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Abstract— Coronavirus 2019, more commonly known as COVID-19, was declared a global pandemic by the World Health Organization 

(WHO) on March 11, 2020. The β coronavirus culpable for the disease, SARS CoV-2, is known to be highly contagious with a relatively 

long incubation period of up to 14 days and is transmittable through small droplets, especially among people who are in close face-to-

face contact. The Ministry of Health of Malaysia has recommended five days of quarantine for people who are positive for COVID-19 

to avoid further disease transmission. Many resources are used to monitor patients throughout the quarantine period. Therefore, this 

project would like to present an IoT-enabled wearable device capable of monitoring COVID-19 quarantine patients by utilizing sensors 

to monitor the necessary health parameters and facilitate home quarantine. The low-cost ESP32 and Arduino Nano 33 BLE Sense 

microcontrollers are used in this device. They are connected to various IoT sensors to collect temperature, humidity, and sound data. 

The data obtained will then be uploaded to an IoT platform for doctors to analyze and monitor remotely via the health log throughout 

the 5-day quarantine period. An alert system is also devised to inform the medical staff if the patient is experiencing abnormal 

symptoms. The medical staff can then bring their attention to the patient and take the necessary actions to combat COVID-19.  
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I. INTRODUCTION

The year 2020 has witnessed COVID-19, or Coronavirus 

Disease 2019, being declared by the World Health 
Organization (WHO) as a global pandemic. The novel 

coronavirus attacks the victim's respiratory system and has 

further implications. This disease has affected the world 

economically just as much as it has affected the world's 

population regarding health and wellness. The virus culpable 

had been identified to be SARS CoV-2, which stands for 

"Severe Acute Respiratory Syndrome Coronavirus 2". The 

virus is proven to be transmittable through small droplets 

when people come into close contact [1]. The virus is highly 

contagious and has a long incubation period of up to 14 days. 

In this incubation period, the patient may or may not exhibit 
any symptoms of contracting the disease, thus rendering them 

possible silent carriers of the virus that could be spread to 

other people [1]. WHO has recommended a quarantine period 

of 14 days for people who have come into contact with any 

COVID-19 patient. In Malaysia, people considered suspect, 

probable, or confirmed to be suffering from low-risk COVID-

19 undergo quarantine at Low-Risk Quarantine and 

Treatment Centers, where the local authority will monitor 

their symptoms.  

The advancements of the Internet of Things (IoT) have 
created a smart ecosystem that utilizes processors, sensors, 

and communication devices to collect, analyze, and act based 

on data acquired from the environment. Multiple IoT devices 

may share the data collected under a unified cloud server 

where data analysis is performed without human intervention 

[2]–[6]. For healthcare, in particular, IoT has branched into a 

new specialized field known as the Internet of Medical Things 

(IoMT). IoMT platforms will usually revolve around smart 

biomedical sensors to acquire health-related parameters, 

including temperature, heart rate, respiration rate, blood 

pressure, and oxygen saturation. Health monitoring is 
considered a big part of IoMT implementation [7]. Having 
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taken into account the quarantine measures recommended by 

WHO and enforced in many countries, including Malaysia, 

this project aims to help facilitate any home quarantine by 

providing health monitoring information for patients by 

utilizing an IoT wearable device to aid doctors and 

researchers in their quest to identify possible COVID-19 

patients. 

The World Health Organization (WHO) has recommended 

a quarantine period of 14 days for people who have traveled 

abroad and have come into close contact with a suspected 
COVID-19 carrier, and monitoring needs to be performed by 

medical staff during this period. Healthcare services have 

increased over the past few years and placed a high burden on 

either having doctors always be close to their patients during 

the diagnosis process or the patients having to remain in 

hospitals during the health monitoring process [8]. The 

increase in demand for health monitoring has encouraged the 

development of the healthcare field by making the most of IoT 

and wireless technology and integrating it with the internet to 

allow a continuous monitoring system for the patient [9]–[12]. 

