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Abstract—Rapid economic growth was observed to have motivated economic actors and investors to maximize business performance 

using different methods. An example of these are stocks or shares securities showing that a person or entity has a stake in a company. 

Investors are primarily drawn to stocks due to their potential for substantial profits closely tied to the volatility in the stock market. 

The prevalence of this volatility has long been addressed using the ARCH/GARCH model, but it is not ideal for datasets experiencing 

structural changes. Therefore, a model was developed using the Bayesian Markov-switching GARCH approach to effectively capture 

the heteroscedastic component and structural changes in data and mitigate certain limitations, especially those associated with a small 

sample size. This study adopted the composite stock price index (CSI) data from March 2020 to April 2021 to model and understand 

the volatility. The results showed that the Bayesian Markov-switching GARCH model with the most negligible variance provided the 

best fit. It was also discovered that a more minor error variance corresponded to lower data volatility. Moreover, the concept of value 

at risk was used to assess the investment risk based on the criterion that a decrease in the CSI investments led to a reduction in the level 

of risk faced by the investors. 
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I. INTRODUCTION

The composite stock price index (CSI) is typically used as 

a benchmark in the Indonesia Stock Exchange (IDX) to 

measure the profitability of market movements. The weekly 

CSI data usually presents the fluctuations and changes in the 

price of stock, and this concept is known as volatility. 

Therefore, volatility modeling has been discovered to be 
essential to risk management, portfolio management, and 

price equality, and this is necessary because high volatility 

values represent high asset risk. 

The standard model usually used in monitoring stock price 

data, specifically when the data has constant variance or 

homoscedasticity, is the autoregressive integrated moving 

average (ARIMA). However, when the variance of the data is 

not continuous, the suitable choice is the generalized 

autoregressive conditional heteroscedasticity (GARCH). This 

model also becomes less effective when dealing with 

structural changes in the data, leading to adopting the 

Markov-switching model [1]. Therefore, a more 

comprehensive solution is proposed in the Markov-switching 

generalized autoregressive conditional heteroscedasticity 

(MS-GARCH) model to tackle structural changes and 

heteroscedasticity. The model can also explain the high 

persistence and poor forecasting performance issues 

associated with the single-regime GARCH [1]-[4].  

The development of the probabilistic and estimation 

properties of the MS-GARCH model was observed to have 

proved to be a better fit than the conventional system. A 
previous study showed that GARCH was the better technique 

to study volatility even with the soft computing approach [5]-

[6]. Moreover, the MS-GARCH was reported to be a better fit 

for implied volatility market [7]-[8], inflation determination 

model [9], oil and natural gas trading [10], volatility intraday 

between exchange rate, gold and crude oil [11], and dynamics 

volatility of cryptocurrencies and bitcoin [12]-[15]. Besides, 

the time-varying probability transition of volatility is also 

applicable using the MS-GARCH model approach [16]-[17]. 
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Furthermore, the GARCH-MIDAS model with a regime 

transition was utilized to investigate the connection between 

oil price volatility and macroeconomic fundamentals [18], 

forecast renewable energy stock [19], and stock market 

volatility [20]. 

The volatility fluctuation and the changes in data structure 

or the effect of asymmetric trends make the fit of the variance 

model less accurate, so it is necessary to adjust the model to 

volatility movements. The exponential GARCH model was 

also more precise in predicting volatility [21]. Moreover, the 
MS-GARCH models, by using the Bayesian approach, have 

been used effectively in non-parametric panels [22] and in 

modeling agricultural commodities [23]. Moreover, the two-

regime MS GARCH model was found to have outperformed 

the single-regime GARCH and also the best model of the 

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) in 

analyzing housing returns and asymmetric volatility [24]. 

Several studies also concluded that the two-regime MS 

GARCH model delivered more accurate volatility estimates 

than the single-regime GARCH model [12]. Furthermore, a 

time series model was proposed to capture long memory [25], 
where the results showed the Markov-switching long memory 

model performed better than the other GARCH models [26].  

