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Abstract—Income tax is one of the important sources of revenue for each country, income tax forecasting is thus one of the important 

tasks of each country. This work presents a machine learning-based method based on Gross Domestic Product (GDP) and population 

data to forecast income tax collection. As a result, the violin plot shows the distribution of the data, namely that population values are 

concentrated around the middle, while GDP has a bimodal distribution, and income tax exhibits a pattern similar to that of the 

population. On both training and test data, several machine learning models were assessed for accuracy and generalization using Mean 

Squared Error (MSE), R-squared (R²), and Mean Absolute Percentage Error (MAPE). With Train MAPE at 2.85% and Test MAPE 

at 5.53%, Random Forest attained a Train MSE of 25.94 and a Test MSE of 51.00, so indicating good performance but modest 

overfitting. Although Gradient Boosting had a higher Test MAPE of 6.89% suggesting some overfitting, it scored almost perfect Train 

MSE of 0.04. While performing poorly on the test data with a Train MSE of 180.50, the Decision Tree fit the training data exactly (Train 

MSE of 0.00). With Train MSE of 2.32 and Test MSE of 25.49, CatBoost proved constant accuracy over both datasets, it could be 

considered as the best model for income tax prediction based on GDP and population since it excelled generally in stability and 

generalization. 
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I. INTRODUCTION

One of Australia's government's primary income sources is 
tax collected from eligible citizens. It supports infrastructure, 
education, and healthcare, among other essential public 
services  [1]. The progressive operation of the Australian 
income tax system results in higher taxes paid as income rises. 
Income level determines the rates; people pay taxes according 
to their marginal tax rate. Starting with lower rates for low-
income earners and higher rates for those with greater 
incomes, there are several brackets with varying rates. This 
system guarantees equitable distribution of tax 
responsibilities among several income levels. Income tax is 
handled and collected under the Australian Tax Office [2], 

[3]. It also guarantees that people and companies satisfy their 
tax liabilities and promotes compliance. Every year, people 
must submit a tax return declaring their annual income and 
any offsets or deductions they qualify for. Australian tax years 
run from July 1 to June 30. Most taxpayers must turn in their 
tax returns by the end of October, although in some cases, 
especially if someone is using a registered tax agent, then 
extensions are granted [4], [5]. 

In Australia, income tax covers several kinds of income. 
This covers salaries from work, company profits, share 
dividends, rental income, and government payments. 
Residents' income from outside Australia is also taxed. On the 
other hand, non-residents pay taxes based on their income 
generated in Australia [6], [7]. Those who make less than a 
particular level are exempt from income tax. This guarantees 

1896



that tax does not burden low-income earners too much and 
offers relief for those with minimum income. Determining a 
person's income tax depends critically on deductions and tax 
offsets. Deductions cut taxable income, reducing the tax due 
[8]. Typical deductions include investment costs, charitable 
organization donations, and job-related expenses. Direct tax 
offsets lower the tax owing directly and might result in a 
bigger tax refund. Low-income earners, seniors, and some 
people in particular circumstances have offsets available. 
These clauses seek to lower the tax load for qualified groups 
and bring the tax system fairer [9], [10]. 

Machine learning plays a transformative role in analyzing 
income tax data. It enables tax authorities to process vast 
datasets efficiently. It helps tax authorities to handle 
enormous databases quickly. Clear patterns in data help to 
enhance the procedures of decision-making [11]. Through tax 
data modeling, machine learning systems find fraud and 
anomalies. This greatly improves accuracy when spotting tax 
avoidance. Predicting taxpayer behavior benefits, mainly 
from machine learning models [12]. Given past data trends, 
algorithms can project tax income. This enables governments 
to distribute resources more wisely. Predictive modeling also 
points up audit risk groups. These realizations maximize the 
use of resources, so lowering unneeded audits and saving time 
[13]. Models of supervised learning effectively classify 
income sources. They enable one to differentiate between 
other income sources and consistent income. This difference 
helps one properly evaluate tax obligations. Additionally, it 
accelerates data processing and saves human effort through 
automated classification. Furthermore, helping in 
complicated computations like deduction estimation is 
machine learning [14]. 

