Addition of Cd$^{2+}$ Metal Ions to Conway Culture Medium on Phytoplankton Growth of Chaetoceros calcitrans

Andi Makkasau a,*, Erma Suryani Sahabuddin a

a Primary School Department, Faculty of Educational Sciences, Universitas Negeri Makassar, Makassar, South Sulawesi, Indonesia

Corresponding author: *andi.makkasau@snm.ac.id

Abstract—The main objective of this study is to examine the impact of Cd$^{2+}$ metal ions on the growth of marine phytoplankton, specifically focusing on their potential as agents for phytoremediation in marine settings affected by heavy metal pollution. In this study, the behavior of Cd$^{2+}$ metal ions added to the culture medium in phytoplankton type of Chaetoceros calcitrans in the culture medium, an investigation was conducted on a series of Chaetoceros calcitrans cultures, comparing those including and not including the Cd$^{2+}$ metal ions' addition. Observations were made on the growth pattern of Chaetoceros calcitrans. To assess the impact of introducing Cd$^{2+}$ metal ions into the Conway culture media, various metrics such as definite growth rate, growth inhibition percentage, and test of toxicity were employed. The findings indicated that the growth trajectory of Chaetoceros calcitrans in the Conway medium, in the absence of Cd$^{2+}$ metal ions as a control group, exhibited the most substantial growth curve. The growth patterns observed in the culture medium upon the addition of Cd$^{2+}$ metal ions at a concentration of 0.1 mg/L were found to be comparable to those observed in the samples of control group. Adding Cd$^{2+}$ metal ions at concentrations exceeding 0.1 mg/L has decreased the inhibited growth rate of Chaetoceros calcitrans. The concurrent increase in PGI costs further exacerbates this effect. The findings from the statistical analysis of difference tests conducted on blanks investigating the impact of introducing Cd$^{2+}$ metal ions to Chaetoceros calcitrans suggest that concentrations ranging from 0.01 to 0.10 ppm of Cd$^{2+}$ metal ions have no discernible effect on the growth of Chaetoceros calcitrans. Furthermore, the highest concentration of Cd$^{2+}$ metal ions that Chaetoceros calcitrans can withstand is 0.10 ppm, with an EC$_{50}$ value of 6.13 ppm.

Keywords—Chaetoceros calcitrans; Cd$^{2+}$ metal ion; inhibited growth rate.

I. INTRODUCTION

Phytoplankton, which are diminutive, photosynthetic creatures, inhabit many aqueous habitats such as oceans, seas, lakes, and rivers. Phytoplankton are of utmost importance in the Earth's ecology [1]–[3], as they fulfill a vital role as primary producers within aquatic food chains [4]–[7]. They serve as a major source of sustenance for a diverse range of marine and aquatic animals. Like terrestrial plants, phytoplankton employ the process of photosynthesis to transform sunlight, carbon dioxide, and essential nutrients (e.g., nitrogen and phosphorus) into organic substances and oxygen. The process is crucial in producing atmospheric oxygen and carbon dioxide sequestration from marine environments.

Phytoplankton has diverse species, encompassing numerous forms of algae such as diatoms, dinoflagellates, green algae, and cyanobacteria, commonly known as blue-green algae [8]–[10]. Organisms of many morphologies and dimensions are observed, ranging from minuscule unicellular entities to more substantial colonial structures. Phytoplankton occupies the foundational position within aquatic food webs [4], [11], [12]. Zooplankton, reduced-sized piscine species, and additional aquatic organisms derive sustenance from the aforementioned organisms.

Primary production plays a crucial role in supporting the existence of various marine organisms, such as whales, dolphins, and a diverse range of fish species [13]–[15]. Under inhibited circumstances, phytoplankton populations have the potential to undergo rapid proliferation, commonly referred to as "bloom" episodes [16]–[18]. These blooms can be attributed to various circumstances, such as increased nutrient levels, elevated water temperatures, or other contributing elements. Blooms play a crucial role in sustaining marine life [16], [17], [19]; however, an overabundance of blooms can occasionally result in harmful algal blooms (HABs). These HABs have the potential to discharge toxins that pose a threat to both marine organisms and human beings [20]–[23].
Phytoplankton plays a crucial role in the global carbon cycle [24]–[27]. During photosynthesis, they actively participate in the absorption of substantial quantities of carbon dioxide, playing a crucial role in mitigating the presence of this greenhouse gas inside the Earth's atmosphere. Upon their demise and subsequent descent to the oceanic abyss, these organisms possess the ability to effectively sequester carbon over extended durations.