This is important, especially since the high demand for 
hospitalization has made it difficult for patient screening to be 

done in a 24-hour manner [13]. Machine learning and deep 

learning are used to provide faster diagnosis in healthcare [14]. 

Various research and approaches have utilized deep learning 

to identify COVID-19 patients directly by analyzing the X-

rays; these types of analysis will require complex devices that 

may not be available at home for quarantined patients [15]. In 

addition, a proper cough detection mechanism needs to be 

devised, as it is among the most common symptoms of 

COVID-19 at 67.7%, behind only fever [1]. Hence, this 

project aims to introduce a wearable device capable of 
obtaining data to monitor the health of COVID-19 patients 

and detect coughs and other possible complications. The 

objectives of this project can be summarized as follows: 

 To monitor possible COVID-19 symptoms for patients 

by designing an IoT wearable device.  

 To have an alert system that notifies medical staff of 

COVID-19 symptoms suffered by the patient. 

 To reduce operation costs by advocating home 

quarantine using the health monitoring device rather 

than at a dedicated quarantine center. 

The project scope can be summarized as follows. 

 Designing a wearable health monitoring system to 
collect and obtain health parameters for quarantined 

people in relation to COVID-19.  

 The compilation of data on an IoT platform is to be 

monitored by doctors or quarantined patients 

themselves.  

 Alerting patients or doctors of possible COVID-19 

symptoms based on data collected by the system. 

The related works are reported as follows. 

A. COVID-19 

Coronavirus Disease 2019, widely known as COVID-19, is 

a respiratory disease that has been characterized as a global 

pandemic by the WHO in February 2020. The disease attacks 

the respiratory system of victims, resulting in coughing, 

fatigue, fever, and breathlessness. The symptoms of COVID-

19 range from showing no symptoms to acute respiratory 

distress syndrome (ARDS) [1]. Table 1 shows a list of 

symptoms associated with COVID-19 according to WHO. 

TABLE I 

COVID-19 SYMPTOMS 

COVID-19 Symptom Percentage 

Fever 87.9% 
Dry Cough 67.7% 
Tiredness or Fatigue 38.1% 
Phlegm Production 33.4% 
Breath Shortness 18.6% 
Arthralgia / Myalgia 14.8% 
Sore Throat 13.9% 
Headache 13.6% 

Chills 11.4% 
Nausea 5.0% 
Congestion of Nasal 4.8% 
Diarrhea 3.7% 
Hemoptysis 0.9% 
Conjunctival Congestion 0.8% 
Fever 87.9% 

 

Since fever and dry cough have accounted for a significant 

percentage of COVID-19 symptoms at 87.9% and 67.7%, 

respectively, using these parameters as the primary symptoms 

to detect among patients using this project's health monitoring 

system makes sense. According to the National Health 

Service (NHS) Inform, COVID-19 symptoms include fever 

with a temperature of at least 37.8˚C. However, a high 

temperature does not necessarily indicate that the patient is 

positive for COVID-19. The only way to confirm a patient is 

positive for COVID-19 is through confirmatory tests known 

as Polymerase Chain Reaction (PCR) and Antigen Rapid 
Tests [16]. 

In humans, body temperature can vary from one person to 

another and is affected by many factors, including age, gender, 

activity levels, menstrual cycle (for females), and time of day. 

As such, there is no definite body temperature, and it can only 

be identified in the range [17]. Based on the comprehensive 

compilation of body temperature studies performed, the 

average temperature is 36.59˚C, considering all possible 

measuring sites for a patient. The study noted that rectal 

measurement, on average, shows the highest temperature 

reading compared to other mediums, including oral, tympanic, 
urine, and axillary or armpit. Infrared (IR) temperature 

measurement is another method of measuring body 

temperature and is popularly used due to its non-invasive 

method of use, unlike the previously mentioned measurement 

tools. It is low-cost and safe to use, although the reading may 

be inconsistent compared to other measurement methods 

compared to a reference mercury thermometer. 