The model of machine learning changes and grows with 
time. New data inputs help them to improve their accuracy. 
This iterative learning helps tax systems to be constantly 
improved. Advanced models spot developing trends in 
taxpayer actions. Before they go into general, they can spot 
fresh fraud strategies. Deep learning systems examine income 
tax data in high dimensions. These models often expose latent 
insights [15], [16]. Deep learning helps one to detect complex 
trends in consumer behavior. They favor accurate tax 
projections to improve government budget planning. 
Moreover, these realizations enable more exact policy 
changes. Machine learning helps tax authorities better handle 
data. Automation reduces administrative load and simplifies 
repetitious tasks [17], [18]. Algorithms guarantee correct 
results and lower error margins. They also provide better data 
security to help safeguard taxpayer data. 

This work aims to create an exhaustive machine learning 
model for income tax collection employing nine 
contemporary ML methods. The study intends to forecast tax 
revenues precisely and identify important economic factors 
using three decades of historical data on income tax 
collection, population increase, and GDP trends. The 
uniqueness is in combining several ML techniques to examine 
long-term tax trends, offering strong predictive insights and 
practical forecasts. This method may help improve tax 
planning and policy decisions by providing a data-driven 
framework for maximizing tax collection in different 
economic environments and supporting more informed 
government resource allocation. 

II. MATERIALS AND METHOD 

A. Machine Learning Methods 

This study employs nine machine learning methods to 
model income tax collection, drawing on three decades of data. 
Every method offers exceptional benefits in managing the 
historical trends and economic data pertinent to tax collecting. 
A brief discussion on each ML is presented:  

1) Random Forest  

Random Forest (RF) is an ensemble learning technique that 
builds multiple decision trees and combines them to improve 
predictive accuracy. It aggregates the predictions by building 
many trees, each trained on various random samples of the 
data [19]–[22]. Commonly occurring in single decision trees, 
overfitting is less likely to occur with this averaging process 
[23]. RF is beneficial for tax collecting models, including 
economic indicators like GDP, population, and historical tax 
revenue, since it can readily handle categorical and 
continuous variables. Apart from its predictive power [24], 
[25]. RF provides a means for feature importance ranking, 
guiding the identification of the most significant variables in 
tax revenue prediction. This quality is helpful in economic 
modeling, where knowledge of every element affects tax 
income collection. RF can show how GDP or population 
trends affect tax income employing variable importance, 
helping tax authorities make better decisions and allocate 
resources. Random Forest offers a strong framework in this 
work to capture intricate, non-linear interactions between 
economic variables across time, thus improving the general 
dependability of tax forecasts. 

2) Gradient Boosting Regression 

Gradient Boosting Regression (GBR) is a powerful 
machine learning technique that builds a predictive model 
sequentially by optimizing a loss function. GBR creates each 
tree to correct mistakes from the past trees, so producing a 
more accurate and refined model than conventional ML 
approaches, which build trees in parallel [26], [27]. GBR can 
be especially helpful in complex datasets such as income tax 
data, where economic factors may have non-linear or 
evolving relationships over time, by allowing GBR to 
concentrate on difficult-to-predict data points using this 
iterative approach [28], [29]. This approach is especially 
appropriate for income tax data since it can detect minor 
trends and nuances, such as how little GDP changes might 
affect tax collecting differently over time. Given that even 
small prediction mistakes can have major financial 
consequences, such accuracy can be quite important in tax 
data modeling. Furthermore, providing hyperparameters like 
learning rate and number of trees, GBR lets one fine-tune to 
maximize model performance. In this work, GBR will be 
employed to provide a sophisticated method to capture 
complex interactions in past tax data and significantly 
increase the model's predictive capability. 

