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Abstract—Crowd disasters are not limited to events but can occur at any time and place where large crowds are densely gathered. The 

most significant factor contributing to injuries in mass gatherings is pressure. The likelihood of injuries due to pressure significantly 

increases when the crowd density exceeds 5-6 individuals per square meter. Once a crowd disaster occurs, it becomes challenging for 

rescue and medical personnel to access the affected area, potentially exacerbating the situation. However, since there is no single clear 

solution to address crowd disasters, there is a need for a system that can detect and analyze them in advance or in real-time. This 

research aims to contribute to the proactive detection and analysis of various crowd disasters, focusing on improving strategies for 

disaster response. In this study, we utilized a dataset of 50 videos from 35 individual incidents to propose a framework that classifies 

the risk levels into Crowd Crush, Crowd Wave, and Crowd Collapse. Additionally, we analyzed the feasibility of real-time detection 

using P2PNet (Point to Point Network), Yolo (You Only Look Once) v8, and DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) algorithms, moving away from prior still image-based detection methods. Our research outcomes provide new evidence for 

the feasibility of real-time detection using DBSCAN in Crowd Disaster scenarios. Moreover, the findings from this study can serve as 

valuable reference material for upcoming research, particularly emphasizing the algorithmic analysis of crowd collapses. 
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I. INTRODUCTION

The primary cause of fatalities in various international 

mass gatherings is injuries resulting from pressure. This 

occurs due to crowd crush, crowd waves, and crowd collapses 

[1]. Crowd disasters are not limited to events but can happen 

at any time and place where large crowds are densely gathered 

[2]. This inherent risk underscores the importance of 

comprehensive safety measures and emergency preparedness 

in locations with significant crowd density. The probability of 

accidents increases substantially when the crowd density 

surpasses the critical threshold of 5-6 individuals per square 

meter [3]. Crowd disasters persistently occur worldwide, 
indiscriminate in advanced or developing nations, 

constituting a disaster with significant ramifications and 

impacts on society [4].  

On Saturday, October 29, 2022, around 10:00 PM, a 

significant stampede incident occurred in a narrow alley on 

the west side of Hamilton Hotel in Itaewon-dong, Yongsan-

gu, Seoul, South Korea, as a large crowd gathered to enjoy a 

Halloween festival. At the time of the accident, a bottleneck 

occurred in a space measuring approximately 18.24 square 

meters, exceeding the capacity of the space by more than 

seven times (density of 12/m� ). This phenomenon led to

people being pushed and jostled, resulting in what is 

commonly referred to as a "chain trampling." Ultimately, this 
incident resulted in 159 fatalities and 196 injuries [5].  

The incidents themselves have little time to deal with, 

making them susceptible to casualties, especially when 

victims experience compromised consciousness due to 

suffocation. Moreover, within densely populated and chaotic 

environments, the accessibility and transportation of injured 

individuals pose significant challenges for medical personnel 

[6]. Despite these challenges, a clear and definitive solution 

for such incidents has yet to be identified. In the aftermath of 

the incident, as response and rescue become challenging, 

there is a need for a system and framework that can analyze 
and assess the risks associated with crowd density in real time. 

Therefore, this study aims to propose a framework for 

classifying risk levels and detecting crowd collapse incidents 
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using deep learning. Furthermore, in this study, we perform 

crowd disaster detection using CCTV images by applying 

P2PNet, Yolo.v8 and DBSCAN algorithms, away from 

existing still image-based detection method [7]. Through this, 

we aim to prevent crowd disasters by developing technology 

that can pre-detect stages such as crush, wave, and collapse in 

real-time images and situations. 

A. Crowd Disaster 

 In crowd disaster, force chains can form within densely 

packed crowds due to unintentional physical interactions 

among individuals. These chains can result in significant 

fluctuations in crowd pressure [8] [9], ultimately leading to a 

crowd collapse. Typically, crowd disasters involve three 

interconnected elements: overcrowding causing a crowd 

crush, waves or movements in a densely packed crowd, and 

crowd collapse. Figure 1 illustrates the process of crowd 

collapse. 

