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Abstract— In this paper, we provide a method for robust estimation of pedestrian pose that is especially useful for autonomous vehicles 

traveling toward pedestrians far away. Pedestrians in the far distance appear relatively small when seen by a camera, making it difficult 

to estimate the pedestrian's pose. We use fused deep neural networks (DNNs) to resolve the problems presented by pedestrians in the 

far distance. First, DNNs are used to detect pedestrians and enlarge the observed image. Next, the DNN method of pose estimation is 

applied. The proposed method uses a single camera to estimate the posture of a pedestrian in the far distance. Far-off pedestrians 

observed by cameras in moving cars appear as low-resolution images of non-rigid bodies. Detection and orientation estimation are 

difficult with conventional image processing methods. We used a series of DNNs to detect pedestrians, improve data availability, and 

estimate challenging postures to address these limitations. In this paper, we propose a method based on the multi-stage fusion of DNNs 

to solve a difficult problem for a single DNN. The experimental results established the superiority of the proposed method when applied 

to data challenging for conventional pose estimation methods. Applications of the proposed method include observing small objects and 

objects in the far distance. The method may be especially useful in surveillance systems, sports broadcasting, and other applications 

requiring human posture estimation. 
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I. INTRODUCTION

Driver assistance systems (DAS) are an important safety 

feature in autonomous vehicles. They can predict pedestrian 

movement and detect pedestrians on the road, thus helping to 

prevent accidents. However, when the distance between the 

car and the pedestrian is relatively large, the small size of the 

pedestrian in the camera image makes detection challenging. 

As cars approach far-off pedestrians relatively quickly, 

detecting these pedestrians and predicting their behavior is a 

difficult problem. The direction of pedestrian movement is 

important for predicting pedestrian behavior, as is the 

direction of their gaze and level of awareness of the oncoming 
car. Techniques for predicting pedestrian body pose and 

determining head direction generally require an image of a 

minimum size. This paper proposes a robust pedestrian pose 

estimation method using a single camera observing a 

pedestrian in the distance.  

Human pose estimation technologies are used to detect a 

person’s posture in an image or video. Existing technologies 

determine posture by identifying and connecting key points 

(the joints of the body). Applications of these technologies 

include autonomous driving, security, sports, games, 

augmented reality, and other fields that require recognition of 

user movements. Pose estimation research focuses on shifting 

from the top-down to the bottom-up method. The top-down 
method begins with detecting an object within an image (i.e., 

identifying and localizing a person in a bounding box). 

Detection accuracy is higher than that of the bottom-up 

method because object detection is a distinct step. However, 

detection speed is relatively low. With the bottom-up method, 

the first step is to detect and display the keypoints of major 

body parts; the initial object detection step is omitted. This 

increases detection speed in comparison with the top-down 

method but reduces accuracy. 

It is time-consuming to apply human pose estimation to an 

entire image. To solve this problem, Papandrou et al. [1] and 

Wang et al. [2] proposed a network that carries out two-step 
pose estimation. Our method used the two-step approach and 

applied Fast R-CNN to locate a person before cropping and 

proceeding with human pose estimation. Cao proposed a 

method using affinity fields and confidence maps [3-6]. First, 

the image is passed through 10 layers of the vgg-19 network, 

and a feature map is computed. Next, affinity fields and 
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confidence maps are generated by using the feature map as an 

input for stages 1–6. At each stage, loss is calculated by 

comparing the output with ground truth (GT) labels. The 

network is trained to optimize the results of these 

comparisons. After these steps, the confidence maps and 

affinity fields can be combined to create a complete human 

skeleton. Data are combined using a greedy relaxation 

algorithm. Fang proposed three methods for estimating the 

poses of multiple people in real-time [7-12]. First, a 

symmetric spatial transformer network (SSTN) optimizes the 
network using parallel single-person pose estimator (SPPE) 

branching for high-quality human pose estimation but with 

inaccurate pedestrian detection. Second, the Parametric Pose 

Non-Maximum Suppression (NMS) algorithm uses database 

methods to optimize postural parameters by comparing and 

removing poses. Third, the Pose-Guided Proposals Generator 

(PGPG) enhances training data. The human body region can 

be recreated by learning how various poses are classified 

based on the model’s output. 

Generally, human pose estimation aims to provide quick 

and accurate estimates. The topic of our paper is pose 
estimation at long distances, which has not been covered in 

previous studies. To this end, we provide a method for 

detecting the posture of a pedestrian in a far distance. In these 

cases, estimating the posture using small images is necessary. 

A method that can enlarge the image accurately is required; 

this paper applies the super-resolution (SR) imaging method. 

Image SR refers to converting a low-resolution image into 

a high-resolution image. Image SR can be divided into single-

image super-resolution (SISR) and multi-image super-

resolution (MISR), depending on whether one or multiple 

images are used. SR is used to reconstruct high-resolution 
images from low-resolution images, but multiple ‘correct’ 

reconstructions are possible. The lack of a correct answer 

means the problem cannot be defined. These problems are 

known as regular inverse problems or ill-posed problems. 