3) Decision Tree 

Decision Tree (DT) is one of the simplest and most 
interpretable ML algorithms, making it an excellent starting 
point for income tax modeling. The technique forms a tree-
like structure of decisions by separating the dataset depending 
on feature values [30]–[33]. Every split shows a decision 
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route whereby branches lead to results, representing how 
income levels, GDP, and population increase affect tax 
income. Transparency is a feature of decision trees that is 
especially helpful in economic modeling since it helps 
legislators better grasp the underlying reasons for tax 
projections. Although Decision Trees are quite interpretable, 
particularly in complex datasets, they are also prone to 
overfitting. Using decision trees as part of ensemble 
techniques like random forest and gradient boosting helps 
solve this restriction by aggregating several trees, thus 
reducing overfitting. Utilizing a hierarchical view of income 
tax factors. Decision Tree analysis—despite its simplicity—
can provide insightful analysis of which variables have the 
most bearing on tax collecting. In this work, the Decision Tree 
acts as a baseline model, offering fundamental insights that 
guide more complex ensemble techniques and helps to build 
a useful framework for tax revenue prediction depending on 
economic data [34], [35]. 

4) Linear Regression 

Linear regression (LR) is a fundamental machine-learning 
technique that model’s relationships between variables. It 
identifies the linear relationship between an independent 
variable X and a dependent variable Y, so predicting a 
continuous output [36]–[38]. Finding the best-fit line that 
reduces the difference between expected and actual values 
drives LR. This line is computed through the equation Y = b0 

+ b1X, where b0 is the intercept and b1 is the coefficient of X 
[39], [40]. Under a technique known as "least squares," the 
LR model finds these values by minimizing the sum of 
squared deviations between observed and expected Y values. 
This method guarantees that the line reflects the data trend as 
faithfully as feasible. LR holds that X and Y have a linear 
relationship hence changes in X generate corresponding 
changes in Y [41], [42]. In cases when this linearity holds and 
is less complicated than other models, it is efficient. Based on 
past data, linear regression provides insights into trends and 
future values that can help forecast results, including costs or 
sales. It is limited, though, in managing non-linear patterns 
since these call for more sophisticated approaches [43], [44]. 

5) Lasso Regression 

Lasso regression, or Least Absolute Shrinkage and 
Selection Operator, is an ML technique employed for 
regression analysis. It adds a penalty term depending on the 
absolute value of coefficients and minimizes the sum of 
squared residuals between actual and forecasted values. 
Designed as the "L1 regularization," this penalty term drives 
some coefficients to zero. Lasso thus does both regularizing 
and variable selection [45], [46]. It simplifies the model by 
zeroing some coefficients, so choosing the most pertinent 
features. It makes the model more generalizable by restricting 
the coefficients, preventing overfitting. This method works 
well when one wants a sparse model with fewer variables. 
Lasso can remove extraneous features, unlike ordinary least 
squares regression, which might include all features, so 
producing a more straightforward and more interpretable 
model [47]. It finds this equilibrium by varying the penalty 
strength across a hyperparameter, sometimes called lambda. 
One can adjust the degree of sparsity in the model by varying 
lambda, so optimizing it for prediction accuracy and 
interpretability over several datasets [48]. 

6) Ridge Regression 

Ridge regression (RR) is instrumental in dealing with 
multicollinearity and overfitting in regression models. It 
makes use of a regularization technique to reduce the issue of 
overfitting. The least squares loss function is modified by 
adding a penalty term, which is the squared magnitude of the 
coefficients multiplied by a tuning parameter (λ), to the 
standard linear regression for improvement [49], [50]. To 
reduce the complexity of the model, larger values of λ shrink 
the coefficients toward zero to control the strength of 
regularization. This type of penalization stabilizes regression 
coefficients in cases where independent variables exhibit a 
high degree of correlation. RR improves generalizability by 
limiting the size of the coefficients, which lessens the model's 
sensitivity to errors in the training data. It is advantageous 
when predictor variables show multicollinearity because it 
more evenly distributes weight among correlated predictors, 
enhancing prediction and model interpretability [51], [52]. 