 
Fig. 1  Progression of crowd collapse 

1)   Crowd Crush: If an excessive number of people gather 

in a restricted area and this situation persists, the population 

density within the crowd becomes too high. Consequently, 

individuals may lose control of their body movement, 

resulting in what is known as a crowd crush [10]. Crowd crush 

can be broadly divided into two stages. The first stage occurs 
when the cluster density reaches 8 individuals/m² due to the 

sustained influx of subsequent clusters following cluster 

residency, initiating the cluster wave phenomenon. In the 

second stage, within high-density cluster residency 

conditions, the continuous influx of subsequent clusters leads 

to a cluster density exceeding ten individuals/m², resulting in 

overcrowding and initiating limit of the wave.  

2)   Crowd Wave: As the average density of the crowd 

increases, there is a sudden transition to unstable flows. These 

irregular flows were marked by spontaneous and 

unpredictable movements in all possible directions, causing 
people to be pushed around [11]. Due to the disparity in the 

distribution of cluster density and pressure, unintended 

vibrations occur. Subsequently, a notable shaking 

phenomenon, the 'limit wave,' emerges, often accompanied by 

cluster waves and crisis avoidance behavior. This may 

escalate into a serious incident, such as a crowd collapse. 

3)   Crowd Collapse: Crowd collapse is the breakdown of 

mutual support among individuals. The repetitive pattern of 

oscillation between movement and halting leads to a 

weakening of support for individuals, and simultaneously, the 

pressure from people at a distance becomes concentrated in 

vacant spaces. The dispersion of this pressure creates larger 

voids, resulting in people falling and forming a hole. The 

pressure exerted on individuals around this hole pulls in more 

people, thus producing a pile of wedged bodies [12]. 

B. Detection of Crowd Disaster Situations and Spatial 

Elements Using P2PNet, YOLO, and DBSCAN 

Algorithms 

Understanding and predicting high-risk areas becomes 

crucial given the increasing challenges in managing crowd 

disasters. Previous research has demonstrated the 

effectiveness of data mining algorithms such as P2PNet, 

YOLO, and DBSCAN in object detection. This study aims to 

develop a predictive model for high-risk areas in crowd-
disaster situations by combining these algorithms with deep 

learning techniques. Therefore, integrating these advanced 

technologies can enhance our ability to anticipate and respond 

to crowd disasters more effectively. Table 1 provides an 

overview of previous research on detecting crowd disaster 

situations and spatial elements. 

TABLE I 

PREVIOUS RESEARCH ON THE DETECTION OF CROWD DISASTER 

SITUATIONS AND SPATIAL ELEMENTS  

1) P2PNet: P2PNet is a notable algorithm for assessing 

crowd density, delineating multiple-crush spaces, and acting 

as a criterion for detecting spatial elements based on the 

coordinates of that space [20]. P2PNet partitions the acquired 

feature map into a grid using a stride length of s. In this grid, 

each cell is designated as a potential head candidate or 
proposal, and it is assigned a confidence score. This strategy 

is commonly known as a "one-to-one match" [21]. 

Additionally, P2PNet utilizes a series of convolution and 

pooling layers to extract features from input images, capturing 

key points that correspond to characteristics of a crowd. These 

key points serve as the foundation for structuring the data.  

Researcher Method Results 

Q. Song et al. [13] P2PNet Propose "Density 
Normalized Average 
Precision" 

L Yajing [14] YOLO Detect abnormal behavior 
in crowd scenarios 

Eiman Kanjo [15] DBSCAN Propose overcrowding 
detection system, “Crowd 
Tracing.” 

P.S. Karthika et al. 
[16] 

Space 
syntax 

Distance detection and 
walk accessibility during 
crowd disasters. 

W shu et al. [17] Frequency 
Domain 

Establish the groundwork 
for a new crowd-counting 
model. 

Tarik Reza Toha et 
al. [18] 

LC-Net Count individuals in dense 
crowds through crowd 

localization mapping. 
H Xu et al. [19] YOLO Verification of YOLO-CS 

Performance in Crowd 
Videos. 
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2) YOLO: Recognizing all individuals in the image poses 

a challenge for computational systems due to the size 

difference caused by their varying distances from the camera. 

The issue of vertical size change is prevalent in nearly all 

datasets, necessitating consideration in the majority of crowd-

counting methods. Employing detection methods with diverse 

sizes of detection boxes, such as YOLO, effectively addresses 

this challenge [22], [23]. YOLO is characterized by dividing 

an image into a grid and simultaneously predicting bounding 

boxes for objects and their class probabilities within each grid 
cell. This allows YOLO to exhibit excellent performance in 

real-time object detection [24], [25].  