The study on Markov-switching GARCH also relies on 

stability analysis of semi-Markov-switching stochastic delay 

systems. [27], Markov-switching Poisson [28], and the zero-

drift GARCH model [29]. This research has also been adapted 

in many fields since the MS-GARCH package was introduced 

for the Markov-switching model [30], but a special approach 

was required to form a model with a Bayesian approach to 

overcome the change of data structure, asymmetry problem, 

and small data sample size. Besides, the non-Gaussian 
assumption residual model has to be considered by using the 

infinitely divisible distribution, such as exponential or gamma 

distribution with Bayesian approach [31]-[32]. These 

infinitely divisible distributions have been applied in integer-

valued GARCH models and option pricing [33]-[34]. 

Therefore, this critical research focused on using the MS-

GARCH to CSI data in order to provide information on short-

time volatility based on the Bayesian approach.  

II. MATERIAL AND METHOD

This study was conducted using the weekly CSI data 

obtained through the website http://finance.yahoo.com. A 

total of 60 data from March 2, 2020, to April 19, 2021, were 

retrieved for this purpose. Moreover, the GARCH, MS-

GARCH, hybrid MS-GARCH and Bayesian models were 

discussed and applied to form the combined Bayesian MS-

GARCH model in the following methods of model building. 

A. GARCH Model

The GARCH model is normally used to simulate the

volatility of data on stock movement with the parameters 

calculated through the maximal likelihood estimation (MLE) 

approach. The conditional variance equation of the model is 

stated as follows: 

��� = ω + ∑ �	
��	��	
� + ∑ ���������
� (1) 

This is based on the conditions 
��~��0, ���� and 
� = ����.

Some parameters estimated in the GARCH model are �, �	 ,

and ��  for i = 1, 2, …, p and j = 1, 2, ..., q. The parameter ���
is the conditional variance, and 
�  is an error of the ARIMA
model. 

Some of the steps to follow in forming a GARCH model: 

 Check whether the data used is stationary to the mean

using the augmented Dickey-Fuller (ADF) test or to the

variance of Box-Cox transformation.

 Identify the ARIMA models based on ACF and PACF

plots.

 Estimate significant parameters in the ARIMA model

with a significant level of α = 0.05.

 Select the ideal ARIMA model using the AIC criteria.

The next step was to conduct a diagnostic check using the
following tests: 

1) The Autocorrelation Test: The correlogram of

residuals can be used to determine the autocorrelation based 

on the criterion that the residuals have autocorrelation when 

the correlogram displays a substantial ACF and PACF plot at 

the early lags and vice versa. It can also be assessed using the 

Ljung-Box test with the following hypothesis: ��: �� =  �� = ⋯ = � = 0 there is no autocorrelation in the

residuals). ��:  ∃  �	 ≠ 0, untuk # = 1, 2, … , '  (there is an

autocorrelation in the residuals). 

The equation for the Ljung-Box test statistic can also be 

written as follows: 

( = )�) + 2� ∑ *+,-.�/ /
� , (2) 

where, T is the number of log return data, k is the number of 

lags, �0/� is the autocorrelation value up to lag-k, and m is the

maximum lag tested. 

2) Homoscedasticity Test: A model is normally classified

as good when it is homoscedastic, or there is no 

heteroscedasticity problem. This variable can be determined 

through the correlogram of squared residuals based on the 

criterion that the residual variance is not constant when the 

ACF and PACF plots are significant at the first lags, and vice 

versa. It can also be evaluated using the Lagrange Multiplier 

(LM) test by regressing the squared residuals through the 

following model: 


�� = �� + ��
��� + ⋯ + �/
��/. (3) 

The hypothesis is: ��:  �� =  �� = ⋯ = � = 0 �there is no heteroscedasticity).��:  ∃�	 ≠ 0, for # = 1,2, … , ' (there is a heteroscedasticity).

The statistic for this test is 

12 = 34�, (4) 

where the number of observations is n and the coefficient of 

determination is R2. 

3) Residual Normality Test: The residual normality test is

normally used to determine the distribution status of the 

residuals collected. This can be achieved through the Shapiro-

Wilk test based on the following hypotheses: ��: The data has a normal distribution.��: The data is not normal.

A p-value of ≥ α=0.05 shows that H0 is accepted, and this 

means the data are normally distributed while the p-value < 
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α=0.05 indicates H0 is rejected, and the data are not normally 

distributed. The equation for the Shapiro-Wilk test statistics 

can be written as follows: 

)5 = �
6 �∑ �	�78�	9� − 7	��8	
� �, (5)

where D = ∑ �;	 − ;<��8	
� ,  �	  is the Shapiro-Wilk test

coefficient, ;8�	9� is data to 3 − # + 1, ;	  is data to i, and ;<
is the mean of the data. 