7) Adaptive Boosting Regression  

To improve forecasting accuracy, adaptive boosting 
regression, also known as AdaBoost Regression, is a potent 
ensemble-type ML technique that builds a series of weak 
learners, usually decision trees, one after the other until it 
creates a strong predictive model [53], [54]. In contrast to 
traditional regression techniques, AdaBoost works to reduce 
error by repeatedly training learners to accord preference to 
data points where earlier models have had poor results. To 
draw attention to these complex cases, the algorithm gives 
instances with higher residual errors higher weights in each 
round [55]. Later, learners shift their focus, focusing on 
samples where the previous model's predictions were less 
accurate, while the initial weak learner is trained on the 
complete dataset. The final, more potent model is created by 
AdaBoost Regression by adding up all of the weak learners' 
predictions, weighted by each learner's accuracy. This 
technique is adaptive since it "boosts" performance by 
continuously learning from errors and improving its strategy 
with each iteration. AdaBoost can accomplish this by lowering 
bias and variance and producing a more accurate regression 
model even on intricate, non-linear data distributions. It is 
beneficial in situations where conventional models perform 
poorly because it makes use of the ensemble approach to 
improve prediction accuracy and stability [56], [57]. 

8) Extreme Gradient Boosting Regression 

Extreme Gradient Boosting Regression (XGBoost) is a ML 
method that builds a series of decision trees to make accurate 
predictions [58], [59]. Every tree built by XGBoost aims to 
fix the errors of the past ones, progressively raising the 
accuracy of the model. XGBoost incorporates methods to 
prevent overfitting, which is when a model becomes overly 
complicated and performs poorly on new data but well on 
training data [60], [61]. Unlike some other algorithms. It uses 
parallel computing to speed calculations and adds penalty 
terms to regulate model complexity. XGBoost also gives great 
weight to data points that past trees missed, guiding the 
learning process. XGBoost can capture intricate patterns in 
data through this focused approach [62]. Its capacity to 
manage sparse data with missing or zero values, thus making 
it flexible for a broad spectrum of datasets. Combining these 
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techniques gives XGBoost a strong tool for regression tasks, 
where it is used to predict continuous values and is popular 
for its accuracy and speed in real-world applications [63], [64]. 

9) Categorical Boosting Regression 

Categorical Boosting Regression, also called in short as 
CatBoost is an ML approach explicitly designed to handle 
categorical data efficiently. It works within gradient-boosting 
frameworks by internally managing the categorical features 
and converting them into numerical representations. Thereby 
preserving important relationships in the data, unlike some 
boosting techniques requiring significant preprocessing [65], 
[66]. This change employs target encoding with ordered 
boosting, a technique whereby only past events affect the 
encoding, lowering the probability of overfitting. Aiming to 
minimize the loss function iteratively, CatBoost creates a set 
of decision trees, each seeking to fix the error of previous trees. 
CatBoost's symmetric tree structure is a key feature since it 
guarantees balanced tree development and helps to reduce 
prediction times by so improving model stability [67], [68]. 
CatBoost also includes a dynamic regularizing method to 
lower overfitting and enhance generalization on fresh data. 
Many high-dimensional datasets where other gradient 
boosting techniques may find challenging to capture complex 
categorical patterns have Catboost become a preferred choice 
by combining fast performance, reduced need for extensive 
preprocessing, and effective handling of categorical data. 

