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Abstract—FFA content is one of the essential qualities of oil palm fruit. FFA content exceeding 5% is considered unsuitable for human 

consumption.  Commonly, FFA content is determined by chemical methods in the laboratory, but it is destructive, time-consuming, and 

costly. Several non-destructive methods have been investigated, but a maturity prediction approach has been primarily used with no 

direct relation to FFA content. Thus, there is a pressing need for a non-destructive framework to assess the FFA levels in the oil palm 

fruit directly. An attempt has been explored using a non-destructive palm fruit quality assessment that relied on electrical properties 

(impedance, admittance, resistance, and capacitance) in the frequency range from 50 Hz to 5 MHz was investigated to predict FFA and 

moisture content directly. Two statistical analyses were employed: stepwise multiple linear regressions (MLR) and artificial neural 

networks (ANN) to calibrate and validate electrical properties with FFA and moisture content. The best-performing models ANN 

showcased significant results: r= 0.96, R2=0.92, SEC at 0.86%, SEP at 0.97%, CV at 19.45%, consistency at 88.54, and RPD at 3.43 for 

FFA prediction, and r= 0.99, R2=0.98, SEC at 3.09 %, SEP at 3.46 %, CV at 5.44 %, consistency at 89.08 and RPD at 7.02 for predicting 

moisture content. In modeling oil palm quality determination, applying the ANN method significantly improved model performances, 

demonstrating its efficacy in predicting non-destructively both FFA levels based on admittance and moisture content based on 

impedance. 

Keywords— Artificial neural network; electrical properties; free fatty acid; moisture content; oil palm fruit. 

Manuscript received 4 Jan. 2024; revised 29 Mar. 2024; accepted 16 Apr. 2024. Date of publication 30 Apr. 2024. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The increasing demand for vegetable oil poses a challenge 

in agricultural management [1], especially concerning the 

rapid acidification of oil due to heightened lipase activity. 

This process primarily releases free fatty acids (FFA) from the 

mature and bruised mesocarp of the oil palm fruit. Elevated 

acidity significantly compromises the oil quality, as FFA 

content exceeding 5% is considered unsuitable for human 

consumption. This accelerated acidification poses challenges 

for smaller farming entities without proper milling 

infrastructure, leading to the rejection of overly ripe fruit by 

processing mills. Delayed harvesting of oil palm fruit results 
in an increased FFA content in the oil, with studies indicating 

potential FFA levels could exceed 12% when fruit is left 

unharvested for an extended post-ripening period [2], [3]. The 

maturity of fresh oil palm fruit is a crucial factor in 

determining the quality of the resulting oil [4]. Harvest timing 

significantly influences the FFA content, particularly the 
palmitic FFA within the produced oil palm fruit. Overripe 

fruit yields high FFA content in the oil, while unripe fruit 

contains low FFA and results in lower oil extraction [5],[6]. 

The maturity level of oil palm fruit is a determining factor [7] 

in producing superior-quality oil with low FFA content.  

Elevated FFA levels indicate oil deterioration, which can 

directly impact the market price of the oil. FFA can alter the 

oil's flavor, resulting in an undesirable taste, and may contain 

potentially hazardous oxidized compounds. The raw palm oil 

industry plays a vital role in producing high-purity and stable 

palm oil before it is sent to the palm oil processing facility. 
Therefore, adhering to regulatory standards is crucial to keep 

FFA levels below the set threshold of 5% [8]. 

The conventional method for determining the fatty acid 

content in oil palm fruit uses a chemical approach, which is 

complicated, time-consuming, and destructive. Thus, there is 
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a pressing need for a non-destructive framework to assess the 

FFA levels in the fruit directly and determine moisture content 

based on its electrical characteristics. It offers accuracy, 

rapidity, cost-effectiveness, and eco-friendliness. 

Currently, research using electrical characteristics is 

frequently conducted to determine the maturity level of 

various fruits, such as apples, lettuce, mangoes, strawberries, 
citrus from Garut [9], [10], lemons, tomatoes [11],  bananas 

[12] and other food items, including spinach leaf powder [13], 
milk [14], meat [15], a lamb [16], yogurts [17], honey [18] 

and oil palm fruit [7], [19]. Recent advancements have shown 

that sensors using electrical properties are instrumental in 

determining oil and water content in oil palm fruit [19]. The 

non-destructive methods for determining the FFA content of 

oil palm fruit directly based on electrical properties have yet 

to be conducted. 
Applying electrical characteristics to assess FFA levels in 

oil palm fruit is essential to evaluate oil content accurately and 

efficiently, ultimately leading to improved quality and 

profitability for palm oil businesses. In this study, 

measurements will be conducted on fruitlets as an initial step 

to explore the potential of electrical properties for determining 

FFA levels in these fruitlets. This study aims to develop 

calibration models to enhance the precision of measuring FFA 

and moisture content in oil palm fruit. 