To overcome these difficulties, we first define a GT high-

resolution target image. Blurring, down-sampling, and noise 

injection are used to convert this into a low-resolution image. 

Then, the model is trained to restore the low-resolution image 

to GT using the seedling method. The performance of SR may 

vary depending on the distortion and down-sampling 

techniques used to create the low-resolution image. This 

reflects the fundamental limitations of SISR. 
Ledig conducted a study using a generative adversarial 

network (GAN) to generate virtual data for SR using arbitrary 

random numbers between generators and discriminators [13-

20]. This research also used a super-resolution GAN 

(SRGAN), whereas the conventional method uses mean 

squared reconstruction error to obtain the peak signal-to-noise 

ratio (PSNR). Although the conventional method is valuable, 

Ledig notes that it produces a slightly blurred output and 

suggests a way of using a GAN to restore an image that 

appears plausible to the human eye. In GAN-based methods 

like SRGAN, distortion indicates low performance; however, 
user satisfaction is improved compared to existing SR 

methods. 

In this paper, we use three steps to estimate the posture of 

a pedestrian in the far distance. First, edge and lane 

information and other observations are used to obtain the 

vanishing point, define the far-distance area, and expand the 

data. I the object is estimated to be a long distance away, part 

of the image is enlarged. The SRGAN is used instead of 

simple up-sampling. Next, the CNN method is used to 

generate feature maps. The feature map detects the key points 

of major body parts of the pedestrian and estimates the 

pedestrian's pose. The effectiveness of our method is 

confirmed through the experiments described in this paper. 

II. MATERIALS AND METHOD 

The method proposed in this paper is depicted in Figure 1. 

In module (a), vanishing point estimation is performed, and a 

far-distance area of an image perceived by an autonomous 

vehicle is selected. A region of interest is defined because the 

subsequent procedure uses relatively intensive calculations. 

In module (b), the pedestrian is identified using Fast R-CNN. 

GAN is used in module (c), and SR is used to enlarge small 

images in far-distance areas. Finally, in module (d), 

confidence maps, feature maps, and affinity fields are 
calculated to obtain the final pose estimation. 

 

Fig. 1  The proposed method. 

A. Far-Distance Region Selection with DNNs 

Estimates of vanishing points from the front camera of an 

automobile can vary widely depending on the car's pitch, the 

condition of the road surface, and the shape of the road ahead. 

Information on lane features is very important and is obtained 

through edge information from surrounding areas. We use 

Lee’s method [21]-[24] in this paper. Lee notes that there is a 

large difference in illumination between the daytime and 

nighttime and that changes in the weather and in-vehicle 

operation (e.g., the use of windshield wipers) make the 

vanishing point difficult to measure through video processing. 

Using a vanishing point guided network (VPGNet), we can 
robustly determine far-distance regions, the vanishing point, 

and lane information under various road and weather 

conditions. Selection of the vanishing is difficult when it is 

based on a single image taken with a mono-camera mounted 

on a car, due to vibration. We used the Kalman filter to solve 

the vibration problem and select the far-distance region [25], 

[26]. Figure 2 shows the result. 
 

 
Fig. 2   Selection of a far-distance region. The red box denotes the far-distance 

area to be detected. 
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B. Super-resolution with GAN 

The SR module ultimately converts a small image of a 

pedestrian into a high-resolution image. The conventional 

method uses bilinear and bi-cubic interpolation to enlarge the 
image, but the overall effect is unsatisfactory. In this paper, 

we used DNNs to address this. The DNNs are convolutional 

neural networks (CNNs). The DNNs perform three processes. 

First, the feature map is extracted from a low-resolution image 

through patch extraction and representation. Second, layers 

are used to add non-linearity to the feature map extracted in 

the first step. The final step is reconstruction, in which high-

resolution images are extracted from the non-linear feature 

map. 

A GAN is a neural network that generates virtual data. To 

generate good target data, a generator module is configured 
and iteratively trained to deceive a discriminator module. 

Resolution enhancement using the DNNs began with a CNN 

model that used a convolutional layer, followed by a very-

deep super-resolution (VDSR) model that used a skip- or 

residual-connection technique [13]. Subsequently, SRGAN 

models using generated adversarial neural networks have 

been developed. The SRGAN model is a GAN-based model 

that applies the skip-connection method (which is used for 

CNN and VDSR) to the generator and effectively integrates 

older technology with new technology [13]. This paper uses 

SRGAN to magnify small images of pedestrians observed 

from a distance. 

C. Pedestrian Pose Estimation with Confidence Maps and 

Affinity Fields 

It is difficult to match due to the connection with the 

existing bottom-up detected body parts, and there are 

problems such as reduced accuracy and increased calculation 

amount due to the increase in combinations, and it is 

intermediate between the body parts. Methods for adding 

positional information, such as adding additional points, have 

been proposed. However, their utility is limited without 

directional information. Cao encodes both the position of 

body parts and the relationships among them in 2D vector 

fields that comprise Part Affinity Fields, creating a filter that 
can be encoded into a vector [3]. This enables pose estimation 

using the bottom-up approach, which first identifies joints and 

then performs pose estimation for several people. Accuracy 

and speed are improved compared to the top-down method, 

which detects several people and then performs pose 

estimation for each individual. The figure below shows the 

encoding flow between each body part for each channel. 