B. Data collection 

For this study, GDP, population, and income tax collection 
data were sourced from the World Bank's database 
(https://www.worldbank.org/en/about/annual-report) and the 
Australian Bureau of Statistics (https://www.abs.gov.au/). 
Developing machine learning (ML) models would find the 
World Bank a suitable source since it offers consistent, 
thorough worldwide data that is routinely updated. Given 
their strong link with national income levels and economic 
capacity, GDP and population data were gathered as main 
predictors. Target variable income tax collection data directly 
relates to a nation's economic activities and demographic 
features by reflecting government revenue earned from taxes. 
Preprocessing the data guarantees consistency and quality; 
hence, carefully handling any missing or incomplete entries 
helps preserve strong model performance. As variables like 
GDP and population can have different scales across nations 
and years, the values were also standardized for comparability. 
A varied and representative dataset spanning several areas and 
economic situations could be obtained through World Bank 
data. This method sought to create a model that could provide 
significant forecasts for nations with different economic 
profiles and generalize effectively across many settings. 
Using World Bank data gave the study more legitimacy and 
guaranteed that the findings could be generally relevant and 
applicable to economic analysts and legislators. 

III. RESULTS AND DISCUSSION 

A. Correlation among data  

The correlation heatmap with an illustration of data scatter 
illustrates the relationships between population, GDP, and 
income tax collection in Figure 1. The correlation analysis 

results are listed in Table 1. With values near one throughout 
all pairs, the heatmap reveals strong positive correlations 
between these variables. Particularly, the population shows a 
strong correlation with GDP (0.95) and income tax collecting 
(0.96), implying that GDP and tax collecting usually rise as 
population size rises. With an almost perfect (1) correlation 
between GDP and income tax collecting, higher GDP is 
clearly strongly linked with higher income tax collecting.  
Every couple of variables in the scatter plots of the heatmap 
shows a linear trend. The linear patterns imply that these 
variables move proportionately to one another. For instance, 
income tax collection rises in line with GDP and other factors. 
The histograms plotted along the diagonal offer individual 
variances of each variable's distribution. GDP and income tax 
collection, which vary significantly over the dataset, show a 
broad range for every variable. This trend shows how closely 
population size and economic indicators affect tax revenues; 
each variable seems to support the others in this regard. Close 
correlations suggest that changes in GDP or population will 
affect income tax collection consistently. 

 

 
Fig. 1  Pair plots of data 

 

 
Fig. 2  Normalized violin plots for the data  
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TABLE I 
CORRELATION MATRIX 

  Population 

GDP, 

USD 

Billion 

I Tax, USD 

Billion 

Population  1 0.95 0.96 
GDP, USD Billion 0.95 1 1 
I Tax, USD Billion 0.96 1 1 

 
Scaled for comparability, the violin plot (Figure 2) shows 

the population, GDP, and income tax (I Tax) variances. Every 
violin displays the density of values over the range for every 
variable; wider sections indicate greater density and narrower 
sections indicate lower density. Represented in magenta, the 
population variable shows a concentration around the middle 
range, implying that most population values are modest, with 
fewer cases at very high or very low levels. Showed in cyan, 
the GDP variable has a clear bi-modal form that suggests 
clustering around two primary levels, with a narrower waist 
indicating lower density in the middle range. This suggests 
that GDP values tend toward the upper and lower ends and are 
less fairly distributed. Showing moderate concentration in the 

middle with less extreme values, the income tax variable in 
yellow has a distribution similar to that of the population. 
These forms, taken together, give a sense of the distinct 
distribution patterns for every variable, illuminating how 
population, GDP, and income tax vary across the dataset and 
maybe pointing up different underlying distributions or 
influencing factors for every variable. 

2) Model development and comparison 

Table 2 compares several ML-based models applied to 
predict income tax collection depending on GDP and 
population. The results include the Mean Squared Error 
(MSE) on both training and test data, R-squared (R²) on both 
sets, and Mean Absolute Percentage Error (MAPE) for both 
sets. It is important to note that by ensuring the predictions on 
unseen data, one can evaluate the models' capacity to 
generalize from the training data to the test data by employing 
analytical analysis of these measures.  With a Train MSE of 
25.94 and a Train R² of 0.9983, the Random Forest model 
exhibits outstanding training performance, indicating a great 
degree of accuracy in fitting the training data.  