II. MATERIALS AND METHOD 

A. Initial Phase of the Research 

1) Oil palm fruit: The oil palm fruit belonging to the 106 

Tenera variety was obtained from the Cikabayan plantation at 

Bogor Agricultural University in Bogor, Indonesia. These 
fruits were meticulously categorized based on their respective 

stages of maturation, forming distinct groups. The groups 

consisted of 12 samples from the 3-month (3M), 12 samples 

from 4-month (4M), 12 samples from 4-month and 1-week 

(4M1W), nine samples from 4-month and 2-weeks (4M2W), 

nine samples from 4-month and 3-weeks (4M3W), nine 

samples from 5-month (5M), nine samples from 5-month and 

1-week (5M1W), 12 samples from 5-month and 2-weeks 

(5M2W), 12 samples from 5-month and 3-weeks (5M3W), 

and ten samples from 6-month (6M) stages. Following initial 

procedures encompassing cleaning, precise weighing, and 

measurement of physical dimensions, the study further 
included essential electrical and chemical measurements as 

integral facets of the research. 

2) Electrical properties measurements: The evaluation of 

oil palm fruit in terms of electrical properties characteristics 

was performed using a 30 mm long and 20 mm wide copper 

ellipse. This specific copper ellipse was connected to an LCR 

Hitester 3532-50 (Hioki, Tokyo, Japan) and assessed across 

200 data points ranging from 50 Hz to 5 MHz. Before 

conducting the measurements, the LCR meter underwent 

calibration according to the manufacturer's prescribed 

procedure to minimize potential systematic errors. All 
evaluations were carried out under room temperature 

conditions. The oil palm fruit was individually measured 

once, divided by their respective weights, and positioned 

between two copper plates connected to the LCR meter. The 

measured electrical properties include impedance [11], [19], 

[20], [21], [22], [23], [24], [25], admittance, resistance, and 

capacitance[26].  

3) FFA and moisture content measurements: The acid 

value is the number of milligrams of NaOH to neutralize the 

FFA in one gram of oil or fat. A higher acid value indicates 

more FFA, potentially originating from oil hydrolysis or 

insufficient processing. The higher the acid value, the lower 

the quality. FFA (Eq. (1) is calculated based on AOAC 

940.28.2005[27]. 

 ���  �as oleate, % by weight� = � � 0.05 � 1.99 (1) 

where T is the titrant volume of 0.1 M NaOH (ml) 

The moisture content extraction followed the AOAC 

Official Method 930.04 [27], utilizing aluminum cups, a 

desiccator, an oven, and an analytical balance within the oven 

set at a temperature of 101±1 ºC. The moisture content of each 

fruit was computed using (Eq. (2). 

 Moisture Content �%� = !"#"$
" % �100 (2) 

where &'  is residue weight (grams) and & is Sample weight 

for testing (grams). 

B. Implementation Stage of the Research 

Electrical property spectra data, such as impedance, 

admittance, resistance, and admittance, were processed using 

MLR calibrated with FFA or moisture content. From the MLR 

calibration results, the most influential frequency was 

identified. This significant frequency data was then utilized as 

input for the ANN in prediction and calibration processes. The 

main objective is to achieve a regression model with optimal 
performance and minimal error (Fig.1).  

1) Multiple linear regression (MLR): The widely used 

multiple linear regression (MLR) analysis technique [28], 

[29] is crucial in fine-tuning spectral analysis models within 

the visible-near-infrared light spectrum. However, in this 

specific study, the available sample size was insufficient 

compared to the variables in the electrical spectral dataset, 

making it unfeasible to establish the MLR model due to 

collinearity issues directly. Researchers employed a stepwise 

method to overcome this limitation and improve accuracy and 

efficiency. This approach effectively reduced variable 

collinearity, leading to a notable enhancement in predictive 
accuracy while using fewer variables than the conventional 

MLR model. The development of the Stepwise MLR model 

was facilitated by IBM's statistical engineering software in the 

United States. The resulting MLR prediction models were 

structured based on multiple segments of reflectance 

frequency. Although assessing the significance of each 

frequency segment is challenging due to collinearity 

concerns, the model's interpretation remains viable. The FFA 

and moisture content prediction was conducted using 

Unscramble 10 software by CAMO. 

The formulation representing the FFA estimation model 

was delineated as Eq. (3): 

 ���  �%� = ( + ('*' + (+*+ + (,*, + ⋯ + (.*. (3) 

where FFA % was the FFA prediction value, ( was constant, 

(.  was coefficient of /th predictor, and *. was the pre-treated 

spectra value of the /th predictor at specific frequencies. The 
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formulation representing the moisture content estimation 

model could be articulated in Eq. (4): 

 01 �%� = 2 + 2'*' + 2+*+ + 2,*, + ⋯ + 2.*. (4) 

where MC % was moisture content prediction value, 3 was 

constant, 3. was coefficient of /th predictor, and *. was the 

pre-treated spectra value of the /th predictor at specific 

frequencies. 

 
Fig. 1  Data processing flowchart. 

 

2) Artificial neural network (ANN): The Artificial Neural 

Network (ANN) replicates the neural network of the human 

brain, consisting of interconnected neurons that process 
information across layers. Each neuron receives input, 

performs computations, and generates output via activation 

functions. ANN encompasses input, hidden, and output layers 

[28], [30], which are responsible for data reception, 

computation, and outcome generation. By adjusting neuron 

connections (known as "weights"), it learns from training data 

to refine its performance. Renowned for its application in 

pattern recognition, prediction, language processing, and 

more, ANN excels in handling intricate tasks and learning 

from diverse datasets, proving vital in numerous applications.  