Phytoplankton populations are subject to alterations that can function as reliable markers of environmental well-being [28]–[30]. Various variables, including climate change, pollution, and the discharge of nutrients from agricultural and urban regions drive these changes. Phytoplankton is frequently examined by scientists as a means of monitoring the condition of aquatic ecosystems [31], [32]. Certain species of phytoplankton exhibit bioluminescence, a phenomenon characterized by their ability to generate light. This naturally occurring phenomenon can produce captivating exhibitions of luminescent water, particularly during nighttime. Phytoplankton plays a crucial role in maintaining the ecological balance of aquatic systems and significantly influences global climate patterns and the overall welfare of various organisms, including humans. Marine organisms play a vital role in the marine food web and contribute significantly to regulating carbon and oxygen cycles on a global scale [31], [33].

Phytoplankton is a complex assemblage of microscopic plant creatures, each exhibiting unique traits. Phytoplankton has a crucial role as a primary producer within the aquatic food chain, serving as a fundamental source of nutrition for zooplankton [34], [35]. Consequently, the zooplankton species are subsequently exposed to predation by larger organisms, ultimately resulting in their eating by humans. On the contrary, water is known to contain heavy metal ions as dissolved particles [36]–[39]. The efficiency of phytoplankton-heavy metal ions interaction in aquatic environments is attributed to the comparatively tiny size of phytoplankton.

Therefore, one could contend that phytoplankton assumes a crucial function in disseminating biological substances, acting as the principal conduits via which pollutants infiltrate the food web and constituting the most significant biomass within aquatic ecosystems. The uptake of heavy metal ions by phytoplankton results in a substantial enhancement of their efficacy. Moreover, phytoplankton exhibits the capacity to flourish in aqueous habitats that are polluted with heavy metal ions [36]–[38], [40]. This proposition recommends that researchers investigate the possible application of phytoplankton as a phytoremediation strategy for addressing heavy metal pollution.

Cadmium (Cd) possesses a relative atomic mass of 112.40 grams per mole, as indicated by its placement in the Periodic Table. It is classified within group IIB, alongside zinc (Zn) and mercury (Hg) [58]. In natural environments, the prevailing condition is the presence of the metal ion Cd$^{2+}$, which tends to form compounds with other metal ions such as Zn$^{2+}$ according to carbonate and sulfate minerals. Within the context of the Pb and Zn metal mining sector, the purification procedure consistently yields by-products comprising cadmium metal ions, which are then discharged into the environment as waste. Cadmium has found extensive application across several industries, encompassing metal plating, smelting, dyeing, batteries, plastics, printing, textiles, lubricating oils, and fuels [59]. The study conducted by Moore and Ramamoorthy [60] demonstrated that cadmium metal ions exhibit covalent binding properties, possess a strong affinity for thiol groups, enhance fat solubility, and have the ability to accumulate, resulting in hazardous effects.
The Cd2+ metal ions have the ability to induce oxidative stress, hence inhibiting the synthesis of reactive oxygen species (ROS) [61]. Additionally, in the presence of H\textsubscript{2}O\textsubscript{2}, these metal ions can generate free radicals in vitro [62]. In an in vitro setting, the presence of elevated concentrations of Cd2+ metal ions possesses the capacity to induce deleterious effects on the reverse reaction of proteins [62] by forming metal-thiolate linkages [63] and altering the permeability of cell walls or membranes through attaching to nucleophile groups [64].

The aforementioned influence has the potential to directly or indirectly induce the formation of reactive oxygen species (ROS), thereby disrupting redox processes and influencing the decrease in chlorophyll synthesis [65], [66]. The presence of reactive oxygen species (ROS) is associated with a high level of toxicity, which has cytotoxic effects. ROS can interact with lipids, proteins, and nucleic acids, causing lipid peroxidation and dysfunction of membranes and enzymes. The primary objective of this study is to investigate the influence of Cd2+ metal ions on the growth of marine phytoplankton, with a particular emphasis on their potential as agents for phytoremediation, designed for heavy metal pollution in marine environments. Observed growth parameters included the inhibited growth rate, the growth inhibition percentage, and the toxicity test.