B. Health Monitoring System 

A few literature review papers were studied for health 
monitoring systems, although most do not cater to COVID-19 

symptoms. A wireless patient monitoring system is proposed 

that can give electrocardiography (ECG), blood pressure, 

temperature, and pulse oximeter readings that are connected 

using Arduino and transmitted to the cloud [18]. Health 

monitoring devices with mobile applications, IoT sensors, 

Arduino, and IoT cloud platforms allow automatic health 

monitoring [19], [20]. Power BI was proposed to analyze the 
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data collected [21]. However, Power BI has limited capability 

to analyze real-time data.  

Various sensors were used to measure health data. The 

MAX30100 sensor measured the heartbeat rate and blood 

oxygen level. MLX90614 was used to measure the body 

temperature [22], [23]. An alternative approach to preventing 

the spread of the virus is to prioritize safety and social 

distancing measures. Researchers have developed an 

innovative solution called the IoT Safety Distance Monitoring 

Device [24]. This device aims to ensure that individuals 
maintain an adequate physical distance from others, thus 

effectively curbing the transmission of the virus. Another 

valuable tool for virus prevention is a face mask detector 

integrated with a health status monitoring system, as proposed 

in [25]. This system identifies the presence or absence of face 

masks and monitors individuals' health status. By combining 

these two functionalities, the system offers a comprehensive 

approach to prevention, emphasizing the importance of mask-

wearing and health monitoring in mitigating the spread of the 

virus.  

Tiny Machine Learning (TinyML), also referred to as 
embedded machine learning, is a growing field of machine 

learning running on TensorFlow Lite that is capable of being 

executed on low-power microcontroller units (MCUs) such as 

the Arduino, Microbit, and Raspberry Pi. It has allowed the 

collaboration of low-power embedded systems with machine 

learning to open up various possibilities for low-cost projects. 

One of the advantages of TinyML's implementation is energy 

efficiency. Due to MCUs requiring less power compared to 

their central processing unit (CPU) and graphical processing 

unit (GPU) counterparts, implementation of these systems is 

easier as they only require a battery [26]. 

C. Cough Detection 

On the other hand, this project focused more on utilizing 

the cough detection algorithm in a working prototype. An 

automated system for screening respiratory disease is 

designed by analyzing raw cough data using two convolution 

neural networks (CNN) [27]. An experiment was carried out 

to collect and label the patients' cough recordings for cough 

detection [28]. A cough classification device was proposed to 

identify COVID-19 coughs from non-COVID-19 ones using 

the Mel Frequency Cepstral Coefficient (MFCC) feature 

extraction and CNN classification methods [29]. 

II. MATERIAL AND METHOD 

The architecture of the COVID-19 IoT Health Monitoring 

System is shown in Fig. 1. It consists of the ESP32 as the 

Health Monitoring Centre (HMC), sensors, Arduino Nano 33 

BLE, ThingSpeak, and an alert system. The following 

sections will illustrate the function of each module in the 

COVID-19 IoT Health Monitoring System. 

A. ESP32 as the IoT Health Monitoring Device 

The TTGO T-Display, which runs on an ESP32 
microcontroller, acts as the primary IoT Health Monitoring 

Device (Fig. 2). The device is compact, weighing 7.81g 

(excluding headers), and can be powered through a 5V/1A 

USB type-C port or 3.7V lithium battery. Running on the 

FreeRTOS via the ESP32 microcontroller, it is programmed 

using C language on the Arduino platform, which is easy to 

understand and familiar. Arduino's wide compatibility with 

many libraries allows easy integration of several third-party 

sensors. The primary appeal of using TTGO T-Display ESP32 

is the built-in 1.14-inch LCD Display. While the number of 

ports is limited compared to the conventional ESP32 single 

board computer (SBC), the built-in LCD makes the device 
compact and, with a dimension of 51.52mm × 25.04mm, 

makes it easier to implement as a wearable device. 

Furthermore, running on the ESP32 microcontroller, the 

TTGO T-Display is equipped with Wi-Fi 802.11 b/g/n and 

supports a speed of up to 150Mbps. The ESP32 TTGO T-

Display (from here on abbreviated as 'ESP32' for simplicity 

purposes) acts as the Health Monitoring Centre (HMC) that 

collects data from all sensors, including MLX90614, LM35, 

DHT22, and the Arduino Nano 33 BLE.  