 
Fig.2  The network diagram of ANN 

 

ANN was a hybrid approach combining MLR with 

artificial neural networks. In this study, multilayer neural 

network models were developed using acquired electrical 

spectra as input predictor variables. The network diagram of 

the ANN can be seen in Fig.2. These models, featuring hidden 

layers, were created through RapidMiner software [31], [32] 
for data analysis. They were utilized to estimate various oil 

palm qualities, including FFA and moisture content 

measurements. The process encompassed training a sequence 

of multilayer neural-net models comprising hidden and output 

layers. This study employed the spectrum of electrical 

properties obtained from selecting the best frequencies using 

the MLR method as input in an ANN. This was done to predict 

the FFA and moisture content. 

C. Evaluation  

The model performance was evaluated by comparing the 

calibration and validation. Approximately two-thirds of the 

samples were employed for calibration, while the remaining 

one-third was set aside for validation, enabling the creation of 

calibration and validation datasets. The evaluation of the FFA 

and moisture content prediction of the calibration model will 

involve a thorough analysis utilizing essential statistical 

metrics such as the coefficient of determination (R2) (Eq. (5)), 
the correlation coefficient (r) (Eq. (6)), standard error 

calibration (SEC) (Eq. (7)), standard error prediction (SEP) 

(Eq. (8)), coefficient of variance (CV) (Eq. (9)), consistency 

(Eq. (10)) and ratio of standard deviation (RPD) (Eq. (11)). 

These metrics play a crucial role in assessing the precision and 

accuracy of the calibration model, ensuring dependable 

measurements of FFA and moisture content. A model is 
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considered good if R2 1, SEP < SEC, CV  5 %, RPD  2, 

and consistency 80-110 % [33]. 

 4+ = ∑ 67�89:;#89:;<=7�8>?:@A9B#8>?:@A9B<C$
∑ 789:;#89:;<DC$ ∑ 78>?:@A9B#8>?:@A9B<DC$

 (5) 

 E = √4+   (6) 

 GH1 = I∑ �89:;#8>?:@A9B�DC$
.  (7) 

 GHJ = I∑ �89:; #8>?:@A9B#KLMN�DC$
.#' ; OP2Q =  ∑ �89:;#8>?:@A9B�C$

.  (8) 

 1R = ∑ �89:;#89:;SSSSSSS�DC$
89:;

�100% TE 1R = UV
WXM. �100%   (9) 

 1T/QPQYZ/QP =  U[\ 
U[] �100%; (10) 

 4J_ = UV
U[\ (11) 

III. RESULTS AND DISCUSSION 

A. Electrical Characteristics 

1) Impedance characteristics of oil palm fruit: 

Impedance on a capacitor plate acts as resistance against the 

applied electric field. Oil palm fruit, with its water (resistive) 

and oil (capacitive) components, creates impedance by 

combining resistance and capacitance, forming the total 
resistance impedance (Z). The magnitude of electrical 

impedance depends on resistance, frequency, and reactance. 

Lower frequencies emphasize significant reactance, leading 

to higher impedance, while higher frequencies reduce 

reactance, resulting in lower impedance. Impedance 

represents total resistance under alternating current.  

 

 
Fig. 3  The spectrum of impedance per unit weight across diverse maturity levels. 

 

As frequency increases, both resistance and reactance 
decrease, lowering impedance. Resistance and reactance 

collaborate to determine impedance, which decreases with 

increasing frequency. Decreasing impedance due to increased 

frequency also occurs in citrus fruits. Fig.3 illustrates an 

increase in impedance beyond 89 Hz, followed by a decline at 

frequencies surpassing 1 MHz. At lower frequencies, high 

impedance values imply current flow restricted to the 

extracellular region. Conversely, lower impedance at higher 

frequencies facilitates current passage within the cells. 

2) Admittance characteristics of oil palm fruit: 
Admittance, the reciprocal of impedance, gauges a circuit's 

capability to carry alternating current at a particular 

frequency. It comprises two constituents: conductance 

admittance, which represents the conductive aspect, and 

susceptance admittance, signifying the reactive element. In 

Fig.4, the admittance of oil palm fruit exhibited an upward 

trend at frequencies exceeding 1 MHz. It persisted up to 5 

MHz, illustrating distinctions among different maturity stages 

of oil palm fruit. 

 

 

Fig. 4  The spectrum of admittance per unit weight across diverse maturity levels. 
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3) Resistance characteristics of oil palm fruit: Resistance 

characterizes an object's capacity to hinder the passage of 

electrical current. The presence of oil content within a liquid 

can impact its resistance due to the influence of dissolved oil 

on the liquid's chemical properties. The incredible water 

content in a liquid enhances its electrical conductivity. This 

phenomenon was apparent in Fig.5, where oil palm fruit at 

three months of maturity demonstrated elevated resistance, 

impeding electrical current flow. Conversely, fruit aged four 

months displayed diminished resistance, facilitating electrical 

current flow. As maturity progressed, resistance declined, 

reducing impedance to the electrical current flow. Fig.5 

illustrates an increase in resistance beyond 71 Hz, followed 

by a high decline at frequencies surpassing 10 kHz. 

 

 

Fig. 5  The spectrum of resistance per unit weight across diverse maturity levels. 