3) DBSCAN: Non-hierarchical clustering analysis is 

suitable for extensive data analysis, as it avoids measuring 

distances between all data points. DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) removes the 

necessity of specifying the number of clusters in advance. 

Within a defined radius "R," if there are "n" or more data 

points, they form a single cluster, and data points not 

belonging to any cluster are classified as Noise [26]. This 

occurs when clustering conditions are not met, defined by ε 

(epsilon) as the radius around a specific point and the 

requirement for a minimum number of points (Min Point) 

inside the cluster. Consequently, Noise not belonging to any 

cluster can be designated as the cluster boundary point [27]. 

II. MATERIALS AND METHOD 

This study aims to construct a database for analyzing and 

evaluating risks associated with crowd disasters, developing 

measurable indicators, and proposing the predictability of risk 

situations by applying algorithms. Figure 2 below illustrates 

the main processes of this study.  

 
Fig. 2  Research Main Processes 

 

This study made a substantial effort in the video collection 
process, where 50 video datasets pertaining to 35 distinct 

crowd disaster incidents were meticulously gathered. This 

collection includes videos listed on the Crowd Risk Analysis 

Ltd website, accounting for 25 datasets, and an additional ten 

datasets representing more recent crowd disasters not listed 

on the website. This comprehensive collection ensures a wide 

range of incidents are covered, providing a diverse and 

relevant dataset for analysis. Table 2 in the study document 

details the list of included crowd disaster incidents, offering a 

clear and organized overview of the data sources utilized. This 

table not only enumerates the incidents but also serves as a 
reference point for understanding the variety and scope of the 

crowd disasters analyzed, which is crucial for the depth and 

validity of the study's findings. 

TABLE II 

CROWD DISASTER INCIDENT LIST 

Year Event Year Event 

1989 Hillsborough 2015 Rath Yatra 
1993 Camp Randall 2015 Hajj 

2005 Oasis Concert 2016 Thanksgiving 
2006 Lotte World 2017 UEFA Champions 

League 

Year Event Year Event 
2009 Millennium point 2017 Demba Diop 
2010 Kumbh Mela 2017 Stade de la Licorne 
2010 Makhulong 2018 Sterophonics Concert 
2010 Electric Daisy 2019 Patum de Berga 
2010 Love Parade 2019 Bumbershoot Festival 
2012 Johannesburg 

Univ. 

2019 Parramata Shopping 

Centre 
2012 Madrid Arena 2021 Meron 
2013 Kumbh Mela 2021 Astroworld Festival 
2013 San Fermín 2021 Vaishno Devi 
2013 Xierqi subway 2022 Congress Marathon 
2014 Syedna's funeral 2022 Notting Hill Carnival 
2014 Nigeria Job Fair 2022 Seoul Halloween 
2015 La Patum 2023 Gulf Cup final 
2015 Holy River   

A.  Framework 

In the design of this study's framework, a primary challenge 

lies in the systematic classification of information to enable 

effective analysis of crowd disaster metrics. This process is 

instrumental in developing risk space indicators and 

constructing a comprehensive database. The framework 

includes eleven categories. 'Type of Disaster' provides a 
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fundamental classification of incidents. The 'Date' and 'Day of 

the Week' categories are crucial for organizing data and 

identifying potential patterns or specific conditions related to 

the incidents, such as whether certain days are more prone to 

disasters. The 'Season' and 'Quarter' categories offer insights 

into how a time of year affects disaster likelihood, with 'Season' 

focusing on the impact of weather conditions and 'Quarter' 

showing the distribution of incidents throughout the year.  

The 'Climate' category also considers the local 

environmental conditions that could influence crowd 
behavior and the likelihood of incidents. The 'Time' of the 

event is crucial for understanding the disaster's dynamics and 

coordinating swift response efforts. 'Location' and 'Venue', 

along with the more detailed 'Venue Specific' information, 

provide a nuanced understanding of each incident's 

geographical and physical context, which is essential for risk 

assessment and emergency planning. The 'Event' and 

'Gathering Purpose' categories delve into the nature of the 

gathering, distinguishing between spontaneous events like 

protests and riots and scheduled events like religious 

pilgrimages and sporting events, which are critical for 
understanding crowd dynamics and implementing effective 

prevention and response strategies. 