TABLE II 
COMPARATIVE EVALUATION OF ML-BASED MODELS  

Model Train MSE Test MSE Train R2 Test R2 Train MAPE, % Test MAPE, % 

Random Forest 25.94 51.00 0.9983 0.9958 2.85 5.53 
Gradient Boosting 0.04 50.28 1.0000 0.9959 0.21 6.89 
Decision Tree 0.00 180.50 1.0000 0.9853 0.00 9.10 
Linear Regression 73.59 61.83 0.9951 0.9950 5.25 6.66 
Lasso Regression 73.59 61.83 0.9951 0.9950 5.26 6.66 
Ridge Regression 73.59 61.83 0.9951 0.9950 5.25 6.66 
AdaBoost Regressor 51.41 124.56 0.9966 0.9899 9.45 8.05 
XGBoost 0 101.68 1 0.9917 0 6.47 
CatBoost 2.32 25.49 0.9998 0.9979 1.86 6.40 
 

On the test set, the Test MSE of 51.00 and Test R² of 
0.9958, however, show a small decline in performance that 
suggests some generalization ability but with minor 
overfitting. Reflecting the relative error rates of the model, the 
Train MAPE of 2.85% and Test MAPE of 5.53% show 
modest accuracy on the test data relative to the training data. 
Figure 3a depicts the comparison of actual and model 
forecasted values. Figure 4 depicts the model's statistical 
outcome. 

Figure 3b compares actual and model projected values for 
the GBR model. Figure 4 shows the statistical result of the 
model. With a Train MSE of 0.04 and Train R² of 1, the GBR 
model performs nearly perfectly on the training set. With a 
Test MSE of 50.28 and Test R² of 0.9959, very near those of 
the RF model, this model performs poorly on the test set. 
However, the model's higher Test MAPE of 6.89% indicates 
a rather more significant relative error in the forecasts. This 
implies that although Gradient Boosting performs exactly for 
the training data, it might not be as exact in forecasting the 
test data as other models. With both Train MSE and Train R² 
values at 0.00 and 1, respectively, suggesting an excellent fit 
to the training data, the Decision Tree model (Figure 3c) 
exhibits remarkable performance in training metrics. With a 
Test MSE of 180.50 and a Test R² of 0.9853, far lower than 
other models, it does poorly on the test data. Since the 

Decision Tree model fails to generalize from the training data 
to the test data, the Test MAPE, at 9.10%, is also high and 
indicates severe overfitting. 

Figure 3d compares actual and model projected values in 
the case of a based model. Figure 4 shows the model's 
statistically expected result. The LR model shows good 
general performance with a Train MSE of 73.59 and a Test 
MSE of 61.83. Train and Test R² values on both datasets are 
about 0.995, indicating good explaining ability. Its MSE 
values are higher than those of models such as Random Forest 
and Gradient Boosting, which suggest less exact predictions. 
Though with somewhat more error than the best models, the 
MAPE values, at 5.25% on the training set and 6.66% on the 
test set, show a relatively consistent performance across both 
sets. With Train MSE and Test MSE both at 73.59 and 61.83, 
respectively, and Train and Test R² values at 0.9951 and 
0.9950, Lasso Regression and Ridge Regression models, as 
depicted in Figure 3e and Figure 3f yield almost precisely the 
same results to Linear Regression in this case. The MAPE 
values for training and testing are similar—roughly 5.25% 
and 6.66% respectively. Though without any performance 
benefits, these models treat the dataset similarly to Linear 
Regression, implying that regularization had little effect on 
outcomes for this dataset.  
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(h) 

 
(i) 

Fig. 3  Actual vs model forecasted Income Tax collected in the case of (a) RF (b) GBR  (c) DT (d) LR (e) Lasso (f) (g) RR (h) Adaboost (i) CatBoost regression  