II. MATERIALS AND METHOD

A. Materials

The materials utilized in this study encompass the following:

- *Tetraselmis chiui* phytoplankton seedlings from pure culture of the Maros Fisheries and Marine Research Institute, South Sulawesi.
- All the substances utilized in the experiment are of analytical grade, which include CdCl\textsubscript{2} \(\cdot \) 2H\textsubscript{2}O, K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7}, CuCl\textsubscript{2} \(\cdot \) 2H\textsubscript{2}O, EDTA(C\textsubscript{6}H\textsubscript{12}N\textsubscript{3}O\textsubscript{7}), GSH, SiO\textsubscript{2}, (C\textsubscript{12}H\textsubscript{24}N\textsubscript{6}O\textsubscript{12}), FeCl\textsubscript{3} \(\cdot \) 6H\textsubscript{2}O, MnCl\textsubscript{2} \(\cdot \) 4H\textsubscript{2}O, H\textsubscript{3}BO\textsubscript{3}, NaH\textsubscript{2}PO\textsubscript{4} \(\cdot \) 2H\textsubscript{2}O, NaNO\textsubscript{3}, Aquabidest, ZnCl\textsubscript{2}, CoCl\textsubscript{2} \(\cdot \) 6H\textsubscript{2}O, (NH\textsubscript{4})\textsubscript{2}MoO\textsubscript{4} \(\cdot \) 4H\textsubscript{2}O, CuSO\textsubscript{4} \(\cdot \) 5H\textsubscript{2}O, Vitamin B\textsubscript{12}, Vitamin B\textsubscript{1}, Na\textsubscript{2}SiO\textsubscript{3} \(\cdot \) 5H\textsubscript{2}O, Buffer Solution, Whatman filter paper 42.

The equipment used is distinguished by:

- Glassware consists of culture containers, including 500 mL bottles, 60-liter aquariums, and a set of glassware.
- Measuring instruments, including pH meter, salinometer, Ohaus digital balance NO AP 110, microscope, SPNISOSFD oven, FT-IR Shimadzu, and Atomic Absorption Spectrophotometry (AAS).
- Additional tools utilized in this study encompass a vacuum pump, porcelain die, aerator, refrigerator, plastic hose, pan, electric burner, neon balloon, thermometer, panel filter with a diameter of 47 mm, magnetic stirrer, hand counter, hemocytometer, Air Condition unit, and a 25 mL film container.

B. Research Procedure

The procedure of this research is divided into three steps. The first step is investigating the growth pattern of *Chaetoceros Calcitrans* Phytoplankton in the Conway Culture Medium. The second step is to examine the effect of Cd2+ metal ions on inhibited growth rate and percentage of phytoplankton growth resistance added to Cd2+ metal ions. The last is to test to toxicity of Cd2+ metal ions on phytoplankton. The research procedures are shown in Fig. 1.

![Fig. 1 Research procedures](image)

1) Growth Pattern of Chaetoceros Calcitrans Phytoplankton in the Conway Culture Medium:

Chaetoceros Calcitrans phytoplankton was cultivated using a 500 mL Erlenmeyer flask containing sterile seawater media. Before the experiment, the saltwater medium was filtered, and its salinity and pH were evaluated. Subsequently, 2 mL of Conway solution, 2 mL of vitamin solution, and 2 mL of silicate solution per liter were added to the medium. During the process of culture implementation, it is necessary to maintain many physico-chemical parameters. These parameters include the continuous provision of illumination using a 40-watt fluorescent lamp, the introduction of CO\textsubscript{2} gas using an air pump aerator, and maintaining a temperature range of 25-27°C; the objective is to sustain a pH level within the range of 8-9 in the medium, while also guaranteeing a salinity level of 30%. Before usage, all materials utilized in the cultivating process are subjected to sterilization.

Following the implementation of an 8-day culture period, the phytoplankton seedlings undergo subsequent cultivation in culture bottles with a capacity of 1 liter. To ascertain the growth pattern of phytoplankton, a daily assessment is conducted to calculate the number of cells per milliliter of the medium. Phytoplankton-grown media samples were collected using sterile droppers; approximately 0.5 mL of the samples were placed on a Hemocytometer and subsequently examined under a microscope [67]. Given that the cell density remains within the expected range, one can proceed to calculate the density utilizing the designated formula:

\[
Sum = \frac{Total\ number\ of\ cells\ in\ 4\ squares}{Number\ of\ blocks} \times 10,000 \quad (1)
\]