This extended framework thus not only categorizes crucial 

aspects of crowd disasters but also interconnects these 

elements, offering a holistic view of each event. This 

comprehensive approach is vital for accurate risk assessment, 

effective crowd management, and reducing the incidence and 

severity of crowd-related disasters [28].  These elements are 

the basic information about crowd disaster incidents. Table 3 

shows the Incident Data Framework. 

TABLE III 

INCIDENT DATA FRAMEWORK 

Classification Content 

1. Type of Disaster ① Crowd Crush  

② Crowd Wave  

③ Crowd Collapse 

2. Date Month-Day-Year 

 

3. Day of Week 
① Monday       ② Tuesday 

③ Wednesday  ④ Thursday  

⑤ Friday          ⑥  Saturday 

⑦ Sunday 

4. Season ① Spring    ② Summer  

③ Fall         ④ Winter 

5. Quarter ① Q1          ② Q2   

③ Q3          ④ Q4 

 

 

6. Climate 

① Sunny     ② Rainy  

③ Foggy     ④ Snowy 

⑤ Sudden Showers  

⑥ Typhoon or Heavy Rain 

⑦ Heatwave   

⑧ Lightning or Thunderstorms 

7. Time Hour: Minute: Second 

8. Location City, State, Country 

9. Venue Designation of Venue 

Classification Content 

9-1. Venue Specific ① Indoor   ② Outdoor 

10. Event Designation of Event 

 

11. Gathering Purpose 

① Festival          ② Carnival  

③ Sports Game  

④ Religious Gathering  

⑤ Party              ⑥ Rally 

⑦ Etc ( ) 

 

In the context of a mass gathering situation, the ‘density’ of 

individuals or objects is a critical aspect that aids in 

understanding crowded scenarios [29]. the crowded level of 

density is divided into seven stages. With three people per 

square meter, the crowd has plenty of space. However, when 

the density goes beyond five people, the space becomes 

cramped, and with ten people, there's almost no room to 

move. As the crowd gets denser, there's physical pressure that 
could even cause damage to metal fences or brick walls. On 

average, when an adult leans to move in a certain direction, it 

creates a force of 260N. If 4-5 adults apply force horizontally, 

a person within that square meter might experience 

suffocation.  

In a mass gathering situation, various types of objects may 

be present. The 'Object' category helps better understand the 

situation by identifying the person and characteristics of 

objects or those that exist. The presence of structures, the 

movement of vehicles along the same path as the crowd, and 

the proper functioning of equipment such as barriers are crucial 
aspects. Failure in the proper operation of such elements can 

pose risks to pedestrians. Therefore, the task of confirming the 

objects in the space is essential to detect and prevent such 

hazards [30]. This section allows for multiple choice. The 

'Movement Direction' category facilitates understanding and 

predicting the dynamic aspects of crowded situations by 

providing information on the direction of moving subjects. 
Individuals within a mass gathering engage in interactions and 

aim to align their speeds with other crowds.  

Frequently, unfamiliar individuals communicate using 

hand signals or adjust their walking pace or body orientation 

to prevent collisions with other pedestrians [31] [32]. The 
'Verification Value' category provides additional information 

about the selected attributes. For instance, it can display the 

precise number of people per square meter, describe the count 

of objects per entity, or specify the movement direction of 

clusters. Table 4 below is the mass gathering situation 

framework. 

TABLE Ⅳ 

MASS GATHERING SITUATION FRAMEWORK 

Classification Attribute 
Verification 

Value 

1. Density 

(m�)  /Person) 

① L1 (1~2person)  ② L2 (3~4)  

③ L3 (5)                    ④ L4 (6) 
⑤ L5 (7~8)             ⑥ L6 (9~11) 

⑦ L7 (Above 12) 

 

2. Object 

① Male                     ② Female 

③ Child                   ④ Structure  

⑤ Car                      ⑥ Animal 

 

3. Movement  

Direction 

Object Coordinate 
Transformation 
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To categorize various types of mass gathering situations 

and derive their relationships with physical space elements, 

an analysis of the physical space characteristics framework in 

Table 5 was conducted. The venue may exhibit a complex 

shape and can be divided into distinct zones based on 

functionality, spatial considerations, and other characteristics. 

