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Abstract— A control chart is a crucial statistical tool for tracking the average quality of the dispersion. A more sensitive control chart 

is also developed to detect minor changes in the efficiency monitoring process, along with the times when using multivariate and mixed 

models. The well-known multivariate control chart was introduced as T2 Hotelling; then, to achieve better sensitivity in multivariable, 

a control chart design was developed for MEWMA and MCUSUM. To find a more sensitive multivariate control chart, it is proposed 

the control chart MCUSUM type I (MC I) and MCUSUM type II (MC II), and their combination of efficiency as the Mixed MEWMA-

MCUSUM type I (MEC I), and the Mixed MEWMA-MCUSUM type II (MEC II). This study was carried out to assess which 

multivariate control chart is more sensitive by focusing on the ability of the control chart to detect more out-of-control observations in 

a single control phase. This study used data on the manufacture of wheat flour with 1,380 observations, 30 subgroups, and 46 

observations per subgroup. Moisture, ash, and gluten are the quality-related manufacturing data variables used. This study aims to 

develop the best-mixed control chart design of efficiency for production and quality process monitoring of flour production. Based on 

the study's findings, the MEC I control chart was shown to be the most sensitive, and this study also demonstrates that it is more 

sensitive than other multivariate control charts. 
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I. INTRODUCTION

Wheat flour is a commodity that has an increasingly 

strategic role even though it is not the staple food of the 

Indonesian people. The development of national wheat flour 
needs has changed the role of various government policies to 

affect the development of the wheat flour industry itself. The 

domestic sector has invested in substantial amounts, primarily 

to manage fluctuations in the domestic price of wheat flour 

from year to year. Consumption of wheat flour continues to 

increase in Indonesia in line with the growing consumption of 

instant noodles, bread, biscuits, and cookies. This 

phenomenon has resulted in wheat flour becoming a basic 

need with raw materials that must be imported from the 

international market at high prices. Therefore, the domestic 

industry is critical for wheat flour production and trade 

sustainability in Indonesia [1].  

The product's composition by standard specifications 

dramatically affects the quality of the products produced in 

every industry, including wheat flour. Products that fall 

outside the specification limits result in poor product results. 

Statistical Science, which functions to maintain calculations 

in production activities, manifests the statistical quality 

control function. The control chart is one of the essential 

methods in statistical quality control [2]-[4]. The control chart 
is a process monitoring technique that is widely used in the 

production process. The control chart monitors and offers 

valuable data for enhancing operations. Every control chart 

has a Center Line (CL), Upper Control Limit (UCL), and 

Lower Control Limit (LCL). A process is considered in 

control if the data plot falls within the control limits; 

otherwise, it is said to be out of control. The control chart 

consists of a univariate control chart that monitors one quality 

variable, while a multivariate control chart functions to watch 

more than one quality variable [4]. 
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The well-known univariate control chart has been 

developed over decades, and the EWMA has been used to 

monitor high dimensional heteroscedastic processes and 

compare them to multivariate EWMA [5]-[6]. The EWMA is 

built by considering exponential weighted as infinitely 

divisible exponential and gamma distribution [7]-[8]. Besides, 

there is a CUSUM model for monitoring the coefficient of 

variation in the textile industry [9]. This univariate CUSUM 

model is also applied to monitor Poisson count data [10] and 

also for health and surgical performance [11]-[12]. The earlier 
multivariate model was introduced using multivariate 

Hotelling’s T2 control chart. The model has been applied 

based on kernel density [13] and monitoring multi-

dimensional ratios of process means [14]. This control chart 

was developed to achieve better multi-variable sensitivity into 

the MEWMA and MCUSUM control charts [15]. The 

MEWMA control chart has better performance in the mean 

process [16]-[17], and its modeling for the spread of COVID-

19 [18]-[19]. The multivariate EWMA model has significant 

results on industrial monitoring quality control [15], [20]-[23]. 

Meanwhile, the multivariate CUSUM also has better 
performance in bootstrapping [24] and the process mean 

monitoring and its comparison [25]-[27]. 

Along with the development of univariate and multivariate 

control charts, new control charts are more sensitive by 

comparing the two existing control charts. The combination 

of univariate quality variables, namely the EWMA and 

CUSUM control charts, is called the mixed EMWA and 

CUSUM control chart and its applications [28]-[30]. The 

research on the mixed multivariate model of MEWMA and 

MCUSUM control chart has been carried out in an application 

for wind turbine field [31], and monitoring improvement 
based on multivariate auto-correlated by residual [32] and 

variance covariance-matrix [33].  

