al. [29] for identifying strawberry leaf 

scorch disease in a real-time strawberry field which achieved 

the highest classification accuracy of 0.80 and 0.86 for initial 

and severe disease stages, respectively. Regarding 
anthracnose, the deep learning model developed by 

Anagnostis et al. [30] achieves an average precision of 63% 

for object detection and an accuracy of 87%. Yet, comparing 

these results here is less precise because it uses tree canopy 

images as the input. A high precision value shows that the 

deep learning model has a high consistency level in terms of 

object detection because the precision value indicates the 

model’s consistency level in conducting classification [31]. 

The highest Recall value with a value of 90.5% (Table 3) for 

YOLOv7 has a very small difference with the YOLOv7-X 

model, which is 0.9%. The recall value reflects the model’s 
proficiency in classification consistency. The distinction 

between precision and recall arises from their calculation 

methods. Precision measures the proportion of accurate 

predictions relative to the overall intended predictions, 

whereas recall is the ratio of accurate predictions to the total 

count of assigned actual classes. The recall values obtained in 

the two models do not differ much, indicating that the two 

models have a fairly high success rate in differentiating each 

class. F1-score is an alternative for accuracy that describes the 

comparison of the weighted average precision and recall. The 

F1-score value in the test data shows that both models can 

predict an object very accurately, where the YOLOV7 model 
is superior (92.5%) compared to YOLOv7-X (92.3%). 

YOLOV7 exhibits the highest mAP and average IoU values, 

reaching 91.9% and 73.4%, respectively. The average IoU 

value serves as an indicator of the confidence level of the 

model in object detection. These findings suggest that the 

deep learning model manifested as a weight file (.pt) 

demonstrates notable consistency in accurate object detection. 

This observation is underlined by the higher number of 

correctly detected objects compared to those incorrectly 

detected (Fig. 7). Model errors in detecting objects occur 

because the images are unclear and have a high degree of 
similarity, so the model is unable to distinguish properly. 

Given the above-discussed results, the deep learning model 

that has been developed can be implemented into an 

application program, preferably web-based. This is because 

the website is a platform that is cheap, stable, and easy to 

access. Furthermore, it is realistic to consider that this study 

could lay the groundwork for further studies using deep 

learning to detect diseases in various crops, offering 

significant benefits for agriculture. 

IV. CONCLUSION 

The deep learning model was successfully developed using 

the YOLOv7 and YOLOv7-X algorithms. The model is in the 

form of a weight file with mathematical calculations based on 

input and training for disease detection on strawberry fruit 

leaves. Evaluation of model performance for precision, recall, 

F1-Score, mAP, and average IOU both received high scores 

from the results of validation data calculations and field 

testing. Based on the values obtained from the evaluation 

using dataset testing, YOLOv7 with less weight has the best 
performance with a precision value of 94.5%, Recall 90.5%, 

F1-score 92.5%, mAP 91.9%, and average IOU 73.4%. Both 

models have performance results that do not have significant 

differences in terms of precision, recall, F1-Score, mAP, and 

average IOU values. This suggests that both models have 

successfully identified the target object, as demonstrated by 

the loss value approaching zero (<0.3). Direct testing on land 

also proves that the model has good performance during the 

training process and can be implemented on land with very 

little error. These results could lay the groundwork for further 

studies using deep learning to detect diseases in various crops. 
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