4) Structural Change Test: Structural changes are usually

evaluated to determine any variation in the pattern of the data. 

The existence of any structural changes within a certain period 

normally indicates the data is less stable. This can be achieved 

using the following linear regression model: 

=	 = 7	�	 + >	. for i=1,2,…,n, (6) 

The hypothesis for the F test statistic is as follows: 

H0: �� = �	   , i = 1,2, …, n (no structural change).

H1: �� ≠ �	= i, i = 1, 2,…, n (there is a change in structure).

The equation for the F test statistic is written as follows: 

?	 = @+A@+� @+�	�A@+�	�
@+�	�A@+�	�/�8��/�, (7) 

where, k represents several parameters, u0�#� is the residuals

of each fault, and i is the fault/breakpoint. The decision-

making criteria is that the hypothesis be rejected when p-value 

<0.05, and this means there is a change in the data structure. 

B. Markov-Switching GARCH Model

The Markov Regime Switching GARCH model was

proposed by Gray (1996) to explain the structural changes and 
shifts in the volatility of time series data using simpler 

parameters. This model is presented as follows: 

D� = EFG + 
� , for 
� = >�H���, (8) 

��� = �FG + �FG
���� + �FG����� , (9) 

where, I�  is the state variable with value 0 or 1, EFG   and  ���
are the mean and conditional variance, �FG  and �FG   are the

parameters to be estimated for each regime in the Markov-

switching model, 
����   is the squared residual, and �����  is the

conditional variance of the previous period. 
The maximum likelihood function is normally used to 

estimate the parameters of the MS GARCH model through the 

algorithm. Moreover, the conditional variance of the GARCH 

model is dependent on the past values of the state variables 

and this presents a new challenge in the calculation process. 

For example, K states and T samples are required to be 

considered as many as J.  cases to determine the likelihood

function but this can be overcome easily through the Bayesian 

technique. 

C. The Proposed Bayesian MS-GARCH Model

The Bayesian MS-GARCH model is a hybrid between the
MS-GARCH normally used to overcome heteroscedasticity 

problems while capturing the changes in volatility structure 

and the parameter estimation through a Bayesian approach. It 

is important to state that the Bayesian estimation approach 

introduces a concept known as prior distribution which 

requires obtaining information about the estimated parameters. 

Moreover, this concept can be combined with the likelihood 

function to determine the posterior distribution in estimating 

the parameters of the MS-GARCH model. 

The model used for the two regimes is presented in 

Equations (8) and (9), suppose the vectors D� = �D� , D�, … , D��,I� = �I�, I�, … , I��, and the model parameters consist of K =�K��, K��, K��, K���L, E = �E�, E��L and M = �ML�, ML��L, whereM/ = ��/ , �/ , �/�L for k = 1, 2.

The joint probability density function of D� and I� is

presented as follows: 

N�D� , I�|P���� = N�I� = Q, P����R�P����
= 1

H2S���
�7T U− V=� − EFGW�

2��� X . K�� (10)

The likelihood function is: 

1�M� ∝ ∏ �����7T  \− �]G�^_G�-
� G̀- a K��.�
� , (11) 

The determination of the marginal posterior distribution for 

this model was not easy due to the need for an integral process 

with a reasonably high dimension. Therefore, the Gibbs 

sampler algorithm was introduced to overcome the problem. 

D. The Best Model selection

Some of the criteria used in selecting the best model are

stated as follows: 

1) Akaike Information Criterion (AIC): AIC was first

introduced by Akaike to identify a model from a dataset using 

the following equation: 

n

k
AIC

2
ˆlog 2
  , (12) 

where, log �0�  is the likelihood measure, k is a number of
parameters, and n represents several observations. 

2) Bayesian Information Criterion (BIC): BIC is a model

selection method with the Penalized Maximum Likelihood 

approach. It was first introduced by Schwartz to be used in 

selecting a model using the following equation: 

n

nk
BIC

)log(
ˆlog 2
  , (13) 

The model was considered to be good for selection when 

the AIC and BIC values were smaller. 