2) Effect of Cd2+ Metal Ions on Inhibited Growth Rate and Percentage of Phytoplankton Growth Resistance Added to Cd2+ Metal Ions:

The present study aims to investigate the impact of Cd2+ metal ions on the growth of *Chaetoceros Calcitrans*. To achieve this, phytoplankton were cultured in a medium supplemented with a solution containing Cd2+ metal ions at concentrations ranging from 0 to 5 ppm. Equation (2) is employed to calculate the inhibited growth rate for each concentration change, whereas equation (3) is utilized to determine the percentage of growth inhibition (PGI) in phytoplankton.
Phytoplankton is observed. Hence, utilizing the inhibited provision of limited nutrients, which restricts the period of phytoplankton growth. The Maximum Tolerable Density (MTD) duration (in days) required for a culture to attain its optimal growth rate constant parameter enables the estimation of the rate of the phytoplankton species. The culture experiences a strong growth phase on the third day, exhibiting a favorable growth trend. Specifically, the cell count within the medium demonstrates an upward trend as the number of samples devoid of identifiable information, employing a confidence level of 99%. This allowed for a price calculation; the t-table value was compared to each variation in the concentration of Cd$^{2+}$ metal ions added. The EC$_{50}$ value is determined by selecting the highest price from the t-table value was compared to each variation in the concentration of Cd$^{2+}$ metal ions added. The EC$_{50}$ value is determined by selecting the highest price from the calculated value of t-table. The MTC value is determined by plotting the PGI price against the concentration of Cd$^{2+}$ metal ions added.

III. RESULTS AND DISCUSSION

A. Growth Patterns of Phytoplankton Chaetoceros Calcitrans

The growth pattern of marine phytoplankton Chaetoceros Calcitrans was observed in a seawater medium supplemented with Conway medium. The experiment was conducted under controlled physico-chemical conditions, which included continuous exposure to lighting provided by two 40-watt TL lamps placed approximately 75 cm away from the culture. The medium was aerated with CO$_2$ gas from an air pump, and the temperature was maintained between 25-27°C. The pH of the medium was regulated to be within the range of 8-9, and the salinity of the medium was set at 30%. The phytoplankton species Chaetoceros Calcitrans typically undergoes four distinct stages of growth. Chaetoceros calcitrans exhibits a rapid adaptation period of around two days to acclimate to its growing medium, facilitating optimal cell division between days two and six. The utilization of Conway media for the cultivation of marine phytoplankton Chaetoceros Calcitrans at an initial density of 250,000 cells/mL of the medium has been seen to result in a substantial rise in density, reaching around 29 times its starting value within a span of 6 days of cultivation. The inhibited growth rate constant (μ) of phytoplankton Chaetoceros Calcitrans cultivated in Conway medium is determined by calculating the cell density of every milliliter of a medium by equation (2). The resulting values are reported in Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>Density/µ Chaetoceros Calcitrans</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (x106 cell mL$^{-1}$)</td>
<td>25</td>
</tr>
<tr>
<td>µ (day$^{-1}$)</td>
<td>-0.470</td>
</tr>
</tbody>
</table>

According to the data presented in Table 1, the cultivation of Chaetoceros Calcitrans seedlings in Conway medium exhibits a favorable growth trend. Specifically, the cell density demonstrates an upward trend as the number of culture days increases until day 9. This can be attributed to the provision of limited nutrients, which restricts the period of cell growth. However, on day ten, there is a decline in cell count within the medium. Based on the observed inhibited growth rate of Chaetoceros Calcitrans, it can be inferred that the culture experiences a strong growth phase on the third day, followed by a progressive drop-in growth rate.

Table 1 presents a steady increase in the inhibited growth rate of the phytoplankton species Chaetoceros Calcitrans. Therefore, the rapid attainment of optimal development for phytoplankton is observed. Hence, utilizing the inhibited growth rate constant parameter enables the estimation of the duration (in days) required for a culture to attain its optimal density.