 
 

Fig. 1  Full architecture of the system proposed 
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Fig. 2  TTGO T-Display ESP32 (abbreviated as ESP32) 

B. Sensors 

For body temperature, the sensor considered for measuring 

body temperature is MLX90614 (Fig. 3). At 7.41 USD, it is 

almost double the price of the LM35 sensor used in many 
research papers. It is a non-contact temperature sensor that 

relies on infrared (IR) to measure the temperature of an object 

or ambient environment. It operates based on Stefan 

Boltzmann's theory of radiation, which states that every object 

and living organism emits radiation energy directly 

proportional to its area, emissivity, and absolute temperature 

to the power of four, as shown in Equation 1 [30]. 

 � = ���
� (1) 

 
Fig. 3  MLX90614 uses infrared to measure temperature 

 

 
Fig. 4  DHT22 measures surrounding temperature and humidity 

 

 

MLX90614 measures the temperature of the emitted IR 

rays from objects or surfaces. It is operated through a 3.3V or 

5V voltage source and communicates to the ESP32 using the 

I2C protocol. It can operate from the -70 to 382.2 ˚C range 

when measuring body temperature. According to the 

datasheet, it can measure temperature for objects ranging in 

emissivity from 0.1 to 1, where clean skin has an emissivity 

value of around 0.98 [31]. The company that developed 

MLX90614, Melexis, used this particular IR sensor for 

healthcare temperature sensors, signifying its reliability in 
measuring at a medical-grade level. According to the 

datasheet, one major downside of the MLX90614 is its 

lifespan, as it can only undergo a minimum of 100,000 

erase/write cycles. In this project's implementation, 14 days 

of continuous temperature monitoring will use many 

erase/write cycles, and thus, the reading frequency needs to 

be reduced to ensure the sensor can continue to operate within 

the quarantine duration. Since body temperature hardly 

changes within a few minutes, the MLX90614 is configured 

to obtain a reading once every 30 minutes. This allows a total 

erase/write cycle of around 672 cycles per patient throughout 
his/her 14-day quarantine period and allows up to 148 patients 

to use the system throughout their quarantine periods before 

requiring the replacement of the sensor. Data reading using 

the MLX90614 is direct and simple. VIn, GND, SDA (Data), 

and SCL (Clock) pins are connected to the corresponding 

5V/3.3V, GND, SDA, and SCL pins of the ESP32, 

respectively. It is programmed simpler than the LM35 as it 

only requires one command line due to its more accurate and 

consistent reading. 

The DHT22 is a digital sensor used for measuring 

surrounding temperature and humidity (Fig. 4). It is relatively 
cheap at around USD3.50. It can be powered at 3V to 5V 

power from any digital I/O port and consumes 2.5mA current 

at max usage. The DHT11 can measure 20% to 80% humidity 

levels at 5% accuracy compared to its predecessor. The 

DHT22 can read a wider humidity range from 0 to 100% at 2-

5% accuracy. Regarding temperature, the DHT22 has a wider 

range of reading at -40 to 80 °C compared to the DHT11's 

range at 0 to 50 °C. The DHT22 is used to obtain 

environmental data that is used as a reference for medical staff 

to consider should there be any abnormal reading in the 

patient's body temperature and for calibration of the 

MLX90614 sensor. 