 

4) Capacitance characteristics of oil palm fruit: 
Capacitance defines a capacitor's capacity to hold energy and 

electric charge. Including a dielectric substance in the 

capacitor led to an augmentation in capacitance. In Fig.6, the 
capacitance of oil palm fruit across different maturity stages 

exhibited variations at frequencies surpassing 50Hz, followed 

by a decline at frequencies exceeding 1 kHz to 5 MHz. 

 

 

Fig. 6  The spectrum of capacitance per unit weight across diverse maturity levels. 

 

B. Chemical Properties of Oil Palm Fruit  

Descriptive statistics presented in Table 1 outline the FFA 

and moisture content levels. The data illustrates considerable 

variability within Tenera oil palm samples, with FFA levels 

ranging from 0% to 14.87% and moisture content ranging 
from 27.75% to 86.39%. The FFA in oil palm fruit varies 

throughout its maturity stages. Specifically, the average FFA 

content is 0.00% at three months of maturity. Subsequently, 

at four months, it increases to an average of 5.39%, followed 

by 5.85% at four months and one week, 6.28% at four months 

and two weeks, 6.01% at four months and three weeks, 3.76% 

at five months, 4.02% at five months and one week, 4.53% at 

five months and two weeks, 4.22% at five months and three 

weeks, and finally stabilize at an average of 4.14% by six 

months of maturity. 

The moisture content within oil palm fruit is notably 

affected by its maturity level, decreasing progressively during 
ripening. Specifically, at three months of maturity, the 

average moisture content is 85.32%. Subsequently, at four 
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months, it reduces to an average of 82.11%, followed by 

79.47% at four months and one week, 74.47% at four months 

and two weeks, 61.49% at four months and three weeks, 

57.22% at five months, 34.39% at five months and one week, 

38.63% at five months and two weeks, 34.77% at five months 

and three weeks, and finally, reaches an average of 34.10% at 

six months of maturity. 

TABLE I 

STATISTICAL REFERENCE DATA OF TENERA OIL PALM 

Chemical properties 
stages of 

maturation 
Average (%) 

Deviation standard 

(%) 
Minimum (%) Maximum (%) 

FFA 3M 0 0 0 0 
4M 5.39 3.30 2.32 11.75 

4M1W 5.85 6.35 0 14.87 
4M2W 6.28 2.83 3.94 11.87 

4M3W 6.01 0.76 5.15 7.14 
5M 3.76 1.47 0.28 5.28 

5M1W 4.02 0.48 3.56 5.19 
5M2W 4.53 0.56 3.63 5.27 
5M3W 4.22 1.33 1.80 5.93 

6M 4.14 0.41 3.27 4.54 

Moisture content 

3M 85.32 0.87 83.85 86.39 

4M 82.11 3.05 77.84 85.24 

4M1W 79.47 5.30 71.96 84.91 

4M2W 74.47 6.45 63.39 82.32 

4M3W 61.49 14.35 40.79 78.75 

5M 57.22 11.62 45.75 72.80 

5M1W 34.39 3.60 29.76 40.21 

5M2W 38.63 4.33 28.82 44.52 

5M3W 34.77 4.49 30.90 48.24 

6M 34.10 7.17 27.75 53.15 

 

C. MLR Calibration and Prediction for FFA and Moisture 

Content  

Determining FFA and moisture content levels based on 

electrical properties (impedance, admittance, resistance, and 

capacitance) was conducted utilizing MLR analysis, as 

presented in Table 2. The most accurate prediction of FFA 
was achieved using the electrical property of admittance, 

demonstrating the highest R2 value (0.90), highest r (0.95), 

lowest SEC (0.94), SEP (0.71), and CV (18.21), along with 

the highest RPD (3.14). These values outperformed 

predictions made using impedance, resistance, and 

capacitance (R2 0.160.55, r 0.40.74, SEC 1.982.70, SEP 

1.662.89, CV 44.8761.13 and RPD 1.091.49). 
Regarding moisture content, the most accurate prediction 

of moisture content levels was attained using impedance 

electrical property, which demonstrated the highest R2 value 

(0.96), highest r (0.98), lowest SEC (4.78), SEP (4.25), and 

CV (8.15), alongside the highest RPD (4.68). These values 

surpassed predictions using admittance, resistance, and 

capacitance (R2 0.900.91, SEC 6.387.21, SEP 4.57.09, 

CV 11.2512.71 and RPD 3.003.39). 

TABLE II 

CALIBRATION RESULTS FOR FFA AND MOISTURE CONTENT BASED ON IMPEDANCE, ADMITTANCE, RESISTANCE, AND CAPACITANCE. 

Electrical properties R2 r SEC (%) SEP (%) CV (%) RPD  Bias CI 

 FFA 

Impedance  0.16 0.40 2.70 2.89 61.13 1.09 0.25 93.35 
Admittance  0.90 0.95 0.94 0.71 18.21 3.14 0.02 131.13 

Resistance  0.40 0.63 2.28 2.18 51.71 1.29 0.08 104.36 
Capacitance  0.55 0.74 1.98 1.66 44.87 1.49 0.22 119.12 

 Moisture Content 

Impedance  0.96 0.98 4.78 4.25 8.15 4.68 -0.14 112.47 

Admittance  0.90 0.95 6.96 5.78 12.27 3.11 -0.33 120.42 
Resistance  0.91 0.96 6.38 4.50 11.25 3.39 -0.86 141.95 
Capacitance  0.90 0.95 7.21 7.09 12.71 3.00 0.25 101.66 
Ci: consistency 

Impedance, Resistance (kohm/gram); Admittance(siemens/gram) 

Capacitance (nfarad/gram) 

 
Overall, the utilization of specific electrical properties for 

predicting FFA and moisture content levels exhibited distinct 

performances, with admittance proving superior for FFA level 

estimation and impedance excelling in moisture content 

prediction. 

