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Abstract—Conventional methods of quantifying the chemical content of potatoes at different storage temperatures are time-consuming 

and expensive. This research studied the Visible and Near Infrared (Vis-NIR) spectroscopy for possible rapid and nondestructive 

methods. In this study, healthy and Fusarium spp. Potato seeds of Granola L varieties were infected artificially through the process of 

inoculation of fungi, and healthy potatoes were stored in various post-harvest storage conditions, namely temperatures 12°C, 25°C and 

a combination of temperatures 12°C and 25°C. VIS-NIR spectral data from seeds are observed periodically during the storage period. 

The study results showed that Vis-NIR predicted sucrose content in potatoes. The best-developed PLSR calibration model for potatoes 

stored at 25°C and a combination of 12°C and 25°C show R2c of 0.87 and 0.83 and RMSEC of 0.26 and 0.28. The models also successfully 

predicted the sugar content of potato stored at 25°C and a combination of temperatures 12°C and 25°C with R2p 0.75 and 0.78, RMSEP 

of 0.36 and 0.32, and RPD of 1.99 and 2.81 for sucrose. The developed model of sucrose content or potato storage temperatures of 12°C 

is not recommended for monitoring and detection due to the low RPD < 1.9 even though the R2c values are 0.65 – 0.9. the results of this 

investigation indicate that VIS-NIR spectroscopy could potentially serve as a tool for quantifying the chemical composition of potatoes 

during post-harvest storage.  
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I. INTRODUCTION

Potato (Solanum tuberosum L.) holds significant 
prominence as one of the most extensively cultivated crops 
globally. It serves as a fundamental dietary component in 
numerous developed and developing nations, contributing to 
its status as a staple food. Potatoes are ingested in their 
uncooked state as a fundamental sustenance or vegetable, 
transformed into French fries, crisps, and additional culinary 
enhancements, and employed in the production of potato 
flour, starch, and alcohol [1]. According to the data provided 
by the Food and Agriculture Organization (FAO), the global 
production of potatoes amounted to a significant quantity of 
376 million metric tons. In 2021, China and India emerged as 
the leading nations in potato production, with 94 million 

metric tons and 54 million metric tons, respectively (FAO, 
2022). The escalating need resulting from the expanding 
populace and processing sectors has engendered a substantial 
impetus for augmented output. Concurrently, mitigating 
detriments inflicted by biotic and abiotic pressures is 
paramount in cultivating potatoes.  

Potatoes are susceptible to numerous pathogens that can 
result in substantial direct or indirect losses in their 
production. Because potatoes are underground vegetable 
crops that reproduce asexually, the risk of soil- and tuber-
borne illnesses is always present. [3]. Furthermore, fungal 
pathogens, among other biotic stresses, pose a significant 
constraint in the potato production system and can lead to 
economic losses in the field and during transportation and 
storage [4]. In particular, the sugar content, namely sucrose, 
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glucose, and fructose, is a vital determinant of the intrinsic 
quality of potatoes [5]. This determinant directly correlates to 
the vegetable's nutritional worth, taste, and durability [6], [7]. 
Sucrose or non-reducing sugar is one of the disaccharide 
compounds with a chemical systematics called α-D-gluco-
pyranosyl-β-D-fructofuranoside and molecular formula 
C12H22O11 [4]. Sucrose levels in potatoes can be used to 
assess ripeness (such as harvest age) and fungal damage (such 
as Fusarium spp. infection) [8], [9]. 

Detecting internal defects in potatoes, such as internal 
brown spots, hollow heart, heat necrosis, and black heart, 
poses a significant challenge for food engineering. The most 
conventional approaches employed to assess the internal 
quality of potatoes are characterized by their destructive 
nature and inefficiency [10]. These internal defects are not 
readily apparent until the tubers are cut or peeled, leading to 
economic losses in the potato industry. Growers cannot 
distinguish between healthy and defective potatoes, resulting 
in waste during processing and undermining consumer 
confidence. A practical assessment system in potato 
production should possess notable attributes such as accuracy, 
rapidity, and cost-effectiveness.  