C. Cough Detection System 

In this project, cough detection is primarily achieved 

through machine learning. Tiny Machine Learning (TinyML) 

allows deploying machine learning algorithms on various 

devices, including development boards such as Arduino. Edge 

Impulse is a free online machine-learning platform that allows 

data collection, training, and deployment of the TinyML 

model. The features are extracted for audio datasets through 
the Mel-Frequency Cepstral Coefficient (MFCC), which is 

suitable for the human voice. Keras neural network is then 

chosen as the learning block.  
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Fig. 5  Arduino Nano 33 BLE Sense 

 

Developing the cough detection algorithm involves data 

acquisition for both cough and noise sounds, extraction of the 

features via MFCC methods, and training the datasets using 

the Keras neural network. The Arduino Nano 33 BLE (Fig. 5) 

is chosen as the device for deployment. It is compatible with 

running TinyML models and can be directly used within Edge 

Impulse API for data acquisition and testing. With a built-in 

MP34DT05-A microphone equipped, the Arduino Nano 33 

BLE can be deployed as the cough detection device capable 
of running the machine learning algorithm and recording 

audio without requiring a separate microphone. 

D. ThingSpeak 

The ThingSpeak platform allows users to create multiple 

channels that can store data in their respective fields. For free 

users, ThingSpeak allows up to 4 channels per account, but it 

can be extended to 250 with a paid membership. In the real-

life implementation, the doctors and/or nurses can have a full 

list of patients under their care, with each patient allocated a 
single channel to monitor their health parameters. These 

channels can also be configured publicly, privately, or 

selectively shareable, thus allowing patients to view their data 

logs restrictively.  

 

 
Fig. 6  ThingSpeak Patients' Channels 

 

Each channel is given a channel ID, read and write 

Application Programming Interface (API) key. Data 

uploading is done in the data uploading phase of the ESP32 

by using the channel number, and the write API key obtained 

on the channel is assigned to the patient. The read API key, 

on the other hand, is mostly used in the alert system of the 

project to notify medical staff via e-mail or SMS. The 

example of the patients' channels created is shown in Fig. 6. 

ThingSpeak allows medical staff to monitor multiple patients. 

The privacy setting can be adjusted so that only the patient 

and the corresponding medical staff can view the health data 

log. 

E. Alert System  

The COVID-19 IoT Health Monitoring System is equipped 

with an alert system that utilizes the Read API Key provided 

by ThingSpeak to access data that is stored in the IoT platform. 

The alert, which is targeted for medical staff when a patient's 

temperature exceeds normal level, is done through e-mail and 

SMS, albeit with a slight difference in method. An advantage 

of the alert system implanted is that no additional modules are 

required for execution; thus, the lower cost can be maintained. 

Fig. 7 shows the proposed alert system that revolves around 
a few components, including ThingSpeak, React, ThingHTTP, 

Twilio, and MATLAB Analysis. Essentially, both mediums 

require the use of React, which is an app also developed by 

ThingSpeak. It functions as the automation service that can be 

configured to launch an alert event, either through 

ThingHTTP or MATLAB Analysis, periodically or when a 

certain threshold value of a particular field in ThingSpeak is 

exceeded.  

 
Fig. 7  The alert system proposed 

 

In this project, React is set to activate the alert event when 

the patient's body temperature exceeds the threshold value of 

37.5˚C, which is beyond a regular healthy person's 

temperature range. In the case of the e-mail alert system, 

React is set to automate the execution of the MATLAB 

Analysis program "COVID-19 Email system v2.0 (BETA)" 

when data in the Field 1 (Body Temperature) of Channel 
1104440 (Patient 1) exceeds 37.5 ˚C. It is also set to automate 

each time the condition is met. For SMS alerts, React is 

configured to allow automation in almost a similar manner to 

e-mail alerts, but the difference is in the action, where it 

executes ThingHTTP. ThingHTTP is an app developed by 

ThingSpeak that acts as the bridge for communication 

between websites, web services, and devices. In this system, 

ThingHTTP acts as the bridge to Twilio SMS, which is a free-

to-use API-based SMS service that sends SMS alert to 

medical staff. 
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III. RESULT AND DISCUSSION 

A. Sensor Testing 

An experiment was done by wearing both LM35 and 

MLX90614 temperature sensors on each wrist and measuring 

the body temperature. The experiment was conducted in two 

situations, one in an air-conditioned room and another at room 

temperature. The results of the LM35 and MLX90614 are 
shown in Table 2 and Table 3, respectively.  