1) FFA Prediction based on Admittance: The 

conventional method for assessing FFA content in oil palm 

fruit involves a wet-chemical process demanding substantial 

resources in time, personnel, and glassware for standard 
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reagent preparation and analysis. Therefore, exploring 

alternative methods is crucial to address these resource-

intensive procedures. In the case of FFA prediction, the 

models employed the electrical property of admittance, 

resulting in the highest values of R2=0.90 and r=0.95 (Table 

2), of which 69 datasets were used for calibration and 31 

datasets for validation. 

The presence of excessive moisture content in oil palm fruit 

significantly impacts the quality of the extracted oil. Elevated 

moisture levels in the fruit pose a considerable risk to oil 

quality, primarily by escalating the likelihood of oxidation 

and free fatty acid formation. Consequently, these factors can 

detrimentally influence the sensory attributes such as taste, 

aroma, and stability of oil palm fruit. To estimate FFA, a 

predictive model utilized admittance spectral data obtained 
immediately after harvesting oil palm fruit.  

 

 
Fig. 7  Calibration and validation results for the FFA model of the oil palm 

fruit using the MLR method 

 

The development of this predictive model necessitated 
meticulous consideration of 28 predictor variables. The 

predictors used in the FFA model were pre-treated admittance 

data at frequency of 67, 94, 100, 126, 159, 3040, 13682, 

14497, 21735, 24401, 25855, 36584, 65245, 207520, 219880, 

261555, 392141, 415497, 440244, 523685, 587925, 785145, 

1048523, 1247254, 1400252, 1764854, 2356877, dan 

3334960 Hz.  

The variables integrated into the model suggest that 

significant variations in oil palm fruit, FFA, could be 

identified by analyzing the admittance at this specific 

frequency. Both the calibration and validation stages 
demonstrated adequate performance for the FFA prediction 

model, as depicted in Fig.7. During the calibration process, 

the model displayed an R2 value of 0.90, a correlation 

coefficient (r) of 0.95, SEC at 0.94%, SEP at 0.71%, CV at 

18.21%, Consistency of 131.13, and an RPD of 3.14. These 

parameters collectively indicate a high level of accuracy in 

predicting moisture content. An RPD value surpassing 2.5 

suggested that this model was excellent classified [33]. 

2) Moisture content calibration and prediction based on 

impedance: For moisture content, the models utilized the 

electrical property of impedance, resulting in the highest 

values of R2=0.96 and r=0.98 (Table 2), which 74 datasets 

were used for calibration and 32 datasets for validation. 

In the development of this model, the inclusion of 

predictors was carefully considered, amounting to a total of 

21, along with the incorporation of a constant value. The 

predictors used in the moisture content model were pre-

treated impedance data at frequency of 59, 284, 425, 1276, 

1914, 2276, 2556, 14497, 61578, 116360, 174455, 261555, 

329659, 741010, 1572018, 1981344, 2099354, 2224391, 

2970567, 4453677, dan 5000000 Hz. Both the calibration and 

validation phases demonstrated satisfactory performance for 

the moisture content prediction model (Fig.8).  

 
Fig. 8  Plot of reference versus predicted moisture content calibration using 

MLR method 

During calibration, the model exhibited an R2 of 0.96, a 

coefficient of correlation (r) of 0.98, SEC at 4.78%, SEP at 

4.25%, CV at 8.15%, Consistency of 112.47, and an RPD of 

4.68. These metrics collectively denote a high level of 

precision in forecasting moisture content. An RPD value 

surpassing 2.5 indicated that this model was excellent 

classified [33].  

D. ANN Calibration and Prediction for FFA and Moisture 

Content  

1) FFA calibration and prediction based on admittance: 

The ANN models integrated 28 specifically chosen 

admittance spectra variables acquired through the MLR 
method. The dataset comprised admittance values at distinct 

frequencies: 567, 94, 100, 126, 159, 3040, 13682, 14497, 

21735, 24401, 25855, 36584, 65245, 207520, 219880, 

261555, 392141, 415497, 440244, 523685, 587925, 785145, 

1048523, 1247254, 1400252, 1764854, 2356877, and 

3334960 Hz, serving as input variables for the ANN. 
 

, 

Fig. 9  Plot of reference versus predicted FFA calibration using ANN method. 

The best prediction of FFA was achieved by employing an 

ANN configuration with two hidden layers, featuring 28 

nodes representing admittance spectra on the input layer, 

undergoing 370 training cycles, utilizing a learning rate of 

0.019, and employing a momentum value of 0.97. During 

calibration, the ANN model exhibited an R2 of 0.92, a 

coefficient of correlation (r) of 0.96, SEC at 0.86%, SEP at 
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0.97%, CV at 19.45%, Consistency of 88.54, and an RPD of 

3.43 (Fig.9). These metrics collectively denote a high level of 

precision in forecasting moisture content. An RPD value 

surpassing 2.5 indicated that this model was excellent 

classified [33]. The ANN model demonstrates superior 

performance for FFA compared to the MLR method.  