The multivariate control chart is also defined as MCUSUM 

type I (MC I) and MCUSUM type II (MC II). The 

combination is referred to as the mixed MEWMA-MCUSUM 

type I control chart (MEC I), and the mixed MEWMA-

MCUSUM type II (MEC II). Meanwhile, the research on the 

mixed model of MEWMA and MCUSUM control chart has 

been carried out by monitoring process average, process 

covariance variance matrix, and multivariate auto-correlated 

process control. This study demonstrates that by creating 

additional out-of-control data plots, the mixed model control 
charts are very sensitive to identifying small process shifts.  

Based on the availability of data, this research was carried 

out using a time-weighted control chart using the mixed 

multivariate design model. Meanwhile, it proposed the 

multivariate control chart design MEWMA, MCUSUM, MC 

I, MC II, MEC I, and MEC II. To choose the most effective 

and comparable control chart from the available wheat flour 

production data, the quality control chart is created by 

tracking the process average of mixed model.  

II. MATERIAL AND METHOD 

This research is conducted to develop an efficient 

combination of multivariate control chart designs for 

monitoring quality control of flour production. The 1,380 

observations that comprise the data series observation of flour 

production are divided into 30 subgroups, each with 46 

observations. The method uses statistical modeling of quality 

control of multivariable and their mixture, as in the following 

subsection. 

A. The Control Chart Design of MEWMA and MCUSUM  

The multivariate control chart is designed into several 

models by referring to MEWMA and MCUSUM in this 

section [34]. The MEWMA control chart is a generalization 

of the EWMA univariate diagram. It is known that the 
MEWMA statistical value depends on the MEWMA vector 

value with the same formula form as the EWMA value. So 

that the statistical value of the MEWMA control chart is given 

by: 

 ��� = �����
	
�� , (1) 

where L > 0 is selected to reach ARL in control, and ƩZi is 

the variance-covariance matrix of Zi. The exact weight is 

assigned to each quality variable where λ=λj for j=1,2,...,p. 

The MEWMA vector can be written as follows: 

 �� = 
�� + �1 − 
���	
 (2) 

where Zi is the MEWMA vector and λ is the MEMWA weight 

for 0 < λ ≤ 1. 

Based on the weighted values, the covariance variance 
matrix of Zi can be written in the form of weights (λ), and the 

covariance variance matrix of Zi which ƩZi denotes, for i 

=1,2….,n is: 

 ∑ =�� � �
�	�� ∑ ⬚ (3) 

and 

 ∑ = �
�	� ∑ ��� − �� ���� − �� ����� ′ (4) 

where ��  = � ̄
,  ̄�, ⋯ ,  ̄#�′
 
and  ̄� = �1/%� ∑  ��&��
 . 

The upper limit of the MEWMA control chart or Upper 

Control Limit (UCL) is defined as UCL = H where the value 

of H was influenced by the quality variable (p), weighting, 

and ARL under controlled conditions (ARL0). Data control 

can be constructed in advance by using standardized data. The 

lower limit of the MEWMA control chart or the Lower 
Control Limit (LCL) is defined as LCL = 0. 

From the cumulative sum control chart, the multivariate 

CUSUM (MCUSUM) control chart is derived. as introduced 

for the first time by Crosier [34] formerly called the Crosier 

MCUSUM control chart (CMCUSUM), which monitors the 

average of the normal multivariate process. Crosier 

MCUSUM control chart defines statistics Ci from MCUSUM 

after observing the average of the i-th vector as follows: 

 '� = ��(�	
 + ���′�⬚	
�(�	
 + ����
/�, (5) 

where  (� = 0
 
for '� ≤ + , (� = �(�	
 + ����1 − +/'��  for 

'� > +, and (- = 0
 
for k > 0.  

This CUSUM multivariate scheme denoted by MCUSUM 

has an UCL called H*, affected by shift (δ), ARL, and the 

number of quality variables p, where the number of shifts is 
as follows: 

 . = �/′∑-	
/�
/�. (6) 

where H* < Ui, then the process is out of control, where the 

value of Ui  is defined as, 

 1� = �(� ′∑-	
(��
/�. (7) 
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The next development of MCUSUM control chart is 

influenced by the root of the distance of each sample mean µ0 

and accumulates the average squared distance of the i-th 

observations from the target value µ0 [15]. The first type of 

model is called the control chart MCUSUM type I (MC I), this 

is starting by introducing the variables Xi1, Xi2,…, Xip where i 

is observing i and p quality variables, for i=1,2,…,n. The 

variable Xip can be in the form of individual or subgroup 

observations assuming a normal distribution where Xip ~ N ( µ, 

Ʃ ), for µ and Ʃ is the covariance variance matrix of size p×p. 
The MC I's statistical values [13],[15] are defined as follows: 