TABLE II 

LM35 TESTING RESULTS 

LM35 Air-Condition 
Room 

Temperature 

Standard Deviation 0.23 0.54 
Error vs Reference IR 
Temperature (˚C) 

-3.08 -0.61 

Error vs Reference Oral 
Temperature (˚C) 

-3.48 -1.01 

TABLE III 

MLX90614 TESTING RESULTS 

MLX90614 Air-Condition 
Room 

Temperature 

Standard Deviation 0.15 0.26 
Error vs Reference IR 
Temperature (˚C) 

-0.87 -0.78 

Error vs. Reference Oral 
Temperature (˚C) 

-1.27 -1.18 

 

The MLX90614 can be used in both environments in a 

relatively convincing manner. It features a low level of 

standard deviation in both air condition and room temperature. 

Moreover, in both conditions' reference IR temperature, it can 

obtain a reading with lower than -0.9˚C error in both 

environments, which allows easy implementation of 

correction factor if needed to recalibrate the sensor, especially 

since the low standard deviation indicates a high consistency 

level in the reading. The MLX90614 is therefore chosen as 

the sensor of choice for monitoring body temperature due to 
its consistency in the reading and acceptable level of errors 

that can be corrected via calibration in the final product. 

Moreover, as it is known to be used for medical purposes, the 

MLX90614 fits the need for a reliable, non-penetrable 

temperature reading sensor. 

An experiment was done using DHT11 and DHT22 sensors 

to compare the accuracy of both sensors in measuring 

surrounding temperature and humidity. The DHT11 is the 

predecessor of the DHT22 with a lower cost but also at a 

smaller temperature range reading. The experiment was 

conducted in many different environments with two 
hygrometers used as reference. The average of the hygrometer 

reading across 15 minutes is computed and compared to the 

DHT11 and DHT22 sensors. The results are tabulated in 

Table 4, and the experimental testbed configuration is shown 

in Fig. 8. The DHT11 vs. DHT22 measured the surrounding 

temperature and humidity, and the results are compared with 

two reference hygrometers.  

 
TABLE IV 

DHT11 VS DHT22 TESTING RESULTS 

Notes: Abbreviations used; P = Parameter, H1 = Hygrometer 1, H2 = Hygrometer 22, Avg H = Average Hygrometer, D11 = DHT11, D22 = DHT22,  ∆DHT11 

= Error of DHT11,  ∆DHT22 = Error of DHT22 
 

 
Fig. 8  The experimental testbed for DHT11 and DHT22 

In general, the readings obtained by DHT11 and DHT22 

sensors are both acceptable, although both sensors have had 

significant errors in certain circumstances. For DHT11, there 

was a significant error in the temperature (8˚C) in the car 

without an air-conditioned environment and humidity (9%) in 

the car with air-cond. In the latter environment, the DHT22 
had a more significant error at 11.9% but this sensor had a 

lower maximum error for the temperature at only 5.4˚C in the 

car without an air-conditioned environment. On average, for 

temperature, the DHT22 had a lower error (0.47 ˚C) than 

DHT11 (1.83˚C) while in terms of humidity, the DHT11 

average error is lower at 2.08% than the DHT22 sensor's 2.78% 

average error. In overall terms, the DHT22 has a lower error 

at 1.63 compared to DHT11's 1.96 reading. Due to the small 

price difference between the two sensors at only 2.46 USD, 

and the subtle temperature reading and humidity error, the 

Location P H1 H2 Avg H D11 D22 ∆DHT11 ∆DHT22 

Room without air-conditioning or fan Temp (˚C) 
Hum (%) 

31.3 
65.0 

31.7 
66.0 

31.5 
65.5 

33.0 
66.0 

32.0 
64.5 

1.5 
0.5 

0.5 
-1.0 

Room with fan Temp (˚C) 
Hum (%) 

31.7 
73.0 

31.8 
75.0 

31.75 
74.0 

33.2 
76.0 

32.1 
75.2 

1.45 
2.00 

0.35 
1.20 

Room with air-conditioning Temp (˚C) 
Hum (%) 