2) Moisture content calibration and prediction based on 

impedance: The ANN models utilized 21 impedance spectra 

variables selected through the MLR method. The provided 

dataset comprises impedance values across a range of 
frequencies: 59, 284, 425, 1276, 1914, 2276, 2556, 14497, 

61578, 116360, 174455, 261555, 329659, 741010, 1572018, 

1981344, 2099354, 2224391, 2970567, 4453677, and 

5000000 Hz. These values were employed as input variables 

for the ANN. 
 

 
Fig. 10  The plot of reference versus predicted moisture content calibration 

using the ANN method. 

The best prediction of moisture content was achieved by 

employing an ANN configuration with one hidden layer, 

featuring 21 nodes representing impedance spectra on the 

input layer, undergoing 2300 training cycles, utilizing a 

learning rate of 0.01, and employing a momentum value of 

0.91. During calibration, the ANN model exhibited an R2 of 

0.98, a coefficient of correlation (r) of 0.99, SEC at 3.09%, 
SEP at 3.46%, CV at 5.44%, Consistency of 89.08, and an 

RPD of 7.02 (Fig.10). An RPD value surpassing 2.5 indicated 

that this model was excellent classified [33]. The moisture 

content ANN model demonstrated superior performance 

compared to the MLR method.  

IV. CONCLUSION 

In this study, an admittance was utilized to predict the FFA, 

while an impedance spectrum was employed to directly 
predict oil palm's moisture content. Subsequently, these 

datasets were compared with the outcomes of chemical 

analysis to develop predictive models. Two methods were 

used for creating models: MLR and ANN.  

The FFA prediction with MLR model involved 28 

predictors (admittance spectra), exhibited calibration 

performance, with an r of 0.95, an R2 of 0.90, SEC of 0.94%, 

SEP of 0.71%, CV of 18.21%, Consistency of 131.13, and an 

RPD of 3.14. Meanwhile, the moisture content prediction-

MLR model, comprising 21 predictors (impedance spectra), 

exhibited calibration performance, with an r of 0.98, an R2 of 

0.96, SEC of 4.78%, SEP of 4.25%, CV of 8.15%, 

Consistency of 112.47, and an RPD of 4.68. 

The FFA prediction by ANN model showcased superior 

performance compared to the MLR method. This was 

evidenced by an r of 0.96, an R2 of 0.92, SEC of 0.86%, SEP 

of 0.97%, CV of 19.45%, Consistency of 88.54, and an RPD 

of 3.43. Meanwhile, the moisture content prediction model 

using ANN demonstrated similarly robust calibration 

performance, boasting an r of 0.99, an R2 of 0.98, SEC of 

3.09%, SEP of 3.46%, CV of 5.44%, Consistency of 89.08, 
and an RPD of 7.02. Overall, the models generated through 

ANN methods exhibited superior performance compared to 

those developed using the MLR Method. 

The following research will determine the oil and FFA 

content of FFB (Fresh Fruit Bunches) directly based on its 

electrical properties. FFB refers to the bunches of oil palm 

fruit harvested before processing. These fresh fruit bunches 

are the primary raw material from which palm oil is extracted. 

ACKNOWLEDGMENT 

The authors are grateful to the Agency of Agricultural 

Extension and Human Resources Development (IAAEHRD), 

Ministry of Agriculture, Indonesia, as well as the Directorate 

General of Higher Education, Research, and Technology 

(DGHERT) under the Ministry of Education, Culture, 

Research, and Technology (MOECRT) of the Republic of 

Indonesia for the Research Grant of Program Implementation 

Contract for the Year 2023: 102/E5/PG.02.00.PL/2023. 

REFERENCES 

[1] X. J. Tan, W. L. Cheor, K. S. Yeo, and W. Z. Leow, “Expert systems 

in oil palm precision agriculture: A decade systematic review,” 

Journal of King Saud University - Computer and Information 

Sciences, vol. 34, no. 4, pp. 1569–1594, Apr. 2022, 

doi:10.1016/j.jksuci.2022.02.006. 

[2] A. R. M. Akbar, A. D. Wibowo, and R. Santoso, “Investigation on the 

Optimal Harvesting Time of Oil Palm Fruit,” Jurnal Teknik Pertanian 

Lampung (Journal of Agricultural Engineering), vol. 12, no. 2, p. 524, 

Jun. 2023, doi: 10.23960/jtep-l.v12i2.524-532. 

[3] E. Edyson, F. Murgianto, A. Ardiyanto, E. J. Astuti, and M. P. Ahmad, 

“Preprocessing Factors Affected Free Fatty Acid Content in Crude 

Palm Oil Quality,” Jurnal Ilmu Pertanian Indonesia, vol. 27, no. 2, pp. 

177–181, Apr. 2022, doi: 10.18343/jipi.27.2.177. 