Those issues can be addressed using nondestructive 
techniques, which can potentially separate raw potato tubers 
based on the presence of internal defects before they are 
brought to the fresh market or processed. Several noninvasive 
methodologies, such as spectroscopic techniques, computer 
vision systems, and ultrasound methods, have been 
extensively examined to evaluate internal defects in potato 
tubers. However, the efficacy of these techniques varies 
depending on the specific type of defect [11], [12]. 

According to Nieto-Ortega et al., reflectance spectroscopy 
has appeared as an up-and-coming technique for agricultural 
management owing to its nondestructive, expeditious, and 
comparatively cost-effective characteristics in the monitoring 
of vegetation conditions [13]. The success of reflectance 
spectroscopy for studying plants relies on the relationship 
between light and their chemical and structural makeup and 
water content. The reflection of light across the visible 
spectrum (400 to 700 nm), near-infrared spectrum (NIR, 700 
to 1,100 nm), and shortwave infrared spectrum (SWIR, 1,100 
to 2,400 nm) allows for a holistic evaluation of changes in 
visual indicators such as pigments and leaf color, as well as 
the underlying biochemical factors such as nutrient 
composition and secondary metabolism, and physiological 
responses such as photosynthetic activity and water relations, 
in response to disease or stress [14], [15].  

II. MATERIALS AND METHODS 

A. Sample Preparation 

One hundred and sixty-five potato tubers of cultivar 
Granola L. were obtained from the same source in the 
Research Field of PT. BISI International, Tbk., located in 
Pujon, Malang, East Java, Indonesia. The planting occurred 
1109 meters above sea level, with average daily temperatures 
ranging from 20 to 30°C. The potato tubers were harvested 
from August to September 2022. The collected samples were 
ensured to be freshly harvested and free from fungal spores, 
pests, and diseases before their transfer to the Biophysics 

Engineering Laboratory, Faculty of Agriculture Technology, 
Universitas Gadjah Mada, for subsequent examination.  

One hundred and sixty-five potato tubers (165), with an 
average weight of 30 g and uniform size, underwent a 
thorough cleansing process using tap water to eliminate any 
traces of soil. The tubers were dried before analysis, sterilized 
with a 1% NaClO solution (sodium hypochlorite) for 10 
minutes, rinsed with distilled water, and dried again. Standard 
cuts of 30 mm × 30 mm were made on all tubers using sterile 
electric drills. The fungal pathogen used in this study was 
Fusarium spp., prepared using the cork borer wounding 
(CBW) method described by Farokhzad et al. [16]. This 
process involved utilizing 500 g of commercially available 
Fusarium solani inoculant powder containing spores or other 
fungal propagules suitable for application. However, the 
fungal pathogen in the present study was isolated from 
artificially infected potato tubers, not directly from the 
inoculant powder. The pathogen isolation procedure was 
carried out on tubers exhibiting symptoms of dry rot. In a 
laminar cabinet, 1 mm x 1 mm sections of diseased and 
healthy tissue were excised from the infected tubers. These 
sections were then subjected to surface sterilization using a 
sequential process: 1% sodium hypochlorite for 1 minute, 
followed by 70% ethanol for 30 seconds, and finally washed 
with distilled water. Subsequently, the sterilized tissue pieces 
were placed on potato dextrose agar (PDA) media and 
incubated at a temperature range of 18 °C to 24 °C. Following 
a two-day incubation period, the initial fungal growth 
observed only on the diseased tissue was meticulously 
transferred to fresh PDA plates to establish a pure fungal 
culture. One hundred and ten samples (110) were randomly 
selected for artificial infection with Fusarium spp. inoculum. 
The inoculum was applied to the uniform lesions on each 
tuber, which the electric drills had created. The remaining 
fifty-five (55) samples were kept without infections as the 
control group. 