E. Value at Risk by Using Volatility Model

Value at Risk (VaR) is a statistical risk evaluation
technique normally used to calculate the potential maximum 

loss in a portfolio at a specific level of confidence. This is 

achieved through the adoption of some statistical methods in 

its application as a risk measurement tool. The following 

formula can be used to calculate VaR for a period of T days: 

ef4 = −e� ∗ hi ∗ �0√), (14) 

VaR is used in risk management to confidently determine the 

greatest possible loss in an investment or portfolio and 

recommend the right steps to lower the risk or safeguard the 
capital. 
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III. RESULTS AND DISCUSSION

This research has developed a new model of  MS-GARCH 

model by using Bayesian inference approach. This part was 

also generally used to analyze the CSI volatility modeling 

using the time series model of GARCH, MS-GARCH, and 

Bayesian MS-GARCH methods. 

A. Data Identification and ARIMA Model

The weekly CSI data were plotted and visualized to

demonstrate the trend and seasonality of the pattern and 

stationarity. The focus was on the period from March 2, 2020, 

to April 19, 2021 as presented in the following Fig. 1. 

Fig. 1 Plot of CSI weekly data from March 2, 2020, to April 19, 2021. 

Fig. 1 shows that the time series plot of CSI weekly data 

has both upward and downward trends at any given time. The 

data was observed not to change over time at a fixed variance 

or around a fixed mean during the observation period. This 

showed that the CSI weekly data were not stationary in terms 

of mean and variance. 

The next step was to convert the data into a return format 

using the natural logarithm value of the simple net return. This 
was achieved using the following formula: 

D� =k3 � lGlGmn� (15) 

The data plot returned is presented in the following Fig. 2. 

Fig. 2 Plot of weekly return data of CSI from March 2, 2020 to April 19, 2021. 

Fig. 2 shows that the CSI weekly data plot has upward and 

downward trends at any given time. The plot also shows that 

the highest CSI share price occurred on January 11, 2021, 

with a price index of 6373.41, and the lowest CSI share price 
was on March 16, 2020 with a price index of 4194.94. The 

data plot also showed that the data did not fluctuate around 

the mean and the variance was not fixed over time. Even 

though, this indicated that the weekly CSI data regarding 

mean and variance were not clearly stationary. 

The conversion of the data into return format was followed 

by the stationarity and ADF tests, and the results showed that 

the p-value, 0.0116, was smaller than � = 0.05. This led to the

conclusion that the H0 was rejected, thereby indicating the 

CSI weekly data were stationary. 

The ACF and PACF values obtained from the R-studio and 

presented in Fig. 3 were used to identify the starting steps to 

create the ARIMA Model. 

a)                                              b) 

Fig. 3  a). ACF plot, and b). PACF plot. 

The ACF output indicated that the coefficient was 

significant at lag-1 while the PACF did not have any 

significant coefficient value at any point. This showed that the 

potential models to be formed were ARIMA (1,0,1), 

ARIMA(1,0,0), and ARIMA(0,0,1). Moreover, the parameter 

estimation process was conducted using the R-studio software, 

and the results are presented in the following TABLE I. 

TABLE I 

PARAMETER ESTIMATION RESULTS AND AIC VALUE FOR THE ARIMA MODEL  

Model op qp AIC 

ARIMA(1,0,1) -0.6736283 0.8741824 -223.71

ARIMA(1,0,0) 0.1246359 - -222.49

ARIMA(0,0,1) - 0.183416 -222.94

Table I shows that the best ARIMA model was the 

ARIMA(1,0,1) because it had the smallest AIC value. This 

was followed by the determination of the GARCH effect 

using the LM, autocorrelation, and normality tests. 

B. Diagnostic Check of Heteroscedasticity, Autocorrelation

and Normality

The determination of the best model was followed by the

evaluation of the heteroscedasticity to understand the effect of 

the remaining ARCH in the ARIMA model estimation results 

on the residuals. This was achieved using the Lagrange 

Multiplier test based on the following hypothesis: 

H0: �� = �� = ⋯ = � = 0 (no heteroscedasticity effect)

H1: There is at least one �	 ≠ 0, for i=1,2,...,m (there is a

heteroscedasticity). 

The ADF test showed that the p-value 0.00479 was smaller 

than α = 0.05 and this led to the conclusion that the hypothesis

H0 was rejected, and the CSI weekly data was stationary. 

Therefore, the ARCH/GARCH affected the residuals of the 

ARIMA (1,0,1) model. 