[4] E. Salim and Suharjito, “Hyperparameter optimization of YOLOv4 

tiny for palm oil fresh fruit bunches maturity detection using genetics 

algorithms,” Smart Agricultural Technology, vol. 6, p. 100364, Dec. 

2023, doi: 10.1016/j.atech.2023.100364. 

[5] S. N. Shaharuzzaman, F. H. Hashim, M. S. Sajab, and A. B. Huddin, 

“Analysis of Free Fatty Acids (FFA) in Palm Oils Based on the Raman 

Spectra,” in 2023 IEEE International Conference on Automatic 

Control and Intelligent Systems (I2CACIS), 2023, pp. 132–137. 

doi:10.1109/I2CACIS57635.2023.10193495. 

[6] A. Ruswanto, A. H. Ramelan, D. Praseptiangga, and I. B. B. Partha, 

“Effects of ripening level and processing delay on the characteristics 

of oil palm fruit bunches,” Int J Adv Sci Eng Inf Technol, vol. 10, no. 

1, pp. 389–394, 2020, doi: 10.18517/ijaseit.10.1.10987. 

[7] R. Sinambela, T. Mandang, I. D. M. Subrata, and W. Hermawan, 

“Application of an inductive sensor system for identifying ripeness and 

forecasting harvest time of oil palm,” Sci Hortic, vol. 265, p. 109231, 

Apr. 2020, doi: 10.1016/j.scienta.2020.109231. 

[8] L. A. A. Antwi, F. Nimoh, P. Agyemang, and I. A. Apike, “Perception 

and adoption of free fatty acid reduction techniques by small scale 

palm oil processors: Evidence from Ghana,” J Agric Food Res, vol. 

11, p. 100462, Mar. 2023, doi: 10.1016/j.jafr.2022.100462. 

[9] P. Ibba, A. Falco, B. D. Abera, G. Cantarella, L. Petti, and P. Lugli, 

“Bio-impedance and circuit parameters: An analysis for tracking fruit 

ripening,” Postharvest Biol Technol, vol. 159, p. 110978, Jan. 2020, 

doi: 10.1016/j.postharvbio.2019.110978. 

648



[10] J. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical 

Properties of Garut Citrus Fruits at Low Alternating Current Signal 

and its Correlation with Physicochemical Properties During 

Maturation,” Int J Food Prop, vol. 17, no. 7, pp. 1498–1517, Aug. 

2014, doi: 10.1080/10942912.2012.723233. 

[11] L. Tang, S. Gao, W. Wang, X. Xiong, W. Han, and X. Li, “Moisture 

Content Detection of Tomato Leaves Based on Electrical Impedance 

Spectroscopy,” Commun Soil Sci Plant Anal, pp. 1–15, Oct. 2023, 

doi:10.1080/00103624.2023.2274046. 

[12] P. Bertemes-Filho, W. Laus Bertemes, R. Cavalieri, A. Torres Paré, J. 

Spessatto, and D. Savi, “Ripening classification of bananas (Musa 

acuminate) using electrical impedance spectroscopy and support 

vector machine,” Int J Biosens Bioelectron, vol. 6, no. 4, pp. 99–101, 

2020, doi: 10.15406/ijbsbe.2020.06.00195. 

[13] S. Shekhar and K. Prasad, “Nondestructive Evaluation of Moisture 

Content for Spinach Leaf Powder Using Complex Impedance 

Spectroscopy,” Journal of the ASABE, vol. 66(2), pp. 415–421, 2023, 

doi: 10.13031/ja.14873. 

[14] G. M. Stojanović, Sinha A, Ali A, Jeoti V, Radoičić M, Marković D, 

Radetić M, “Impedance analysis of milk quality using functionalized 

polyamide textile-based sensor,” Comput Electron Agric, vol. 191, p. 

106545, Dec. 2021, doi: 10.1016/j.compag.2021.106545. 

[15] S. Huh, H.-J. Kim, S. Lee, J. Cho, A. Jang, and J. Bae, “Utilization of 

Electrical Impedance Spectroscopy and Image Classification for Non-

Invasive Early Assessment of Meat Freshness,” Sensors, vol. 21, no. 

3, p. 1001, Feb. 2021, doi: 10.3390/s21031001. 

[16] W. Huang, J. Xia, X. Wang, Q. Zhao, M. Zhang, and X. Zhang, 

“Improvement of non-destructive detection of lamb freshness based on 

dual-parameter flexible temperature-impedance sensor,” Food 

Control, vol. 153, p. 109963, Nov. 2023, 

doi:10.1016/j.foodcont.2023.109963. 

[17] A. C. F. de O. Meira, L. C. de Morais, M. M. de O. Paula, S. M. Pinto, 

and J. V. de Resende, “Application of electrical impedance 

spectroscopy for the characterisation of yoghurts,” Int Dairy J, vol. 

141, p. 105625, Jun. 2023, doi: 10.1016/j.idairyj.2023.105625. 

[18] S. Hao, J. Yuan, J. Cui, W. Yuan, H. Zhang, and H. Xuan, “The rapid 

detection of acacia honey adulteration by alternating current 

impedance spectroscopy combined with 1H NMR profile,” LWT, vol. 

161, p. 113377, May 2022, doi: 10.1016/j.lwt.2022.113377. 