Potato tubers were stored in plastic containers in dark 
storage for 30 days. The inside of each container has a layer 
of damp filter paper at the bottom, and then the plastic 
container is closed. The samples were treated as shown in 
Table 1. Relative humidity was maintained at 85% for all 
variations. Meanwhile, the Testo 174H Data Logger 
combines and stores temperature and humidity (RH) data. 
Data observation was taken every five days. 

TABLE I 
SAMPLE CODES AND TREATMENT USED IN THIS RESEARCH 

Samples Treatment 

T12°C Stored at 12ºC temperature for 30 days 
T25°C Stored at 25ºC temperature for 30 days 
T12ºC25ºC Stored at 12ºC temperature for 10 days, followed 

by storing at 25ºC for 20 days 

B. Spectra Measurement 

Spectral measurement of potato tubers is carried out using 
two types of modular spectrometers: Vis-NIR Miniature 
Spectrometer and NIR Miniature Spectrometer (Figure 1). 
The instrument used in this study consists of 4 components, 
namely Vis-NIR Miniature Spectrometer (Type: Flame-T-
VIS-NIR Ocean Optics, Wavelength range: 350-1000 nm, 
optical resolution: ~0.1-10.0 nm FWHM), NIR Miniature 
Spectrometer (Type: FLAME-NIR+ Ocean Optics, 
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Wavelength range: 1000-1600 nm, Optical resolution: 10.00 
nm FWHM),  high-powered halogen tungsten lamp (Type: 
HL-2000-HP-FHSA Ocean Optics, wavelength range: 360-
2400 nm, Fiber Connector SMA 905, nominal bulb power 20 
W, typical output power 8.4 mW), and Fiber optic cable 
reflection probe (Type: QR400-7-VIS-NIR Ocean Optics, 
wavelength range: 400-2100nm).  

The reflectance standard (Type: WS-1 Diffuse Reflectance 
Standard, Material: PTFE) was used for calibration. The 
process of obtaining spectra involves conducting spectra 
capture settings. Ocean View 2.0.12 software collected 
reflectance spectra in the Vis-NIR and SW-NIR regions. 
Distance from probe to samples was 2 cm as conducted by 
[17]. 

 

 
Fig.  1  Spectra measurement using modular Vis-NIR and NIR spectroscopy. 

The integration time for the spectra acquisition process was 
set at 470 ms for Vis-NIR and 800 ms for NIR, while the 
average scans were 20 (Vis-NIR) and 12 (NIR), respectively. 
A boxcar width of 1 was employed. Calibration was executed 
before obtaining the sample spectra by obtaining white 
reference spectra using a ceramic diffuse reflectance standard 
(WS-1, Ocean Optics, USA) and a dark reference by 
deactivating the light source. Each sample was scanned ten 
times. 

C. Sucrose Content Measurement 

The sugar content of sucrose was measured for each period 
in the samples using a digital refractometer (HI96801, Hanna 
Instruments company, Woonsocket, RI), similar to the 
method by Costa et al. [18]. In the conventional method, 
potato samples blended into a fine powder were used to 
measure the amount of sugar. Before quantifying the sugar 
concentration of the specimens, the refractometer was 
adjusted for accuracy or calibrated by employing deionized 
water. The potato juice was placed on the refractometer after 
reaching the ambient temperature and its sugar content was 
measured three replicates on each sample and expressed in %. 

D. Partial Least Square Regression (PLSR) Analysis  

Chemometrics employs multivariate statistics to extract 
valuable insights from intricate analytical data. In this 
investigation, the utilization of partial least square regression 
(PLSR) was used. These models aimed to explain the 

structure and connections between the modular Vis–NIR 
spectroscopy and spectroscopic data and the corresponding 
chemical properties, namely sugar and acidity (pH). PLSR 
analysis created predictive models of sugar content (glucose, 
fructose, sucrose, inverted sugar) and pH. PLSR analysis is 
carried out by making a calibration model and testing the 
performance of the model. PLS calibration model creation 
using full cross-validation.  