B. Inhibited Growth Rate and Percentage of Growth Retardation of Chaetoceros Calcitrans in Medium Added to Cd$^{2+}$ Metal Ions

Figure 2 illustrates the growth trend of Chaetoceros Calcitrans in the presence of Cd$^{2+}$ metal ions ranging between 0.10 and 10.00 ppm, specifically added by cadmium chloride, within a culture medium for marine phytoplankton. According to the data presented in Figure 2, the development pattern of Chaetoceros Calcitrans in Conway medium without the inclusion of Cd$^{2+}$ metal ions (referred to as the control group) exhibits the most pronounced growth curve. The growth patterns seen in the culture medium with the addition of Cd$^{2+}$ metal ions at a concentration of 0.10 milligrams per liter (mg/L) were found then to compare to the control group.
The growth pattern graph exhibits a negative correlation with the concentration of Cd2+ metal ions, indicating that the growth pattern decreases as the concentration of Cd2+ metal ions increase. The observation provides evidence that Cd2+ metal ions’ addition in the culture medium of Chaetoceros could result in a reduction in the growth of phytoplankton, as depicted in Table 2. This observation aligns with the findings proposed by Foster [68], indicating that the impact of heavy metals on unicellular plankton is typically linked to a reduction in both cell abundance and biomass.

According to the findings presented in Table 2, it can be observed that, across all treatments, including differences in the concentration of Cd2+ metal ions, there is a general trend of an initial increase in the inhibited growth rate as the culture time progresses. However, this increase is followed by a partial drop in the inhibited growth rate after day 3. The reason for this phenomenon can be attributed to an ample supply of nutrients within the medium, which facilitates phytoplankton growth. However, the detrimental impact of Cd2+ metal ions reduce the inhibited growth rate of Chaetoceros Calcitrans. On the first day, the experiment observed the effects of a Cd2+ metal ion concentration of 0.50 ppm on the growth of phytoplankton. This concentration resulted in the lowest growth rate (μ= 0.504 day⁻¹) and a decrease in the photosynthetic growth index (PGI) to 34.1%. Even after seven days, adding 0.5 ppm Cd2+ metal ions to the medium negatively impacted cell growth, with a reduced growth rate of μ= 0.397 day⁻¹. Consequently, it exhibits a gradual augmentation in the inhibited rate. The addition of Cd2+ metal ions lead to a reduction in the phytoplankton-inhibited growth rate constant.

<table>
<thead>
<tr>
<th>[Cd2+] (ppm)</th>
<th>μ (day⁻¹) and PGI (%) day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.764 0.730 0.814 0.789 0.662 0.567 0.467</td>
</tr>
<tr>
<td>0.10</td>
<td>0.754 0.718 0.782 0.773 0.654 0.541 0.462</td>
</tr>
<tr>
<td>0.20</td>
<td>1.322 1.678 3.923 2.028 1.225 4.614 1.091</td>
</tr>
<tr>
<td>0.25</td>
<td>0.744 0.681 0.689 0.772 0.618 0.526 0.422</td>
</tr>
<tr>
<td>0.50</td>
<td>2.657 6.719 15.367 2.158 6.631 7.200 9.627</td>
</tr>
</tbody>
</table>

The empirical evidence demonstrates that there is an addition of hazardous metal ions, specifically Cd2+. The culture medium cannot be counteracted by an adequate supply of nutrients, as indicated by the data on inhibited growth rates and growth inhibition percentage. According to the findings of Wang and Evangelou [69], it has been observed that the composition of phytoplankton cell walls typically consists of around 25-30% cellulose, 15-25% hemicellulose, 35% pectin, and 5-10% glycoprotein. Cellulose, pectin, glycoproteins, and certain enzymes containing Zn possess functional groups such as carboxylates, thiols, and C=O and S-H groups. These functional groups have the ability to engage in interaction with Cd2+ metal ions through covalent bonds or ion exchange. The soft base nature of the C=O and S-H groups facilitates strong binding with Cd2+ metal ions. Additionally, within each cell, approximately 260 types of enzymes rely on Zn2+ metal ions for proper functioning. Cd2+ metal ions can replace Zn2+ metal ions, leading to enzyme dysfunction and disruption of phytoplankton cell tissue [70].
is 0.20 ppm. This observation suggests that *Chaetoceros Calcitrans* exhibits significant tolerance against Cd\(^{2+}\) metal ion pollution.

Based on the established permissible threshold of 0.1 ppm for Cd\(^{2+}\) metal ions in water bodies, it may be inferred that *Chaetoceros Calcitrans* phytoplankton can sustain regular growth even in marine environments contaminated with Cd\(^{2+}\) metal ions. This finding demonstrates that *Chaetoceros Calcitrans* has the potential to serve as a bioindicator for marine environments infected with Cd\(^{2+}\) metal ions. Figure 3 displays the data pertaining to the percentage of growth inhibition (PGI) of *Chaetoceros Calcitrans* in relation to the concentration of Cd\(^{2+}\) metal ions.