 '� = ∑ ��� − /-�����	2�3
  (8) 

where ni is the number of subgroups. Therefore, the value of 

�1/4��'�  can be written as follows: 

 �1/4��'� = 5�1/4�� ∑ ������	2�3
 6 − /- (9) 

The difference between the target value and the mean, as well 

as the cumulative sample mean, is represented by the vector 

�1/4��'� . Consequently, estimator �1/4��'� + /-  may be 

used to estimate the multivariate mean at process time i. The 

norm of Ci can be written as follows: 

 ‖'�‖ = 8'� ′�⬚	
'� (10) 

which is viewed as the approximate distance of the process 
average from the process target average. A multivariate 

control chart is formed with the definition of MC I as follows: 

 MC;� = %< { ‖'�‖ − +4� , 0}, (11) 

where 4� = 4�	
 + 1
 
for MC;�	
 > 0 , and 4� = 1

 
for 

MC;�	
 ≤ 0. The MC I control chart is operated by plotting 

the value of MC Ii to the control diagram. The UCL is called 

H**. If MC Ii > H**, then the process is considered out of 

control. 

The second type of the MCUSUM variation model is 

continued as the control chart MCUSUM type II (MC II), 
where the MC II's statistical values are defined as follows: 

 ?�� = ��� − /-��⬚	
��� − /-� (12) 

which has distribution χ2  with significance level α when the 

in-control process has distribution χ2 non-central when the 
production process is out of control. The control chart MC II 

was formed as follows: 

 MCII� = %< { 0,MC  II�	
 + ?�� − +} (13) 

with MC II0 = 0. The control limit is called H***. The condition 

of MC IIi > H***, then the process is considered out of control. 

The selection of parameter k for the MC II control chart is 

different from the other control charts because the target state 

of MC II is not symmetric. Therefore, the value of k for 

control chart MC II is filled by k = p + (1/2) λ μ1 where p  is 

the number of quality variables, the parameter λ is the size of 

weighting, and μ1 is the specific value on the target state where 

μ1 = 1 [28]. 

B. The Proposed Model of the Mixed MEWMA-MCUSUM 

Control Chart Design   

The proposed model of the mixed MEWMA and 

MCUSUM Control Chart Design is developed for efficiency 

detection for quality process monitoring. The first type is 

called the mixed MEWMA-MCUSUM type I (MEC I) and is 

developed by following steps where the control chart is 

obtained from integrating the ordinary MEWMA statistics on 

MC I. For example, the variables of X1, X2, …, Xn, untuk i=1, 

2, …, n is a sample of n monitored quality variables. The MEC 

I control chart was developed by transforming the MEWMA 

statistical sample and integrating it into MCUSUM [34], 

which is as follows: 

 MEC� = %< { 0,MEC�	
 + ��� − /-� − +∗}, (14) 

where MEC- = 0,
 
and 

 +∗ = + �MEC�DE3��	FG�
��MEC�DE3��	FG�′HI�

DE�MEC�DE3��	FG��E/J for k > 0. 

If the condition +∗≥ MEC�	
 + ��� − /-� is satisfied then 

it is clear to obtain MEC� = 0,
 
so that the statistical value for 

the MEC I diagram can be defined as follows: 

 MEC  I� = MEC� ′���
	
MEC� (15) 

The UCL on the MEC I control chart is called H****. If the 

condition MEC Ii > H****, then the process is said to be out 

of control.   

The mixed control chart type II is called the mixed 

MEWMA-MCUSUM type II (MEC II) and developed by 

following steps. The MEC II control chart is the control chart 
obtained from integrating the ordinary MEWMA statistics on 

MC II. The usual MEWMA statistic is transformed to a 

cumulative sum vector of MC II. The variable Zi  was 

statistically distributed with the mean of µ0 and the variance-

covariance matrix ƩZi [34] which is defined as follows: 

 ∑ =�� �
/2 − 
� (16) 

while the cumulative sum vector is defined as  

Si = ∑ ��� − /-�����	2�	
 . 

Based on the statistics generated from Si , it is given the 

following equation: 

 MECII� = %< { 0, �(� ′���
	
(��
/� − +
4�} (17) 

where +
 = +��/
 − /-�′���
	
�/
 − /-��
/� for k > 0,  4� =

4�	
 + 1for MEC  II�	
 > 0,  and 4� = 1
 
for MEC  II�	
 ≤ 0. 

The upper control limit on the MEC II control chart is called 

H*****. If the condition MEC IIi > H*****, then the process is 

said to be out of control. 