The reflectance spectra from Vis–NIR range (400–1000 
nm) and SW–NIR range (1000–1700 nm) obtained using 
Ocean View 2.0.12 were collected separately and combined 
in Microsoft Excel®. The chemometric analyses were 
conducted on these spectra using Unscrambler X software 
version 10.4 (CAMO Software AS, Oslo, Norway). All 
spectra in Vis–NIR (400–1000 nm) and SW–NIR (1000–1700 
nm) were combined to develop the PLSR model. The spectra 
were preprocessed using six different methods: standard 
normal variate, multiplicative scatter correction, area 
normalization (AN), Savitzky–Golay smoothing, Savitzky–
Golay 1st derivative, and Savitzky–Golay 2nd derivative to 
address potential issues that could affect the accuracy of 
chemical composition measurement. 

All spectra data were separated into calibration and 
prediction data sets. The evaluation of models was conducted 
concerning their performance of the coefficient of 
determination for calibration (R2c) and root mean square error 
calibration (RMSEC). The root mean squared error of cross-
validation (RMSECV) is used for testing calibration models 
by making sure they are not skewed with data points or the 
presence or absence of outliers. The best calibration model, 
according to the most effective spectral transformations 
indicative of the finest preprocessing spectra, was then 
applied to prediction data sets and the evaluation is conducted 
by taking into consideration the coefficient of determination 
of prediction (R2p), root mean squared error of prediction 
(RMSEP), and RPD values. 

The coefficient of determination (R2) is used to see the 
relationship between two variables, namely the relationship 
between the actual value of the analyte and the predicted 
value. R2 indicates the proportion of variability in the Y 
variables (sucrose data) that can be accounted for by the X 
variables (reflectance data). This metric effectively 
determines the predictive capacity of the X variables 
regarding the Y variables. The range of values for the 
coefficient of determination (R2) is between zero (0) and one 
(1) and has a small Root Mean Square Error (RMSE) value. 
Implementing a calibration exhibiting an R2 value ranging 
from 0.83 to 0.90 in most use cases may be feasible, and a 
value above 0.92 is considered utilizable. The RMSEC and 
RMSEP are the square root of the mean of the squared 
calibration and prediction errors. It determines the error 
between the actual and predicted values on the calibration and 
prediction set. 
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Fig.  2  The flow of research started from sample preparation, spectra measurement, and data analysis. 

 
To assess the precision of modeling with multivariate 

calibration using RMSEC and RMSEP. The RPD, which 
stands for the ratio of the standard deviation of the reference 
data for the validation set to the RMSEP, is a crucial model 
assessment metric used to assess model effectiveness. 
Different ranges of RPD values, such as 1.5–2.0, 2.0–2.5, and 
above 2.5–3.0, can provide varying degrees of screening 
capabilities. These ranges correspond to rough, estimated 
quantitative, and excellent screening [19], [20]. An ideal 
model should have high R2 and RPD values and low RMSEC 
and RMSEP values, with the difference between the last two 
values being minimal. 

III. RESULTS AND DISCUSSION 

A. Sucrose Content of Potato 

Table 2 shows the mean and standard deviation for sucrose 
content of Granola L potato tuber. Regardless of the storage 
temperature, the infected potato had higher sucrose than the 
noninfected potato, but the potato stored at 25°C had higher 
sucrose than at 12°C. According to Sim et al., non-reducing 
sugar content or sucrose increases in storage with 
temperatures below 10-12ºC. Sucrose (non-reducing sugar) 
content also slowly increases up to 40 days after storage, then 
rapidly declines during the sprouting stage [21]. According to 
Tiwari et al, in biotic and abiotic pressure conditions such as 
Fusarium spp. fungus infection, there is an increase in sugar 
content in potatoes as a marker of molecular reactions [4]. 
Hence, changes in chemical composition in infected potatoes 
tend to be faster. These findings demonstrate how temperature 
fluctuations affect sucrose concentrations, with significant 
differences between infected and noninfected samples found 
in all treatment groups. 