The autocorrelation test was also conducted using the 

Ljung Box based on the following hypothesis: 

H0: �� = �� = ⋯ = � = 0  (there is no autocorrelation in

the residuals). 

H1: There is at least one �	 ≠ 0, for i=1, 2, ..., m (there is
autocorrelation in the residuals). 
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The results showed that the QLB value 4.7593 obtained was 

smaller than the s�.�t� �8� = 15.5073 and the probability p-

value of the Ljung Box was also 0.783 more significant than 

the α value = 0.05. This led to the conclusion that there was

no autocorrelation in the residuals of the ARIMA (1,0,1) 

model. 

The normality test was also applied to ascertain the 

distribution status of the residuals from the ARIMA model 

using the Shapiro-Wilk technique based on the following 

hypotheses: ��: The data has a normal distribution.��: The data does not.

The results showed that the probability value obtained from 

the Shapiro-Wilk test was 2.001×10-05 and this was smaller 

than the α value of 0.05. This indicated that the residuals were 

clearly not distributed normally. The normality test status can 

be ignored because fluctuating data changes with a heavy 

tailed tendency do not provide changes to the ARIMA model 

for CSI financial data. The residual assumption test conducted 

was observed to have indicated the existence of 

heteroscedasticity in the ARIMA (1,0,1) and this could be 

solved using the ARCH/GARCH model. This led to the 

plotting of the ACF and PACF as presented in the following 

Fig. 4. 

a)                                             b) 

Fig. 4  a). ACF and b). Plot PACF residuals of ARIMA (1,1). 

The results from the ACF plot showed that the coefficient 

value was only significant at lag-1 while the PACF Plot 

indicated a lack of significant coefficient value at any lag until 

lag-3. Therefore, it was possible to form GARCH (3,2), 

GARCH (3,1), GARCH(2,2), GARCH(1,2), GARCH(1,1), 

and GARCH(1,0). This was followed by the presentation of 

the parameter estimation in TABLE II.

TABLE II 

PARAMETER ESTIMATION OF GARCH MODEL AND AIC VALUE  

Model z {p {| {} ~p ~p AIC 

GARCH (3,2) -1.598 × 10-04 3.518 × 10-02 -1.789 × 10-02 -2.396 × 10-02 1.276 × 10+00 5.025 × 10-0-3 -3.947921

GARCH (3,1) -1.456 × 10-04 2.153 × 10-02 -9.918 × 10-03 -2.653 × 10-02 1.263 × 10+00 - -3.992398

GARCH (2,2) -9.451 × 10-05 2.874 × 10-02 -5.128 × 10-02 - - 1.184 × 10+00 1.376 × 10-02 -4.026991

GARCH (1,2) 5.664 × 10-05 1.085 × 10-08 - - 8.963 × 10-01 9.464 × 10-09 -3.881724

GARCH (1,1) 7.725 × 10-04 7.075 × 10-01 - - -3.334 × 10-01 - -4.216274

GARCH (1,0) 4.876 × 10-04 5.817 × 10-01 - - - - -4.198221

The best GARCH model with small value of AIC is 

determined as GARCH (1,1), and it is obtained from the 

parameter estimation results and presented as follows: 

��� = 0.0007725 +  0.7074639
���� −  0.3333629�����  (15)

This model identified volatility of CSI depending on only 

one lag. This short-term lag of the model indicates that 

volatility changes fast for the next time.   

C. MS-GARCH Modeling for Volatility of CSI

The CSI weekly data were observed to have the tendency

to increase and decrease rapidly, thereby indicating the 

existence of a structural change. This was determined using 

the F-test statistics based on the following hypotheses: 

H0: �	,� = �	   , i = 1,2, …, n (no structural change).

H1: �	,� ≠ �	= i, i = 1, 2,…, n (there is a change in structure).

The analysis conducted in the R-studio showed a p-value 

of 2.2×10-16 which was smaller than the α = 0.05, thereby 

indicating the rejection of the hypothesis and this meant there 

was a structural change in the CSI weekly data. 