28.8 
51.0 

29.1 
50.0 

28.95 
50.50 

30.1 
51.0 

29.1 
51.7 

1.15 
0.50 

0.15 
1.20 

The car without air condition Temp (˚C) 
Hum (%) 

37.9 
38.0 

38.9 
35.0 

38.4 
36.5 

46.4 
32.0 

43.8 
37.6 

8.0 
-4.5 

5.4 
1.1 

Car with air-conditioning Temp (˚C) 
Hum (%) 

30.9 
32.0 

30.2 
32.0 

30.55 
32.00 

29.3 
41.0 

27.5 
43.9 

-1.25 
9.0 

11.9 
-0.55 

Garden (morning) Temp (˚C) 
Hum (%) 

26.5 
83.0 

26.0 
77.0 

26.25 
80.00 

26.4 
85.0 

25.7 
82.3 

0.15 
5.00 

-0.55 
2.30 
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DHT22 is therefore chosen ahead of its predecessor as the 

environment sensor to be utilized in the health monitoring 

system. 

B. Cough Detection System 

A raw dataset labeled cough and non-cough sounds is 

required for generating a machine-learning algorithm in Edge 

Impulse. The dataset includes various types of coughs and 
noises, recorded using Arduino Nano 33 BLE and 

smartphones, with an emphasis on distinguishing 

communication voice from coughs. The dataset is 

preprocessed, and a Keras neural network is trained using the 

generated features to classify cough and noise sounds. The 

total memory usage of the cough detection system developed 

on Edge Impulse is shown in Fig. 9. At 10.4 kB and 29.6 kB 

of peak RAM and ROM usage, respectively, the resource 

consumption is well within the 256 kB of RAM and 1 MB of 

RAM found on the nRF52840 microcontroller of the ESP32. 

The cough detection algorithm is then deployed as an 
Arduino library header file that is imported into Arduino 

Nano 33 BLE cough detection file. The result is monitored 

through the Serial Monitor of the Platform IO interface. For 

every 2s, the Arduino will record a 1s period audio through 

its microphone to classify it as either cough or noise. If noise 

is detected, a '0' is printed on the serial monitor, whereas when 

a cough is detected, the line '1' is printed on the serial monitor. 

The integer displayed on the serial monitor indicates the 

integer cough flag that is sent to ESP32 when connected. The 

cough detection system deployed on the Arduino Nano 33 

BLE is tested against other environmental noises - specifically, 

ones that usually occur within a quarantine room of an 
average person in solitary confinement - to test its robustness 

to noise within a quiet environment and the corresponding 

integer flag that it produces. 

 

 
Fig. 9  The total memory usage of the cough detection system developed on 

Edge Impulse 

C. ThingSpeak IoT Platform 

The ThingSpeak IoT platform features a dashboard that 

displays all sensors' data reading. The dashboard displays the 

reading in widget form, which shows the latest reading 

uploaded to ThingSpeak. In addition, medical staff and 

patients can view the data log of the reading throughout the 

14-day quarantine period. The body temperature reading from 

MLX90614 is displayed in both gauge and line graphs. 

Surrounding temperature and humidity readings from DHT22 

are displayed in the numerical widget and line graphs. 
For cough events, a red icon widget lights up with each 

cough event, and a step chart is plotted with a '1' value to 

display the cough event and a '0' value to show that no coughs 

were heard. An additional widget displays the number of 

coughs over the past 24 hours. The last widget is for channel 

location, where the patient's location is plotted according to 

the longitude and latitude information entered. However, this 

position is not dynamic and does not automatically update 

according to the user's location.  

The easy-to-use user interface makes ThingSpeak ideal for 

uploading and monitoring data over a long period. The 

ThingSpeak dashboard for Channel 1104440 (Patient 1) 

shown in Fig. 10 allows viewing of data log history and has 

multiple customizable widgets that offer an intuitive 

experience for the user and medical staff.  