TABLE II 
MEAN AND STANDARD DEVIATION (SD) OF SUCROSE CONTENT IN POTATO 

TUBERS 

Samples Category 
Sucrose (%) (mean ± 

SD) 

T12°C Noninfected (N-12) 4.95 ± 0.49 

Infected (I-12) 5.89 ± 0.42 
T25°C Noninfected (N-25) 5.04 ± 0.60 

Infected (I-25) 5.77 ± 0.64 
T12ºC25ºC Noninfected (N) 4.90 ± 0.52 

Infected (I) 6.25 ± 0.71 

B. Visible and Near-Infrared (Vis/NIR) Spectra 

This study uses a modular spectrometer with two probes, 
one for visible and near-infrared (Vis-NIR) light with 
wavelengths of 400-1000 nm and the other for shortwave 
near-infrared (SWNIR) light with wavelengths of 900-1700 
nm. In Vis-NIR spectroscopy, after plotting a spectrum from 
350 to 1100 nm, the wavelength ranges below 400 and above 
1000 nm appeared noisy or showed interference. Therefore, 
for data analysis, it is expected to manually cut the spectrum 
only to include the wavelength range from 400 to 1000 nm 
[22]. Reducing noise in a spectrum aims to eliminate or 
decrease unwanted interference or noise, enhancing the clarity 
and visibility of important information in the range. 
According to [6], the decrease in wavelength points can speed 
up spectral detection, but it also reduces resolution and 
slightly affects the model's accuracy. 

Figures 3(a), 4(a), and 5(a) show the original spectra for 
Noninfected (N) and infected (I) potato tubers stored at 12°C 
(T12°C), 25°C (T25°C), and combination storage 
temperatures at 12°C and 25°C (T12ºC25ºC). All spectra have 
a similar pattern, with an absorbance at 480 nm associated 
with carotenoids [23]. According to Bravo, the most essential 
pigments in potatoes are carotenoids, anthocyanins, and 
chlorophyll [24]. A lower reflectance at 670 nm suggests 
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chlorophyll in Noninfected (N) potatoes. This means they 
absorb more energy in this spectrum than infected (I) ones. 

Prior research reported higher chlorophyll content in healthy 
tomatoes than those infected with Fusarium spp. [14]. 

 

  

(a) (b) 

Fig.  3  (a) Original spectra, and (b) Savitzky-Golay 2nd derivative (SGD2) spectra of potato tuber samples stored at 12°C (T12ºC) 

  
(a) (b) 

Fig. 1  (a) Original spectra, and (b) Savitzky-Golay 2nd derivative (SGD2) spectra of potato tuber samples stored at 25°C (T25ºC) 

  
(a) (b) 

Fig. 2  (a) Original spectra, and (b) Savitzky-Golay 2nd derivative (SGD2) spectra of potato tuber samples stored at 12°C and 25°C (T12ºC25ºC) 

 
The reflectance spectra of Noninfected (N) and infected (I) 

potatoes showed a similar pattern. i.e., high at 900 nm, 
decreased to 1400 nm, and then increased to 1700 nm. The 
water content in the samples caused significant absorbance 
peaks at 995 nm, 1210 nm, and 1435 nm [12]. The absorbance 
of Noninfected (N) potatoes was higher than that of infected 
(I) potatoes at 990 nm and 1210 nm, which could be attributed 
to their higher water content. 