Within the framework, the 'Spatial Configuration' category 

provides information on how the spatial layout influences 

crowd movement patterns and behavior. Columns and 

barriers that impede the natural flow of the crowd can 
influence the direction of crowd movement and lead to 

collision [33]. The 'Area' aspect signifies the size of the space, 

offering a scale of the area where crowds gather. Evaluating 

space size aids in understanding crowd size and density, 

informing safety and management measures. Additionally, 

the 'Slope' of the terrain is considered, as it can impact crowd 

mobility and safety. Steep slopes, for instance, may impede 

crowd movement, necessitating a thorough assessment of 

safety concerns associated with the incline. 

TABLE Ⅴ 

PHYSICAL SPACE CHARACTERISTICS FRAMEWORK 

Classification Attribute 
Verification 

Value 

1. Spatial Configuration 
① Road     ② Alley 

③ Square     ④ Bridge 

 

2. Area (m� ) S x S  

3. Slope (%) □ %  

 
In the context of understanding and evaluating mass 

gathering situations, the 'Extent of Damage' framework plays 

a pivotal role, as illustrated in Table 6. This framework is 

crucial for a thorough assessment of the impact of crowd 

disasters. It includes selected subcategories like 'Deaths' and 

'Injuries,' which are fundamental in providing a quantitative 

measure of the severity of the damage. By counting the 

number of fatalities and injuries, this framework allows for a 

precise and objective evaluation of each incident's impact.  

Furthermore, this quantification is not just a statistical 

measure; it provides vital insights into the human cost of these 

disasters, reflecting the urgent need for effective crowd 
management and emergency response strategies. This 

information, detailed in the 'Extent of Damage' framework, is 

also instrumental in shaping policy decisions and regulatory 

measures to prevent such disasters in the future. It serves as a 

crucial data point for emergency services, event organizers, 

and public safety officials in planning and preparing for mass 

gatherings. Additionally, this framework can be used to 

benchmark the effectiveness of safety measures and protocols 

implemented in various events, providing a way to gauge 

improvements over time. In essence, the 'Extent of Damage' 

framework not only offers a snapshot of the immediate 
aftermath of crowd disasters but also aids in long-term 

planning and prevention strategies, ultimately aiming to 

safeguard public safety in mass gathering situations. 

TABLE Ⅵ 

EXTENT OF DAMAGE FRAMEWORK 

Classification Total 

1. Deaths  

2. Injuries  

III. RESULTS AND DISCUSSION 

A. Experiment Data 

In 2021 Meron Crowd Data:  It consists of keys 

representing different frames. Each frame contains 

information about the detected persons, including their count 

and location coordinates. The dataset is organized into various 

keys, each representing a different frame (such as 'Frame_1', 
'Frame_2', and so forth). Within each frame, there is detailed 

information about people detected by some form of an 

automated system. This information includes the total count 

of persons in the frame and their location coordinates, 

typically given as X and Y values on a plane. Additionally, 

there's a 'Metadata' section. This part of the dataset provides 

important details about the data collection and processing 

methods. It includes information about the detection method 

used (specified as 'P2PNet'), the types of objects that were 

intended to be detected (in this case, 'person'), and various 

image properties such as rescaling percentage, image width, 
and height. It also mentions the total number of frames 

analyzed and the frames per second (FPS) rate of the video 

from which these frames were extracted.  

In 2022 Seoul Halloween Data: t has a similar structure to 

the first file, with keys for different frames and a 'Metadata' 

section. Each frame also details the detected persons, their 

count, and location coordinates. This dataset shares a 

structural resemblance with the 2021 Meron data. It is divided 

into keys representing different video frames. Like the first 

dataset, each frame entry in this dataset includes data on the 

detected persons. This encompasses both the number of 

persons detected in that frame and their spatial coordinates. 
The 'Metadata' section of this dataset also provides similar 

types of information: details about the detection method, the 

specific objects identified (again, 'person'), and various 

image-related metrics. This metadata is crucial for 

understanding the context of the data, the limitations of the 

detection method used, and the specifics of the image 

processing techniques applied. 

Both datasets are evidently structured to facilitate the 

analysis of crowd dynamics, with a clear focus on detecting 

and spatially locating individuals within a series of frames. 

This structured approach is particularly useful for applications 
such as crowd movement analysis, behavior pattern 

recognition, and safety monitoring in crowded events.  