 
Figure 3g compares actual and model projected values for 

the AdaBoost model. Figure 4 shows the model's statistically 
derived result. With a Train MSE of 51.41 and Train R² of 
0.9966, the AdaBoost Regressor shows good training 
performance, but its test performance falls dramatically with 
a Train MSE of 124.56 and Train R2 of 0.9899. AdaBoost's 
higher Test MAPE of 8.05% suggests it might be overfitting 
from this disparity. This model is less consistent with test data 
than other ensemble models, including Random Forest and 

Gradient Boosting. With both Train MSE and Train R² values 
at 0.00 and 1.0000, the XGBoost model (Figure 3h) perfectly 
fits the training data. With a Test MSE of 101.68, Test R² of 
0.9917, and a Test MAPE of 6.47%, its performance is less 
ideal on the test set. XGBoost detects intricate trends in the 
training data, but its performance declines on the test set point 
to some degree of overfitting, though it is less severe than in 
the Decision Tree. 
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Fig. 4  Statistical comparison of developed models for (a) MSE training (b) MSE training (c) R2 train (d) R2 testing (e) MAPE train (f) MAPE testing 

 

  

 Fig. 5  Taylor diagram of developed models for (a) training and (b) testing phase 
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With a Train MSE of 2.32 and Train R² of 0.9998, the 
CatBoost model (Figure 3i) exhibits a balanced performance 
at last and a great fit to the training data. CatBoost shows great 
generalizing ability on the test set with a Test MSE of 25.49 
and Test R² of 0.9979. With a Test MAPE of 6.40% among 
all models, it exhibits constant predictive accuracy and has 
among the lowest. The stability of CatBoost across training 
and testing criteria points to its efficient management of data 
complexity free from overfit. By contrast, the Decision Tree 
model exhibits extreme overfit with almost perfect training 
metrics but much worse test set performance. Although they 
lack the accuracy of advanced ensemble models, linear 
regression and its regularized forms (Lasso and Ridge) 
perform rather well. Though both Random Forest and 
Gradient Boosting exhibit good generalization, their Test 
MAPE values are somewhat higher than CatBoost. Though it 
shows more overfitting than Catboost, XGBoost also 
performs rather well. 

CatBoost is the best model among all the ones since its 
balanced performance over all criteria is outstanding. 
Indicating it can generalize well; it achieves great accuracy on 
the test set without compromising training performance. 
Along with its reduced Test MAPE, CatBoost's lower Test 
MSE and high-Test R² show its capacity to more successfully 
manage intricate patterns in the dataset than other models. In 
this sense, CatBoost is the most appropriate model for 
estimating income tax collecting depending on GDP and 
population. Taylor’s diagram was employed for model 
comparison, and these also corroborated the statistical 
evaluation of model in this Catboost was best model, as 
depicted in Figure 5.  

IV. CONCLUSION 

This machine learning-based study on income tax 
prediction reveals significant differences in model 
performance. Random Forest performed well, with a Train 
MSE of 25.94, Test MSE of 51.00, and Test MAPE of 5.53%. 
Gradient Boosting achieved a near-perfect Train MSE (0.04) 
but had a Test MAPE of 6.89%, indicating that its predictions 
were less accurate on new data. Decision Tree fit the training 
data exactly, with Train MSE of 0.00 and Train R² of 1.0000, 
but performed poorly on the test set, with Test MSE of 180.50 
and Test MAPE of 9.10%, signaling severe overfitting. Linear, 
Lasso, and Ridge Regression models all had similar results, 
with Train MSE of 73.59 and Test MSE of 61.83, suggesting 
moderate accuracy but less precision than ensemble models. 
AdaBoost and XGBoost models both showed overfitting, with 
higher Test MAPE values at 8.05% and 6.47%, respectively. 
CatBoost achieved the best overall performance with a Train 
MSE of 2.32, Test MSE of 25.49, and Test MAPE of 6.40%. 
Its low error rates and consistent results across both training and 
test datasets indicate a strong ability to generalize without 
overfitting. Among all models, CatBoost emerges as the most 
suitable for predicting income tax collection based on GDP and 
population, due to its balanced accuracy and effective handling 
of complex data patterns. 
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