Figures 3(b), 4(b), and 5(b) show the Savitzky-Golay 2nd 
derivative (SGD2) spectra for Noninfected (N) and infected 
(I) potato tubers stored at 12°C (T12°C), 25°C (T25°C), and 
combination storage temperatures at 12°C and 25°C 
(T12ºC25ºC). It was shown that the SDG2 enhanced spectral 

resolution and revealed critical information about potato 
parameters, such as sugar content and pH. Infected (I) and 
Noninfected (N) potatoes show significant variation in 
absorbance between 400 - 700 nm and 700 - 950 nm. High 
reflectance at 690 nm in potato spectra correlates with 
chlorophyll, while 770 nm correlates with fructose and 
glucose [25]. A significant increase in peak absorption 
resolution between 1065 and 1335 nm represents the sugar 
content of glucose and fructose) [26]. Other absorption peaks 
or reflectance are seen at wavelengths of 1370 nm. SW-NIR 
bands in the 1355-1400 nm region, seen in all three potato 
spectra with different storage temperature treatments, 
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represent the second overtone of the C-H combination 
(carbohydrates, fats) [27]. 

C. PLSR Model 

The PLSR calibration model was developed using 
calibration datasets to predict the sucrose content of potatoes 

under different storage conditions. Table 3 shows the 
calibration and prediction datasets used in constructing the 
Partial Least Squares Regression (PLSR) model for predicting 
sucrose content (%) across multiple sample categories and 
temperature conditions. In general, Table 3 shows that 
datasets for calibration and prediction had similar values.  

TABLE II 
CALIBRATION AND PREDICTION DATASETS WERE USED IN DEVELOPING THE PLSR MODEL FOR PREDICTING SUCROSE CONTENT. 

Samples Category Sucrose (%) (mean ± SD) 

Calibration 

T12°C Noninfected (N-12) 4.93 ± 0.49 
Infected (I-12) 5.88 ± 0.42 

T25°C Noninfected (N-25) 5.04 ± 0.60 
Infected (I-25) 5.79 ± 0.63 

T12ºC25ºC Noninfected (N-P) 4.89 ± 0.51 
Infected (I-P) 6.27 ± 0.70 

Prediction 

T12°C Noninfected (N-12) 4.98 ± 0.50 

Infected (I-12) 5.91 ± 0.42 

T25°C Noninfected (N-25) 5.06 ± 0.62 
Infected (I-25) 5.74 ± 0.66 

T12ºC25ºC Noninfected (N-P) 4.90 ± 0.55 

Infected (I-P) 6.23 ± 0.74 

 

Table 4 shows the PLSR results for sucrose prediction 
using a combination of Vis-NIR and SWNIR wavelengths of 
400 – 1700 nm. The results for RMSEC, RMSEP, and RPD 
differed depending on the preprocessing method and 
temperature. The best calibration model for predicting sucrose 
in healthy and Fusarium spp-infected potatoes was achieved 
using Savitzky-Golay 1st or 2nd Derivative. Potato stored at 
25ºC and a combination of 12ºC and 25ºC resulted in higher 

R2c than the lower temperature of 12 ºC. The best PLSR 
models produced lower RMSEC and RMSEP values, 
suggesting increased model correctness, and obtained higher 
RPD values, showing improved prediction reliability. These 
findings highlight the need to use proper preprocessing 
approaches to enhance the performance of PLSR models for 
predicting sucrose concentration in potato tubers under varied 
temperature settings.  