III. RESULTS AND DISCUSSION 

In this research has developed a new model of the mixed 
MEWMA and MCUSUM by using multivariate data from 

wheat flour production in terms of moisture, ash, and gluten. 

Wheat flour's water content is shown by moisture. Wheat 

flour's shelf life may be shortened if the moisture content is 

beyond the maximum allowable level since it will decay more 

quickly and develop mold and a musty odor. The moisture 

specification limit for wheat flour is 13.5%-13.9%. Ash in the 

flour has an impact on the production and end results, 

including product color and dough stability. The lower the ash 

content, the better the flour will be. Ash content that is more 

than 0.57% indicates that the product has failed. Gluten is a 
chewy, elastic substance found in wheat flour that influences 

the nutritional value of the food it makes. The amount of 
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protein in the flour increases as the gluten concentration does. 

The specification limit for gluten in wheat flour is 22% -26%.  

The collected data of variables moisture, ash, and gluten 

are presented in Table 1, and the mean of each variable 

satisfied the limit of specification, even though some of data 

out of control based on their minimum and maximum values. 

This shows the importance of observing the data to detect 

whether the data is out of the control limits in monitoring the 

production process. Detection of data out of control will be 

analyzed through a multivariate control chart. 

TABLE I 

STATISTICAL DESCRIPTIVE OF FLOUR QUALITY  

Variable 
Limit of 

Specification 
Mean 

Variation 

Coefficient 
Min Max 

Moisture 13.5 - 13.9 13.35738 0.02965 12.59 14.35 

Ash 0.57   0.53780 0.00934   0.44   0.67 

Gluten 22 - 26 23.31980 0.12764 18.93 29.65 

 

The analysis of a multivariate control chart requires 

multivariate normal data. Based on Figure 1, it can be seen 

that the q-q plot follows a linear pattern, which is expected to 

be multivariate normal data. The evidence is done by 

examining the Pearson correlation coefficient by using 

Mahalanobis distance and qi as the chi-square value for each 

observation. If the value of the Pearson correlation coefficient 
is greater than the table percent point value of the normal 

probability plot correlation coefficient, then the initial 

hypothesis will be rejected, which means that the data is not 

normally distributed multivariate, and vice versa. 

Based on Table 2, the Pearson correlation value is 0.969 

when it is compared with the table value of the percent point 

of the average probability plot correlation coefficient for a 

significance level of α = 0.05 and n = 46, with a table value of 

0.974 obtained. This means that the correlation value is 

smaller than the table value, so the initial hypothesis is not 

rejected, which means that the data is multivariate normal. 

Since the data is multivariate normal, then suppose the value 
of the Pearson correlation coefficient is greater than the table 

percent point value of the normal probability plot correlation 

coefficient. In that case, analysis of the multivariate control 

chart can be advanced. 

 

 
Fig. 1  Graphical normal multivariate test by using q-q plot. 

 

TABLE II 

PEARSON CORRELATION OF VARIABLE BY USING MAHALANOBIS DISTANCE 

  
Mahalanobis 

Distance 
qi 

Mahalanobis 
Distance 

Pearson Correlation         1     0.969** 

Sig. (2-tailed)  0.000 

N 46 46 

qi Pearson Correlation      0.969** 1 
 Sig. (2-tailed)  0.000  
 N 46 46 

 

In this research, the multivariate control chart MEWMA, 

MCUSUM, MC I, MC II, MEC I, and MEC II were applied 

to wheat flour production data with three variables. These 

variables are moisture (X1), ash (X2), and gluten (X3). The 

following is a comparison of the results of the application of 

multivariate control charts using MEWMA, MCUSUM, MC 

I, MC II, MEC I, and MEC II as in Figure 2. 

Based on Figure 2 (a), the MEWMA control chart uses a 

weight λ = 0.25 and ARL0 = 200 detects that there is 1 out of 

control observation that is equal to 2.17%. Out of control 
observation data is found in the 14th observation according to 

the Ti2 value using Equation (1). When viewed from the data 

plots in the observations, the resulting pattern in this 

uncontrolled control chart is an irregular model. This 

indicates a special cause for changes in the production process, 

with plot data fluctuating even though it is still within the 

control limits. Meanwhile, based on Figure 2 (b), the 

MCUSUM control chart detects that there are no out-of-

control observations examined based on Equation (7). Even 

though there are no out-of-control observations on the control 

chart, the data plot of the MCUSUM control chart found that 
there are seven data that all increase in a row, namely at the 

8th to 14th observation. According to the out-of-control 

observation criteria, this shows that although the data plot is 

below the control limit, the resulting data is still uncontrolled. 