 
Fig. 3  Experiment Event Images 

B. Experiment Result 

We need to extract the location coordinates of detected 

persons from each frame to perform an analysis using 
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DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise). DBSCAN is a clustering algorithm suited for 

spatial data and can identify clusters of varying shapes and 

sizes. It is proceeded by extracting the coordinates from the 

frames and then applying the DBSCAN algorithm to each set 

of coordinates. The analysis will reveal how people are 

grouped or dispersed in each frame, which could help 

understand crowd dynamics in these scenarios. The 

coordinates are extracted, and DBSCAN is applied to a 

representative sample of frames to understand the crowd 
patterns. 

 

 
Fig. 4  DBSCAN Clustering 

 

The DBSCAN clustering results for selected frames from 

the first dataset are displayed above. Each color represents a 

different cluster identified by DBSCAN, with noise points 
(outliers) typically shown in a distinct color (often purple or 

black). Figure 4 following, Frame 10: Shows several distinct 

clusters, indicating groups of people standing close to each 

other. The presence of noise points suggests some individuals 

are isolated or not part of larger groups. Frame 50: Like 

Frame 10, there are multiple clusters, but the distribution 

might be slightly different, indicating movement or changes 

in the crowd's formation over time. Frame 100: This frame 

also shows distinct clusters with some noise points, indicating 

a consistent pattern of crowd grouping.  

These visualizations provide insights into how people were 

grouped or dispersed in the crowd. The parameters of 
DBSCAN (epsilon and minimum samples) were chosen to 

demonstrate the algorithm's capability but can be adjusted for 

more refined analysis. 

TABLE Ⅶ 

CLUSTERING RESULTS FOR EACH FRAME 

 

Table 7 shows the clustering results for each frame, 

including the proportion of outliers. It reveals that cluster 

numbers and distributions vary over time, reflecting people's 

movements and group dynamics. About 2.98% of data points 

were outliers, lacking nearby neighbors as per DBSCAN. On 
average, there were 40.6 clusters per frame. These insights 

can help identify hazardous areas based on people's collective 

behavior at certain times and places. 

IV. CONCLUSION 

Exploring the use of deep learning in ensuring crowd 

safety, particularly in the context of preventing crowd 

collapses, represents a significant and innovative direction for 

future research. Deep learning, a subset of machine learning 

that uses algorithms inspired by the structure and function of 

the brain called artificial neural networks, has shown 

remarkable success in various domains such as image and 

speech recognition, natural language processing, and 

autonomous driving. Applying these techniques to crowd 

safety could open new avenues for preventing tragedies 

during large gatherings. 

One promising approach could be the integration of 
density-based spatial clustering of applications with noise 

(DBSCAN), a popular clustering algorithm, with deep 

learning techniques. DBSCAN excels in identifying high-

density areas and outliers in spatial data, which can be crucial 

in crowd analysis. By integrating DBSCAN with deep 

learning models, it might be possible to analyze complex 

crowd dynamics more effectively. 

Such an integrated system could process data from various 

sources like surveillance cameras, drone footage, and mobile 

device signals. Deep learning models, trained on vast datasets 

of crowd movements and patterns, could identify potential 
risks of crowd collapses or dangerous bottlenecks in real-

time. The system could analyze factors such as crowd density, 

flow dynamics, and individual behaviors to detect anomalies 

or dangerous situations. 

The use of DBSCAN in this context could help in 

accurately segmenting different clusters within a crowd. For 

instance, it could differentiate between a densely packed, but 

stationary group and a rapidly moving cluster, each posing 

different types of risks. By recognizing these patterns, the 

system could provide early warnings to event organizers, 

security personnel, and local authorities, enabling them to 
take proactive measures to prevent accidents. 

Moreover, integrating deep learning with crowd safety 

applications could lead to the development of predictive 

models. These models could learn from past incidents of 

crowd collapses and identify early warning signs, potentially 

preventing accidents before they occur. They could also be 

used in planning and simulation tools to design safer public 

spaces and event venues. 

Further research in this area could also explore the ethical 

and privacy implications of using such technology. Ensuring 

that crowd monitoring respects individual privacy and does 

not lead to unwarranted surveillance is crucial. Additionally, 
there is a need for robust and transparent models that can be 

trusted and understood by the public and authorities. 

In conclusion, leveraging deep learning and algorithms like 

DBSCAN for enhancing crowd safety presents a fascinating 

and potentially lifesaving field of research. It combines 

advanced technological solutions with a profound societal 

impact, aiming to protect people in public spaces and at large 

events. As with any advanced technology, its development 

and deployment must be handled responsibly, with attention 

to ethical considerations and societal impacts. 
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