In Figure 3, F inputs the image to vgg-19 [25] and converts 

it using the intermediate layer of feature values. A confidence 

map is predicted by Branch 1, and Part Affinity Fields are 

predicted by Branch 2. Branches 1 and 2 are executed 
repeatedly (stages 1–6), with the input for each stage 

consisting of the output from the previous stage. The input F 

from Stage 1 is concatenated and used in all stages. The error 

(loss function) is calculated for each stage, improving 

accuracy with each repetition. In this study, confidence maps 

and affinity fields are calculated for an image of a pedestrian 

in the far distance, which was expanded by the previous 

module, and pose estimation is then performed. 

 

 
Fig. 3  The architecture of the two-branch multi-stage CNN for human pose estimation [3]. The first branch estimates confidence maps ��, and the second branch 

estimates Part of Affinity Fields ��. 

III. RESULTS AND DISCUSSION 

The dataset used in this paper is the Joint Attention in 

Autonomous Driving (JAAD) pedestrian data set [27] - [30]. 

The JAAD includes a data set for autonomous driving and a 
data set for pedestrian and driver behavior at crossing points. 

Figure 4 is an example of a JAAD pedestrian dataset. It 

provides 346 short, annotated video clips (each 5–10 seconds 

long) extracted from over 240 hours of driving footage. The 

video was filmed in many parts of North America and Eastern 

Europe and includes typical scenes of urban driving in various 

weather conditions. A mono camera filmed the video, and the 

size of the test images is 1,920 × 1,080 pixels. 

We used the data from the 346 short driving clips and tested 

our method on a total of 792 pedestrians in the far distance. 

The annotation data provided by JAAD were used to carry out 

comparative experiments. Annotation data do not include 
distance data. Therefore, we defined the targets as pedestrians 

of a minimum size (as indicated by data labels). Annotation 
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data also included human pose data, necessitating another 

evaluation method. In this paper, we assumed that the pose 

estimation data were accurate and that poses were evenly 

distributed over a certain region of the image box. 

 

 

 
Fig. 4  Example of a JAAD pedestrian dataset. The image shows a pedestrian 

observed while driving in the city. Annotation data are obtained from public 

data of the city. 
 

   
(a) (b) (c) 

Fig. 5  Results of pose estimation of a female pedestrian in the far distance. 

(A) The image box for a pedestrian in the far distance. (B) This is an example 

of inaccurate pose estimation resulting from the use of an unenlarged image. 

(C) This is an example of accurate pose estimation after enlarging the image 

using SRGAN. 

 

Figure 5 shows the results of applying the method proposed 

in this paper. Figure 5(a) shows a pedestrian detected in the 

far distance. The size of the image box was 25 × 55 pixels. In 

Figure 5(b), the upper body parts were inaccurately estimated 
as a result of using Figure 5(a) for pose estimation without 

enlargement. Figure 5(c) shows the results of the method 

proposed in this paper. The image was expanded to 50 × 110 

pixels using SRGAN. The coordinates of the image will be re-

reduced for use. 

 

   
(a) (b) (c) 

Fig. 6  Results of pose estimation of a male pedestrian in the far distance. (A) 

The image box for a pedestrian in the far distance. (B) This is an example of 

inaccurate pose estimation resulting from the use of an unenlarged image. (C) 

This is an example of accurate pose estimation after enlarging the image using 

SRGAN. 

Figure 6 shows the results of applying the method proposed 

in this paper to a male pedestrian. Figure 6(a) shows a 

pedestrian detected in the far distance. The size of the image 

box was 26 × 73 pixels. In Figure 6(b), the upper body parts 

are not properly connected because pose estimation was 

applied to an unenlarged image. Figure 6(c) shows the results 
of the method proposed in this paper. The image was 

expanded to 52 × 146 pixels using SRGAN. 

In our experiments, 23.4% of pose estimations were 

successful when using the conventional method for detecting 

pedestrians at a far distance. With the method proposed in this 

paper, pose estimation was successful in 69.2% of cases, for 

a performance improvement of 45.8%. Pose estimation was 

unsuccessful even when using the proposed method in cases 

where annotation data indicated that a pedestrian was present, 

but the body was obscured by a vehicle or another object in 

the image. When pedestrians were partially hidden, pose 

estimation could not be performed. 

IV. CONCLUSION 

In this paper, we have proposed a method to solve the pose 

estimation problem for pedestrians in the far distance. First, 

DNNs were applied to estimate the vanishing point. Next, this 

information was used to select the far-distance region, after 

which DNNs were used to detect pedestrians. The target 

image was then enlarged, and SRGAN was used to increase 
image resolution. Finally, we have applied DNNs to estimate 

the pose of the pedestrian. Experimental results demonstrate 

the success of this method’s sequential application of DNNs. 

In future work, we intend to simplify the steps conducted by 

the DNNs, and experiment with merging and other 

deformations of the network structure. 
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