TABLE III 
THE RESULTS OF CALIBRATION AND PREDICTION OF SUCROSE CONTENT OF POTATO TUBER BY USING PLSR WITH SEVERAL PREPROCESSING METHODS 

  
Preprocessing methods  

RAW AN SNV MSC SGS 1st   SGD 2nd  SGD 

T12°C  R2c 0.54 0.01 0.59 0.00 0.49 0.64 0.65 

RMSEC 0.44 0.65 0.42 0.65 0.47 0.39 0.39 
R2p 0.55 0.01 0.49 0.00 0.46 0.60 0.67 

RMSEP 0.44 0.65 0.48 0.65 0.48 0.41 0.38 
RPD 1.48 1.00 1.37 1.00 1.35 1.58 1.73 

T25°C 
R2c 0.61 0.76 0.74 0.80 0.55 0.87 0.84 

RMSEC 0.45 0.35 0.36 0.32 0.48 0.26 0.29 

R2p 0.62 0.45 0.44 0.04 0.40 0.75 0.72 

RMSEP 0.44 0.55 0.54 1.68 0.56 0.36 0.38 
RPD 1.63 1.30 1.32 0.43 1.28 1.99 1.89 

T12ºC25ºC R2c 0.72 0.76 0.80 0.81 0.64 0.77 0.83 

RMSEC 0.37 0.33 0.31 0.30 0.41 0.33 0.28 
R2p 0.57 0.68 0.62 0.67 0.53 0.75 0.78 
RMSEP 0.46 0.39 0.45 0.41 0.48 0.35 0.32 
RPD 1.96 2.29 2.01 2.18 1.87 2.56 2.81 

 
The calibration model employing PLSR for quantifying 

sucrose content in potatoes stored at a temperature of 12°C 
exhibited a relatively low R2c value of 0.65 and RMSEC of 
0.39 using the Savitzky-Golay 2nd Derivative spectra. This 
model was able to predict the sucrose content with R2p 

accurately of 0.67, RMSEP of 0.38, and RPD of 1.73. 
However, although the RPD value meets the requirements for 
a predictive model, the R2 is not feasible because it is less 
than 0.82.  
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The Savitzky-Golay 1st Derivative method was applied to 
the original spectra to quantify the sucrose content in potato 
tubers stored at 25°C resulted in a higher R2c of 0.87 and a 
lower RMSEC of 0.26. The model could predict the sucrose 
content with R2p of 0.75, RMSEP of 0.36, and RPD of 1.99. 
The Savitzky-Golay 2nd Derivative method was applied to the 
original spectra to quantify sucrose content in potatoes stored 
at 12°C and 25°C temperatures, resulting in R2c of 0.83 and 
RMSEC of 0.28. Based on this approach, the model could 
predict the sucrose content with R2p of 0.78, RMSEP of 0.32, 
and RPD of 2.14.  

The statistical values obtained from the experimental data 
were within an acceptable range, suggesting that the 
mathematical models used to quantify the sucrose levels in 
this investigation were satisfactory and suitable for potential 
implementation in agriculture [28]. In other studies, R2 values 
of 0.81 were obtained for sucrose in potato tuber stored at 
12°C temperature [29], R2 values of 0.78 were obtained for 
sucrose in mandarin fruit [30], and R2 values of 0.92 were 
obtained for sucrose in molasses stored at 25°C [31].  

The PLS loadings or regression coefficient analysis 
(known as β-coefficient) was used to denote which 
wavelengths are essential in a given PLSR of the sucrose 

content model [32]. The regression coefficients for the 
prediction of sugar content, specifically sucrose on potato 
storage at 12°C using the Savitzky-Golay 2nd Derivative 
method is illustrated in Figure 6. In the Vis-NIR wavelength 
range, some of the most prominent peaks in potato spectra are 
absorbance at 407 nm and 925 – 975 nm. Peak absorbance at 
407 nm is likely correlated with carotenoids [33]. Peak 
absorbance at 925 – 975 nm is likely correlated with the third 
overtone of the C-H stretch, the first overtone of O-H, the 
combination of the O-H stretch, and the deformation mode of 
sucrose. According to Rongtong et al., the PLSR model for 
estimating sucrose content in papaya was obtained in the 
wavelength range of 910 – 1162 nm and 1350 – 1792 nm and 
produced R2C value of 0.97 [34]. The wavelength range 
identified at 1008 – 1631 nm is likely correlated with the 
second overtone combinations of CH or OH in sucrose [35]. 
In the NIR wavelength range of the potato storage spectra at 
12°C, reflectance at 1432 nm (adjacent to 1440 nm) correlates 
with the first overtone O–H stretch of sucrose and starch 
structures. 