Based on Figure 2 (c), the MC I control chart using the 

parameter value k = 0.5 detects that there are 5 out of control 

observations, namely 10.87%. Out of control observational 

data are found in the 14th, 15th, 16th, 17th and 18th 

observations with the MC Ii value determined based on 

Equation (11). When viewed from the data plots in the 

observations, the pattern produced in this uncontrolled control 

chart is a mixed model. This indicates that the company uses 
raw materials from several suppliers, causing the process to 

get out-of-control. Meanwhile, based on Figure 2 (d), the MC 

II control chart detects that there are not out of control 

observations, which shows that all observations are under 

control. 

Based on Figure 2 (e), the MEC I control chart using the 

parameter value k = 0.5 detects that there are 29 out of control 

observations, namely 63.04% with the MEC Ii value 

determined based on Equation (15). Meanwhile, based on 

Figure 2 (f), the MEC II control chart detects that there are 20 

out of control observations with MEC IIi values determined 
based on Equation (17). When viewed from the data plots in 

the observations, the patterns produced on the MEC I and 

MEC II control charts are out of control, which change 

suddenly and gradually. This indicates that there is a special 

reason for changes in the production process, namely when 

the company uses raw materials from several suppliers, 

causing the process to become uncontrolled. 


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Fig. 2 Application of Multivariate Control Diagrams on control charts 

diagram (a) MEWMA, (b) MCUSUM, (c) MC I, (d) MC II, (e) MEC I, and 

(f) MEC II. 

 

After creating control diagrams for MEWMA, MCUSUM, 

MC I, MC II, MEC I, and MEC II, the next thing to do is 

compare the results of the six control charts. The comparison 

was conducted to determine which control chart is more 

effective in detecting out-of-control observations. The 

number of observations that are out of control shows how the 

control chart compares. The control chart will be more 

sensitive the more out-of-control observations it can identify. 

The multivariate control chart MCUSUM and MC I do not 

detect data out-of-control. These two multivariate control 
charts belong to low sensitivity to detect data out-of-control. 

While controlling the MEWMA and MC charts, I only 

detected a few numbers of data that were out-of-control. The 

mixed multivariate control chart MEC II is relatively better at 

detecting data out-of-control with faster and more gradual 

changes. Furthermore, the mixed control chart MEC I give the 

best detection data out-of-control. The more detailed data out-

of-control for each multivariate control chart is presented in 

Table 3. 

TABLE III 

COMPARISON OF OUT-OF-CONTROL OBSERVATIONS ON MULTIVARIATE 

CONTROL CHARTS OF MEWMA, MCUSUM, MC I, MC II, MEC I AND MEC II. 

Control Chart 
Total Observations 

Out of Control 
Control Chart Pattern 

MEWMA 1 Irregular 
MCUSUM 0 - 

MC I 5 Mix 
MC II 0 - 
MEC I 29 Fast and gradual changes 
MEC II 20 Fast and gradual changes 

 

Table 3 shows that all observations on the MCUSUM and 
MC II control charts do not have out-of-control observations. 

However, on the MCUSUM control diagram, when identified 

against the observation data plot in Figure 1, a data plot 

pattern identifies that the observation is out of control. As for 

the MEWMA control diagram, MC I, MEC I, MEC II have 

out-of-control observations. However, the MEC I control 

chart has the highest total out-total control observations. Thus, 

the MEC I control chart can be more sensitive than the other 

control charts. The quality variable in the controlled 

multivariate observation is a variable with a multivariate 

normal distribution. Therefore, the MEC I control chart was 

chosen as the most efficient control chart for controlling 

multivariate data compared to other multivariate control 

charts. The difference in the pattern produced on the control 

diagram causes confirmation to the company regarding the 

state of the production process that occurs so that the cause of 

the runaway process can be adequately identified. 

IV. CONCLUSION 

Multivariate control charts come in a variety of forms, and 

they are used to assess sensitivity by identifying data that is 

out of control in one control phase. In order to develop a more 

sensitive control chart, a new model of the mixed MEWMA 

and MCUSUM was introduced by using multivariate data 

from wheat flour production in terms of moisture, ash, and 

gluten. Based on the results of multivariate control chart 
models and their combinations with the flour production data, 

it is obtained that the mixed MEC I control chart is the most 

sensitive control chart. The MEC I control chart is more 

efficient because it can detect the total number of out-of-

control observations in only one phase of control. This control 

chart design is very efficient in monitoring the production 

quality process for wheat production by using three indicators 

of the quality of the wheat flour. 
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