The MS GARCH model was required to determine the 
volatility conditions that led to structural changes. This was 

observed from the difference between regime 1 for high 

volatility and regime 2 for low volatility. Moreover, the order 

selected to estimate the MS-GARCH model was based on the 

previous GARCH, and this led to the preference for MS-

GARCH (1,1). This was followed by the estimation process 

and the equation of two regimes GARCH model is presented 

as follows: 

��� = �0.0005 + 0.3175
���� + 0.0001����� ;  regime10.0005 + 0.3178
���� + 0.0001����� ;  regime2 (16)

The MS GARCH model of transition probability matrix is 

also obtained as follows: 

R = � T 1 − T1 − � � � = �1.0000 0.00000.3148 0.6852� (17) 

The results of the transition probability matrix were used to 

conclude that the probability of low volatility remaining 

constant was 1.0000 while the high changing to low was

0.0000. Moreover, the chance of high volatility remaining 

constant was 0.6852 while the probability of low volatility

turning to high was 0.3148. The information of probability

the change of volatility is very useful for decision in stock 

investmens.  

D. Bayesian MS-GARCH Modeling for Volatility of CSI

The Bayesian MS-GARCH) model was combined with the

Bayesian methods for the estimation process. The purpose 

was to determine the volatility conditions experiencing 

structural changes and to overcome the problems associated 
with a limited amount of data. Therefore, the MS-GARCH 

(1,1) obtained from the previous estimation results was 

further used to determine the Bayesian MS-GARCH (1,1) 
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model through the R-studio software, and the equation 

obtained is presented as follows: 

��� = �0.0004 + 0.4853
���� + 0.1111����� ; regime11.1661 + 0.3643
���� + 0.3361����� ; regime2 (18)

The transition probability matrix of the Bayesian MS-

GARCH model were also obtained as follows: 

R = � T 1 − T1 − � � � = �0.8938 0.10620.6425 0.3575� (19) 

These results showed that the probability of the low 

volatility remaining constant was 0,8938 while the high 

changing to the low was 0.1062. Moreover, the chance of high 

volatility remaining constant was 0.3575 while the low 

turning to high was 0.6425. The results showed that the model 
Bayesian MS-GARCH could be used more naturally for data 

with the cases not only changes in data structure but also to 

overcome the effect heteroscedasticity and asymmetric effects 

on its volatility. 

E. The Best Model Selection

The best model was selected using the smallest values of

AIC and BIC as indicated in the following Table III. 

TABLE III 

COMPARISON OF AIC AND BIC OF THE MODEL 

Model 
Best Selection Model 

AIC BIC 

GARCH -4.2163 -4.1106

MS GARCH -243.1777 -226.5574

Bayesian MS-GARCH -388.9084 -372.2881

The results showed that the best model for CSI volatility 

was the Bayesian MS-GARCH model due to its low AIC and 

BIC values compared to the others. The following gives the 

application of Bayesian MS-GARCH model in investment. 

The VaR approach was used to determine the level of risk 
investors were expected to experience when investing in CSI. 

The value was calculated at an error rate of α = 0.05 and the 

investment time T was varied at 1, 5, 10, 20, and 30 weeks 

with the initial capital to be invested assumed to be IDR 

100,000,000. The results showed that the VaR values for each 

model were IDR 3,722,966 for a holding period of 1 week, for 

5 weeks IDR 8,324,805, for 10 weeks IDR 11,773,052, for 20 

weeks IDR 16,649,610, and for 30 weeks IDR 20,391,525. 

The longer holding periods than higher the VaR value as the 

investor’s consideration.   

This study modeled the CSI financial data volatility using 

the Bayesian MS-GARCH model with due consideration for 
the stochastic changes in the data structure. Moreover, the 

model was used to determine the VaR at a confidence level of � = 0.05 and this provided information on the potential losses

that might be experienced when investing over a specific 

period. These results were expected to assist the investors in 

managing investment risk and making more informed 

decisions. 

IV. CONCLUSION

This study was conducted to determine the performance of 

the GARCH and MS-GARCH models. It was observed that 

the MS GARCH estimation process focused on the maximum 

likelihood algorithm and the Bayesian approach to model the 

volatility of CSI stock data. The results showed that the MS-

GARCH model with a Bayesian approach had the smallest 

AIC and BIC values, thereby indicating the existence of the 

lowest variance and volatility. This further indicated that the 

potential risk of investing in CSI data was at the smallest using 

this model. The results further showed that the model could 

be used for data with the cases of heteroscedasticity, changes 

in data structure, and asymmetric effects. The Bayesian model 

of MS-GARCH has described volatility of CSI very well, this 
result can be used to assess the investment risk based on the 

Value at Risk as the effort to minimize the risk faced by the 

investors. 
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