 

 
Fig. 3  The regression coefficient of PLSR using the Savitzky-Golay 2nd Derivative method for quantification of sucrose content in potato storage at 12°C and a 
combination of 12°C and 25°C and the Savitzky-Golay 1st Derivative method at 25°C storage temperature. 

 
Figure 6 shows that potato spectra at storage temperatures 

of 12°C using the Savitzky-Golay 2nd Derivative method and 
25°C using the Savitzky-Golay 1st Derivative method in the 
Vis-NIR wavelength region (400 – 1000 nm) exhibit similar 
absorbance at 407 nm and 925 – 975 nm. However, they differ 
in the lower absorbance at 825 nm and 888 nm. The apparent 
absorption at 550 nm may correlate with the chlorophyll 
content in potatoes [36], [37]. As the severity of disease 
infection increases, the chlorophyll content in potatoes 
decreases, leading to a weaker reflection of green light and 
damage to the leaf cell wall—consequently, the reflection at 
550 nm and the NIR spectral band decrease. 

Potato spectra obtained during pretreatment, which 
involves storage at combination temperatures of 12°C and 
25°C, exhibited absorption peaks at the following 
wavelengths: 400 – 500 nm, 545 nm, 695 nm, 825 nm, 925 – 

975 nm, 1038 nm, 1175 nm, 1210 nm, 1405 nm, 1544 nm, and 
1631 nm. Reflectance peaks were also observed at 
wavelengths of 1364 nm, 1445 nm, and 1585 nm. 
Wavelengths in the 400 – 500 nm range are likely associated 
with high carotenoid content in potatoes [38]. Carotenoids are 
natural pigments responsible for many fruits and vegetables' 
yellow, orange, and red colors [39]. While potato skin color 
typically ranges from brown to creme, the flesh is usually 
white or light. 

IV. CONCLUSION 

The results indicate that Vis-NIR can replace conventional 
methods, allowing for fast, simple, and safe processing of 
multiple parameters. The Vis-NIR technology's ability to 
accurately predict the sugar content and pH of potatoes stored 
at 12°C was low and categorized as sufficient performance. 
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The sucrose calibration models for potato storage at 12°C 
show R2c and RMSEC of 0.65 and 0.39, respectively. When 
applied to predict sucrose content, the models result in R2p of 
0.65, RMSEP of 0.38, and RPD of 1.73. However, the Vis-
NIR models developed in this study showed some relevance 
in providing rough estimates of the sugar content of potatoes 
stored at 25°C and during pretreatment or combined 
temperature storage (12°C and 25°C). The calibration models 
for potato storage at 25°C and a combination of 12°C and 
25°C show R2c of 0.87 and 0.83 and RMSEC of 0.26 and 0.28, 
respectively. When applied to predict the sugar content and 
pH of potatoes stored at ±25°C and during pretreatment, the 
models resulted in R2p of 0.75 and 0.78, RMSEP of 0.36 and 
0.32, and RPD of 1.99 and 2.81 for sucrose. The RPD value 
shows the result of sufficient and good performance. These 
estimates can be helpful for qualitatively sorting potato 
batches that exceed the acceptable upper limit for sugar 
content, thus helping to identify healthy potatoes. Further 
investigation and validation are essential to develop robust 
and dependable models for Vis-NIR spectroscopy in potato 
processing. This should be coupled with a deeper 
understanding of potato types and storage environment 
variations. Developing a modular Vis-NIR spectrometer with 
a system to choose the most suitable predictive model would 
facilitate on-site material detection and ultimately lead to a 
more adaptable apparatus for the potato processing industry. 
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