D. Alert System 

The incorporation of the free Twilio SMS feature with 

ThingHTTP and React by ThingSpeak allows a seamless 

SMS alert system to be implemented. The SMS alert is sent 

to the phone number registered under Twilio (the medical 

staff for actual implementation), and an alert is sent if 

ThingSpeak detects the patient's body temperature exceeding 

the threshold temperature of 37.5˚C. An alert is then sent 

mentioning the ThingSpeak Channel ID of the patient, the 

temperature reading, and the number of coughs over the past 

24 hours. For e-mail alerts, it undergoes an almost similar 

process, except for using MATLAB Analysis (an application 
also under ThingSpeak) in place of the Twilio SMS service. 

The resulting e-mail alert then similarly displays the message 

to the SMS alert. These alert features are useful for medical 

staff to keep track of any abnormal health readings 

experienced by the patients. An example of the SMS and e-

mail alerts sent to the medical staff is shown in Fig. 11. SMS 

and e-mail alerts are sent to medical staff when a patient's 

temperature exceeds the threshold of 37.5˚C. The alert 

message also specifies the temperature reading and the 

number of coughs experienced by the patient over the past 24 

hours. 

E. Final Prototype  

The final prototype circuit of the health monitoring system 

is soldered on a doughnut board and mounted onto a 

smartphone armband which can also fit a power bank. The 

MLX90614 is mounted on the wrist for the user to measure 

their body temperature through the wrist comfortably.  

TABLE V 

COUGH DETECTION RESULTS 

 

Environment 
Sound 

Cough Integer Flag 

Expected 
1st 

Attempt 

2nd 

Attempt 

3rd 

Attempt 

1 Single Cough 1 0 1 1 

2 Double Cough 1 1 0 0 

3 Triple Cough 

or more 
1 1 1 1 

4 Keyboard 

typing and 

mouse clicking 

0 0 0 0 

5 Table hitting 0 0 0 0 
6 Chair Pulling 0 0 0 0 

7 Door Closing 0 0 1 0 

8 Monologuing 

while working 

in slow volume 

0 0 0 0 

9 Guitar 

Strumming 
0 1 0 0 

10 Phone 

Conversation 
0 0 1 0 

11 Phone ringtone 0 0 0 0 

12 Computers 

Speakers 
0 0 0 0 
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Fig. 10  ThingSpeak dashboard for Channel 1104440 (Patient 1) 

 

This prototype design provides mobility to the users when 

using the device as it does not confine the users to stay at a 

particular spot throughout their quarantine period. The total 

cost of the system components and prototype equates to 

around 67.99 USD. As the system is reusable for the most part 

at up to 148 patients, the average cost is 0.46 USD per user, 

achieving a very low cost in the bigger picture. Regarding 

total power usage, 24-hour usage testing was conducted with 

the whole system powered by a 10,000 mAh power bank 
equipped with a battery-level indicator. The 24-hour testing 

yields 23% battery usage, equal to 2300mAh. When divided 

by 24 hours, it indicates that the whole system uses 95.83mA 

in total. The low power usage allows the system to be used 

continuously for slightly over four days with a 10,000mAh 

power bank before requiring charging. 

 
Fig. 11  SMS and e-mail alerts are sent to medical staff when a patient's 

temperature exceeds the threshold of 37.5˚C 

 

 
Fig. 12  The final prototype for COVID-19 IoT Health Monitoring System is 

enclosed in 3D-printed housing and attached to a smartphone armband 

IV. CONCLUSION 

The project has managed to fulfill its three main objectives, 

which are to present a wearable device capable of monitoring 

COVID-19 symptoms, have an alert system for medical staff 

to be aware of any possible COVID-19 symptoms shown by 
the patient and achieve a low total cost to present home 

quarantine as a viable option compared to undergoing health 

monitoring at quarantine centers. In future work, it is 

recommended to further enhance the cough detection feature 

to allow more robust detection. A geofence system with alerts 

can be introduced to monitor and prevent patients from 
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wandering beyond their quarantine area. Lastly, a group 

analysis feature that will allow all project users to be unified 

under a single system can be presented to allow large-scale 

analysis by medical staff and allow them to study more on the 

disease for the long-term healthcare of society. 
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