[19] N. F. Chin-Hashim, A. Y. Khaled, D. Jamaludin, and S. Abd Aziz, 

“Electrical Impedance Spectroscopy for Moisture and Oil Content 

Prediction in Oil Palm (Elaeis guineensis Jacq.) Fruitlets,” Plants, vol. 

11, no. 23, Dec. 2022, doi: 10.3390/plants11233373. 

[20] W. Ji, C. Tang, B. Xu, and G. He, “Contact force modeling and 

variable damping impedance control of apple harvesting robot,” 

Comput Electron Agric, vol. 198, Jul. 2022, 

doi:10.1016/j.compag.2022.107026. 

[21] J. W. Lai, H. R. Ramli, L. I. Ismail, and W. Z. Wan Hasan, “Oil Palm 

Fresh Fruit Bunch Ripeness Detection Methods: A Systematic 

Review,” Agriculture, vol. 13, no. 1, p. 156, Jan. 2023, 

doi:10.3390/agriculture13010156. 

[22] M. Zhuang, G. Li, K. Ding, and G. Xu, “Research on the application 

of impedance control in flexible grasp of picking robot,” Advances in 

Mechanical Engineering, vol. 15, no. 4, p. 168781322311610, Apr. 

2023, doi: 10.1177/16878132231161016. 

[23] J. Cheng, P. Yu, Y. Huang, G. Zhang, C. Lu, and X. Jiang, 

“Application Status and Prospect of Impedance Spectroscopy in 

Agricultural Product Quality Detection,” Agriculture, vol. 12, no. 10, 

p. 1525, Sep. 2022, doi: 10.3390/agriculture12101525. 

[24] P. Jash, R. K. Parashar, C. Fontanesi, and P. C. Mondal, “The 

Importance of Electrical Impedance Spectroscopy and Equivalent 

Circuit Analysis on Nanoscale Molecular Electronic Devices,” Adv 

Funct Mater, vol. 32, no. 10, Mar. 2022, 

doi:10.1002/adfm.202109956. 

[25] D. Wu, J. Sun, R. Silvennoinen, and T. Repo, “Root injury detection 

by impedance loss factor and hydraulic conductance of apple (Malus 

domestica), blackcurrant (Ribes nigrum) and blueberry (Vaccinium 

corymbosum) nursery plants,” Sci Hortic, vol. 328, p. 112864, Mar. 

2024, doi: 10.1016/j.scienta.2024.112864. 

[26] T. Kojic, M. Simić, M. Vučinić-Vasić, and G. M. Stojanović, “Sensing 

system based on knitted electrodes for fruit quality evaluation,” J Food 

Eng, vol. 353, p. 111544, Sep. 2023, 

doi:10.1016/j.jfoodeng.2023.111544. 

[27] G. W. Jr. Latimer, “General Methods,” in Official Methods of Analysis 

of AOAC INTERNATIONAL, R. L. Beine, Ed., Oxford University 

PressNew York, 2023. doi: 10.1093/9780197610145.003.029. 

[28] Piekutowska M, Niedbała G, Piskier T, Lenartowicz T, Pilarski K, 

Wojciechowski T, Pilarska A, Czechowska-Kosacka A, “The 

Application of Multiple Linear Regression and Artificial Neural 

Network Models for Yield Prediction of Very Early Potato Cultivars 

before Harvest,” Agronomy, vol. 11, no. 5, p. 885, Apr. 2021, 

doi:10.3390/agronomy11050885. 

[29] B. Konakoglu and A. Akar, “Geoid undulation prediction using ANNs 

(RBFNN and GRNN), multiple linear regression (MLR), and 

interpolation methods: A comparative study,” Earth Sciences 

Research Journal, vol. 25, no. 4, pp. 371–382, 2021, 

doi:10.15446/esrj.v25n4.91195. 

[30] D. J. S. Chong, Y. J. Chan, S. K. Arumugasamy, S. K. Yazdi, and J. 

W. Lim, “Optimisation and performance evaluation of response 

surface methodology (RSM), artificial neural network (ANN) and 

adaptive neuro-fuzzy inference system (ANFIS) in the prediction of 

biogas production from palm oil mill effluent (POME),” Energy, vol. 

266, p. 126449, Mar. 2023, doi: 10.1016/j.energy.2022.126449. 

[31] S. Ramjan and J. Sunkpho, Principles and Theories of Data Mining 

with RapidMiner. in Advances in Computer and Electrical 

Engineering. IGI Global, 2023. doi: 10.4018/978-1-6684-4730-7. 

[32] N. Baharun, N. F. M. Razi, S. Masrom, N. A. M. Yusri, and A. S. A. 

Rahman, “Auto Modelling for Machine Learning: A Comparison 

Implementation between Rapid Miner and Python,” International 

Journal of Emerging Technology and Advanced Engineering, vol. 12, 

no. 5, pp. 15–27, May 2022, doi: 10.46338/ijetae0522_03. 

[33] D. J. Murphy, B. O’ Brien, M. O’ Donovan, T. Condon, and M. D. 

Murphy, “A near infrared spectroscopy calibration for the prediction 

of fresh grass quality on Irish pastures,” Information Processing in 

Agriculture, vol. 9, no. 2, pp. 243–253, Jun. 2022, 

doi:10.1016/j.inpa.2021.04.012. 

  

 

 

649