![Graph](image)

Fig. 3 Relationship between Cd\(^{2+}\) metal ion concentration and percentage of growth inhibition (PGI) in *Chaetoceros Calcitrans*

The determination of the EC\(_{50}\) price involves plotting the PGI price against the concentration of Cd\(^{2+}\) metal ions injected, as illustrated in Figure 3. The regression line equation can be expressed as \(y = 5.651x + 15.514\). The EC\(_{50}\) price was determined to be 6.13 ppm. The observed ability of *Chaetoceros Calcitrans* to withstand elevated levels of Cd\(^{2+}\) metal ions suggests that phytoplankton may contribute to the detoxification of Cd\(^{2+}\) metal ions. The process of detoxifying Cd\(^{2+}\) metal ions by phytoplankton encompasses a minimum of two sequential steps:

- **The activation of Phytochelatin synthase** (PC synthase) is initiated by elevated intracellular levels of Cd\(^{2+}\) metal ions, with glutathione (GSH) serving as the substrate.
- **Compression and inactivation of Cd\(^{2+}\) metal ions for inclusion into the cytosol by Phytochelatins molecules.**

Upon the entry of Cd\(^{2+}\) metal ions into the cytosol, an intricate mechanism associated with sulfur metabolism is triggered, leading to the synthesis of *Phytochelatins* (PC). When a cysteine thiolic group binds to Cd\(^{2+}\) metal ions, PC forms complexes with these ions (referred to as PC-Cd), thereby inhibiting the movement of free Cd\(^{2+}\) metal ions within the cytosol. The toxicity of the PC-Cd combination towards numerous plant enzymes is reduced by a factor of 1000 compared to the free metal ion Cd\(^{2+}\) [71]. Within minutes after the Cd\(^{2+}\) metal ions supply the enzyme, the process of self-regulation occurs, and PC synthesis continues until the Cd\(^{2+}\) metal ions are unavailable [72].

The process of PC synthesis has a high rate of speed, resulting in the formation of a complex with low molecular weight (LMW) in the presence of Cd\(^{2+}\) metal ions. The presence of Cd\(^{2+}\) metal ions result in a complex with a greater medium molecular weight (MMW). These two complexes acquire S2- ions within tonoplasts, forming high molecular weight (HMW) complexes that exhibit a greater connection for Cd\(^{2+}\) metal ions. This process facilitates the detoxification of Cd\(^{2+}\) metal ions. Due to the acidic pH of vacuoles, the HMW complex undergoes decomposition, resulting in the formation of novel complexes, including vacuolar organic acids like citric, oxalic, malic, and amino. Hydrolases in vacuoles can reproduce *Phytochelatins* in reverse reactions to the cytosol [73], [74].

IV. CONCLUSION

Based on the aforementioned research findings and treatment outcomes, we conclude that the utilization of Conway medium for the cultivation of marine phytoplankton *Chaetoceros Calcitrans*, at an initial density of 250,000 cells/mL of medium, yields a substantial increase in density, approximately 29-fold, within a mere six-day cultivation period. Furthermore, the introduction of Cd\(^{2+}\) metal ions at a concentration of 0.5 ppm into phytoplankton culture media of *Chaetoceros Calcitrans* has been observed to result in a reduction in the inhibited growth rate, as well as a drop in both the cell count and dry weight of *Chaetoceros Calcitrans*.

NOMENCLATURE

- \(N_t\): cell density at time \(t\) cell/mL
- \(N_0\): initial cell density cell/mL
- \(\mu\): inhibited growth rate cell/mL
t the time (day).

PGI percentage of growth inhibition.

μ_i First inhibited growth rate setting.

μ_o Control- inhibited growth rate settings.

ACKNOWLEDGMENT

We are grateful to the Inorganic Chemistry Laboratory of the Heavy Metal Bioremediation Division of the Department of Chemistry, Faculty of Natural Sciences of Hasanuddin University, Makassar, and the Health Laboratory of the Ministry of Health, Tamalaneura Makassar for providing facilities for smooth research.

REFERENCES

environmental science, water and heavy metal ions, "

[48] J. Khatun, A. Intekhab, and D. Dhak, "Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic(As), lead(Pb) and cadmium (Cd), and possible remediation," Toxicology, vol. 477, p. 153274, 2022.

